/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef _MOZILLA_GFX_SIMD_H_ #define _MOZILLA_GFX_SIMD_H_ /** * Consumers of this file need to #define SIMD_COMPILE_SSE2 before including it * if they want access to the SSE2 functions. */ #ifdef SIMD_COMPILE_SSE2 # include #endif namespace mozilla { namespace gfx { namespace simd { template u8x16_t Load8(const uint8_t* aSource); template u8x16_t From8(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p); template u8x16_t FromZero8(); template i16x8_t FromI16(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h); template u16x8_t FromU16(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h); template i16x8_t FromI16(int16_t a); template u16x8_t FromU16(uint16_t a); template i32x4_t From32(int32_t a, int32_t b, int32_t c, int32_t d); template i32x4_t From32(int32_t a); template f32x4_t FromF32(float a, float b, float c, float d); template f32x4_t FromF32(float a); // All SIMD backends overload these functions for their SIMD types: #if 0 // Store 16 bytes to a 16-byte aligned address void Store8(uint8_t* aTarget, u8x16_t aM); // Fixed shifts template i16x8_t ShiftRight16(i16x8_t aM); template i32x4_t ShiftRight32(i32x4_t aM); i16x8_t Add16(i16x8_t aM1, i16x8_t aM2); i32x4_t Add32(i32x4_t aM1, i32x4_t aM2); i16x8_t Sub16(i16x8_t aM1, i16x8_t aM2); i32x4_t Sub32(i32x4_t aM1, i32x4_t aM2); u8x16_t Min8(u8x16_t aM1, iu8x16_t aM2); u8x16_t Max8(u8x16_t aM1, iu8x16_t aM2); i32x4_t Min32(i32x4_t aM1, i32x4_t aM2); i32x4_t Max32(i32x4_t aM1, i32x4_t aM2); // Truncating i16 -> i16 multiplication i16x8_t Mul16(i16x8_t aM1, i16x8_t aM2); // Long multiplication i16 -> i32 // aFactorsA1B1 = (a1[4] b1[4]) // aFactorsA2B2 = (a2[4] b2[4]) // aProductA = a1 * a2, aProductB = b1 * b2 void Mul16x4x2x2To32x4x2(i16x8_t aFactorsA1B1, i16x8_t aFactorsA2B2, i32x4_t& aProductA, i32x4_t& aProductB); // Long multiplication + pairwise addition i16 -> i32 // See the scalar implementation for specifics. i32x4_t MulAdd16x8x2To32x4(i16x8_t aFactorsA, i16x8_t aFactorsB); i32x4_t MulAdd16x8x2To32x4(u16x8_t aFactorsA, u16x8_t aFactorsB); // Set all four 32-bit components to the value of the component at aIndex. template i32x4_t Splat32(i32x4_t aM); // Interpret the input as four 32-bit values, apply Splat32 on them, // re-interpret the result as sixteen 8-bit values. template u8x16_t Splat32On8(u8x16_t aM); template i32x4 Shuffle32(i32x4 aM); template i16x8 ShuffleLo16(i16x8 aM); template i16x8 ShuffleHi16(i16x8 aM); u8x16_t InterleaveLo8(u8x16_t m1, u8x16_t m2); u8x16_t InterleaveHi8(u8x16_t m1, u8x16_t m2); i16x8_t InterleaveLo16(i16x8_t m1, i16x8_t m2); i16x8_t InterleaveHi16(i16x8_t m1, i16x8_t m2); i32x4_t InterleaveLo32(i32x4_t m1, i32x4_t m2); i16x8_t UnpackLo8x8ToI16x8(u8x16_t m); i16x8_t UnpackHi8x8ToI16x8(u8x16_t m); u16x8_t UnpackLo8x8ToU16x8(u8x16_t m); u16x8_t UnpackHi8x8ToU16x8(u8x16_t m); i16x8_t PackAndSaturate32To16(i32x4_t m1, i32x4_t m2); u8x16_t PackAndSaturate16To8(i16x8_t m1, i16x8_t m2); u8x16_t PackAndSaturate32To8(i32x4_t m1, i32x4_t m2, i32x4_t m3, const i32x4_t& m4); i32x4 FastDivideBy255(i32x4 m); i16x8 FastDivideBy255_16(i16x8 m); #endif // Scalar struct Scalaru8x16_t { uint8_t u8[16]; }; union Scalari16x8_t { int16_t i16[8]; uint16_t u16[8]; }; typedef Scalari16x8_t Scalaru16x8_t; struct Scalari32x4_t { int32_t i32[4]; }; struct Scalarf32x4_t { float f32[4]; }; template <> inline Scalaru8x16_t Load8(const uint8_t* aSource) { return *(Scalaru8x16_t*)aSource; } inline void Store8(uint8_t* aTarget, Scalaru8x16_t aM) { *(Scalaru8x16_t*)aTarget = aM; } template <> inline Scalaru8x16_t From8(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) { Scalaru8x16_t _m; _m.u8[0] = a; _m.u8[1] = b; _m.u8[2] = c; _m.u8[3] = d; _m.u8[4] = e; _m.u8[5] = f; _m.u8[6] = g; _m.u8[7] = h; _m.u8[8 + 0] = i; _m.u8[8 + 1] = j; _m.u8[8 + 2] = k; _m.u8[8 + 3] = l; _m.u8[8 + 4] = m; _m.u8[8 + 5] = n; _m.u8[8 + 6] = o; _m.u8[8 + 7] = p; return _m; } template <> inline Scalaru8x16_t FromZero8() { return From8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); } template <> inline Scalari16x8_t FromI16(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h) { Scalari16x8_t m; m.i16[0] = a; m.i16[1] = b; m.i16[2] = c; m.i16[3] = d; m.i16[4] = e; m.i16[5] = f; m.i16[6] = g; m.i16[7] = h; return m; } template <> inline Scalaru16x8_t FromU16(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) { Scalaru16x8_t m; m.u16[0] = a; m.u16[1] = b; m.u16[2] = c; m.u16[3] = d; m.u16[4] = e; m.u16[5] = f; m.u16[6] = g; m.u16[7] = h; return m; } template <> inline Scalari16x8_t FromI16(int16_t a) { return FromI16(a, a, a, a, a, a, a, a); } template <> inline Scalaru16x8_t FromU16(uint16_t a) { return FromU16(a, a, a, a, a, a, a, a); } template <> inline Scalari32x4_t From32(int32_t a, int32_t b, int32_t c, int32_t d) { Scalari32x4_t m; m.i32[0] = a; m.i32[1] = b; m.i32[2] = c; m.i32[3] = d; return m; } template <> inline Scalarf32x4_t FromF32(float a, float b, float c, float d) { Scalarf32x4_t m; m.f32[0] = a; m.f32[1] = b; m.f32[2] = c; m.f32[3] = d; return m; } template <> inline Scalarf32x4_t FromF32(float a) { return FromF32(a, a, a, a); } template <> inline Scalari32x4_t From32(int32_t a) { return From32(a, a, a, a); } template inline Scalari16x8_t ShiftRight16(Scalari16x8_t aM) { return FromI16(uint16_t(aM.i16[0]) >> aNumberOfBits, uint16_t(aM.i16[1]) >> aNumberOfBits, uint16_t(aM.i16[2]) >> aNumberOfBits, uint16_t(aM.i16[3]) >> aNumberOfBits, uint16_t(aM.i16[4]) >> aNumberOfBits, uint16_t(aM.i16[5]) >> aNumberOfBits, uint16_t(aM.i16[6]) >> aNumberOfBits, uint16_t(aM.i16[7]) >> aNumberOfBits); } template inline Scalari32x4_t ShiftRight32(Scalari32x4_t aM) { return From32( aM.i32[0] >> aNumberOfBits, aM.i32[1] >> aNumberOfBits, aM.i32[2] >> aNumberOfBits, aM.i32[3] >> aNumberOfBits); } inline Scalaru16x8_t Add16(Scalaru16x8_t aM1, Scalaru16x8_t aM2) { return FromU16( aM1.u16[0] + aM2.u16[0], aM1.u16[1] + aM2.u16[1], aM1.u16[2] + aM2.u16[2], aM1.u16[3] + aM2.u16[3], aM1.u16[4] + aM2.u16[4], aM1.u16[5] + aM2.u16[5], aM1.u16[6] + aM2.u16[6], aM1.u16[7] + aM2.u16[7]); } inline Scalari32x4_t Add32(Scalari32x4_t aM1, Scalari32x4_t aM2) { return From32(aM1.i32[0] + aM2.i32[0], aM1.i32[1] + aM2.i32[1], aM1.i32[2] + aM2.i32[2], aM1.i32[3] + aM2.i32[3]); } inline Scalaru16x8_t Sub16(Scalaru16x8_t aM1, Scalaru16x8_t aM2) { return FromU16( aM1.u16[0] - aM2.u16[0], aM1.u16[1] - aM2.u16[1], aM1.u16[2] - aM2.u16[2], aM1.u16[3] - aM2.u16[3], aM1.u16[4] - aM2.u16[4], aM1.u16[5] - aM2.u16[5], aM1.u16[6] - aM2.u16[6], aM1.u16[7] - aM2.u16[7]); } inline Scalari32x4_t Sub32(Scalari32x4_t aM1, Scalari32x4_t aM2) { return From32(aM1.i32[0] - aM2.i32[0], aM1.i32[1] - aM2.i32[1], aM1.i32[2] - aM2.i32[2], aM1.i32[3] - aM2.i32[3]); } inline int32_t umin(int32_t a, int32_t b) { return a - ((a - b) & -(a > b)); } inline int32_t umax(int32_t a, int32_t b) { return a - ((a - b) & -(a < b)); } inline Scalaru8x16_t Min8(Scalaru8x16_t aM1, Scalaru8x16_t aM2) { return From8( umin(aM1.u8[0], aM2.u8[0]), umin(aM1.u8[1], aM2.u8[1]), umin(aM1.u8[2], aM2.u8[2]), umin(aM1.u8[3], aM2.u8[3]), umin(aM1.u8[4], aM2.u8[4]), umin(aM1.u8[5], aM2.u8[5]), umin(aM1.u8[6], aM2.u8[6]), umin(aM1.u8[7], aM2.u8[7]), umin(aM1.u8[8 + 0], aM2.u8[8 + 0]), umin(aM1.u8[8 + 1], aM2.u8[8 + 1]), umin(aM1.u8[8 + 2], aM2.u8[8 + 2]), umin(aM1.u8[8 + 3], aM2.u8[8 + 3]), umin(aM1.u8[8 + 4], aM2.u8[8 + 4]), umin(aM1.u8[8 + 5], aM2.u8[8 + 5]), umin(aM1.u8[8 + 6], aM2.u8[8 + 6]), umin(aM1.u8[8 + 7], aM2.u8[8 + 7])); } inline Scalaru8x16_t Max8(Scalaru8x16_t aM1, Scalaru8x16_t aM2) { return From8( umax(aM1.u8[0], aM2.u8[0]), umax(aM1.u8[1], aM2.u8[1]), umax(aM1.u8[2], aM2.u8[2]), umax(aM1.u8[3], aM2.u8[3]), umax(aM1.u8[4], aM2.u8[4]), umax(aM1.u8[5], aM2.u8[5]), umax(aM1.u8[6], aM2.u8[6]), umax(aM1.u8[7], aM2.u8[7]), umax(aM1.u8[8 + 0], aM2.u8[8 + 0]), umax(aM1.u8[8 + 1], aM2.u8[8 + 1]), umax(aM1.u8[8 + 2], aM2.u8[8 + 2]), umax(aM1.u8[8 + 3], aM2.u8[8 + 3]), umax(aM1.u8[8 + 4], aM2.u8[8 + 4]), umax(aM1.u8[8 + 5], aM2.u8[8 + 5]), umax(aM1.u8[8 + 6], aM2.u8[8 + 6]), umax(aM1.u8[8 + 7], aM2.u8[8 + 7])); } inline Scalari32x4_t Min32(Scalari32x4_t aM1, Scalari32x4_t aM2) { return From32( umin(aM1.i32[0], aM2.i32[0]), umin(aM1.i32[1], aM2.i32[1]), umin(aM1.i32[2], aM2.i32[2]), umin(aM1.i32[3], aM2.i32[3])); } inline Scalari32x4_t Max32(Scalari32x4_t aM1, Scalari32x4_t aM2) { return From32( umax(aM1.i32[0], aM2.i32[0]), umax(aM1.i32[1], aM2.i32[1]), umax(aM1.i32[2], aM2.i32[2]), umax(aM1.i32[3], aM2.i32[3])); } inline Scalaru16x8_t Mul16(Scalaru16x8_t aM1, Scalaru16x8_t aM2) { return FromU16( uint16_t(int32_t(aM1.u16[0]) * int32_t(aM2.u16[0])), uint16_t(int32_t(aM1.u16[1]) * int32_t(aM2.u16[1])), uint16_t(int32_t(aM1.u16[2]) * int32_t(aM2.u16[2])), uint16_t(int32_t(aM1.u16[3]) * int32_t(aM2.u16[3])), uint16_t(int32_t(aM1.u16[4]) * int32_t(aM2.u16[4])), uint16_t(int32_t(aM1.u16[5]) * int32_t(aM2.u16[5])), uint16_t(int32_t(aM1.u16[6]) * int32_t(aM2.u16[6])), uint16_t(int32_t(aM1.u16[7]) * int32_t(aM2.u16[7]))); } inline void Mul16x4x2x2To32x4x2(Scalari16x8_t aFactorsA1B1, Scalari16x8_t aFactorsA2B2, Scalari32x4_t& aProductA, Scalari32x4_t& aProductB) { aProductA = From32(aFactorsA1B1.i16[0] * aFactorsA2B2.i16[0], aFactorsA1B1.i16[1] * aFactorsA2B2.i16[1], aFactorsA1B1.i16[2] * aFactorsA2B2.i16[2], aFactorsA1B1.i16[3] * aFactorsA2B2.i16[3]); aProductB = From32(aFactorsA1B1.i16[4] * aFactorsA2B2.i16[4], aFactorsA1B1.i16[5] * aFactorsA2B2.i16[5], aFactorsA1B1.i16[6] * aFactorsA2B2.i16[6], aFactorsA1B1.i16[7] * aFactorsA2B2.i16[7]); } inline Scalari32x4_t MulAdd16x8x2To32x4(Scalari16x8_t aFactorsA, Scalari16x8_t aFactorsB) { return From32( aFactorsA.i16[0] * aFactorsB.i16[0] + aFactorsA.i16[1] * aFactorsB.i16[1], aFactorsA.i16[2] * aFactorsB.i16[2] + aFactorsA.i16[3] * aFactorsB.i16[3], aFactorsA.i16[4] * aFactorsB.i16[4] + aFactorsA.i16[5] * aFactorsB.i16[5], aFactorsA.i16[6] * aFactorsB.i16[6] + aFactorsA.i16[7] * aFactorsB.i16[7]); } template inline void AssertIndex() { static_assert(aIndex == 0 || aIndex == 1 || aIndex == 2 || aIndex == 3, "Invalid splat index"); } template inline Scalari32x4_t Splat32(Scalari32x4_t aM) { AssertIndex(); return From32(aM.i32[aIndex], aM.i32[aIndex], aM.i32[aIndex], aM.i32[aIndex]); } template inline Scalaru8x16_t Splat32On8(Scalaru8x16_t aM) { AssertIndex(); return From8( aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3], aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3], aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3], aM.u8[i * 4], aM.u8[i * 4 + 1], aM.u8[i * 4 + 2], aM.u8[i * 4 + 3]); } template inline Scalari32x4_t Shuffle32(Scalari32x4_t aM) { AssertIndex(); AssertIndex(); AssertIndex(); AssertIndex(); Scalari32x4_t m = aM; m.i32[0] = aM.i32[i3]; m.i32[1] = aM.i32[i2]; m.i32[2] = aM.i32[i1]; m.i32[3] = aM.i32[i0]; return m; } template inline Scalari16x8_t ShuffleLo16(Scalari16x8_t aM) { AssertIndex(); AssertIndex(); AssertIndex(); AssertIndex(); Scalari16x8_t m = aM; m.i16[0] = aM.i16[i3]; m.i16[1] = aM.i16[i2]; m.i16[2] = aM.i16[i1]; m.i16[3] = aM.i16[i0]; return m; } template inline Scalari16x8_t ShuffleHi16(Scalari16x8_t aM) { AssertIndex(); AssertIndex(); AssertIndex(); AssertIndex(); Scalari16x8_t m = aM; m.i16[4 + 0] = aM.i16[4 + i3]; m.i16[4 + 1] = aM.i16[4 + i2]; m.i16[4 + 2] = aM.i16[4 + i1]; m.i16[4 + 3] = aM.i16[4 + i0]; return m; } template inline Scalaru16x8_t Splat16(Scalaru16x8_t aM) { AssertIndex(); AssertIndex(); Scalaru16x8_t m; int16_t chosenValueLo = aM.u16[aIndexLo]; m.u16[0] = chosenValueLo; m.u16[1] = chosenValueLo; m.u16[2] = chosenValueLo; m.u16[3] = chosenValueLo; int16_t chosenValueHi = aM.u16[4 + aIndexHi]; m.u16[4] = chosenValueHi; m.u16[5] = chosenValueHi; m.u16[6] = chosenValueHi; m.u16[7] = chosenValueHi; return m; } inline Scalaru8x16_t InterleaveLo8(Scalaru8x16_t m1, Scalaru8x16_t m2) { return From8(m1.u8[0], m2.u8[0], m1.u8[1], m2.u8[1], m1.u8[2], m2.u8[2], m1.u8[3], m2.u8[3], m1.u8[4], m2.u8[4], m1.u8[5], m2.u8[5], m1.u8[6], m2.u8[6], m1.u8[7], m2.u8[7]); } inline Scalaru8x16_t InterleaveHi8(Scalaru8x16_t m1, Scalaru8x16_t m2) { return From8( m1.u8[8 + 0], m2.u8[8 + 0], m1.u8[8 + 1], m2.u8[8 + 1], m1.u8[8 + 2], m2.u8[8 + 2], m1.u8[8 + 3], m2.u8[8 + 3], m1.u8[8 + 4], m2.u8[8 + 4], m1.u8[8 + 5], m2.u8[8 + 5], m1.u8[8 + 6], m2.u8[8 + 6], m1.u8[8 + 7], m2.u8[8 + 7]); } inline Scalaru16x8_t InterleaveLo16(Scalaru16x8_t m1, Scalaru16x8_t m2) { return FromU16(m1.u16[0], m2.u16[0], m1.u16[1], m2.u16[1], m1.u16[2], m2.u16[2], m1.u16[3], m2.u16[3]); } inline Scalaru16x8_t InterleaveHi16(Scalaru16x8_t m1, Scalaru16x8_t m2) { return FromU16(m1.u16[4], m2.u16[4], m1.u16[5], m2.u16[5], m1.u16[6], m2.u16[6], m1.u16[7], m2.u16[7]); } inline Scalari32x4_t InterleaveLo32(Scalari32x4_t m1, Scalari32x4_t m2) { return From32(m1.i32[0], m2.i32[0], m1.i32[1], m2.i32[1]); } inline Scalari16x8_t UnpackLo8x8ToI16x8(Scalaru8x16_t aM) { Scalari16x8_t m; m.i16[0] = aM.u8[0]; m.i16[1] = aM.u8[1]; m.i16[2] = aM.u8[2]; m.i16[3] = aM.u8[3]; m.i16[4] = aM.u8[4]; m.i16[5] = aM.u8[5]; m.i16[6] = aM.u8[6]; m.i16[7] = aM.u8[7]; return m; } inline Scalari16x8_t UnpackHi8x8ToI16x8(Scalaru8x16_t aM) { Scalari16x8_t m; m.i16[0] = aM.u8[8 + 0]; m.i16[1] = aM.u8[8 + 1]; m.i16[2] = aM.u8[8 + 2]; m.i16[3] = aM.u8[8 + 3]; m.i16[4] = aM.u8[8 + 4]; m.i16[5] = aM.u8[8 + 5]; m.i16[6] = aM.u8[8 + 6]; m.i16[7] = aM.u8[8 + 7]; return m; } inline Scalaru16x8_t UnpackLo8x8ToU16x8(Scalaru8x16_t aM) { return FromU16(uint16_t(aM.u8[0]), uint16_t(aM.u8[1]), uint16_t(aM.u8[2]), uint16_t(aM.u8[3]), uint16_t(aM.u8[4]), uint16_t(aM.u8[5]), uint16_t(aM.u8[6]), uint16_t(aM.u8[7])); } inline Scalaru16x8_t UnpackHi8x8ToU16x8(Scalaru8x16_t aM) { return FromU16(aM.u8[8 + 0], aM.u8[8 + 1], aM.u8[8 + 2], aM.u8[8 + 3], aM.u8[8 + 4], aM.u8[8 + 5], aM.u8[8 + 6], aM.u8[8 + 7]); } template inline Scalaru8x16_t Rotate8(Scalaru8x16_t a1234, Scalaru8x16_t a5678) { Scalaru8x16_t m; for (uint8_t i = 0; i < 16; i++) { uint8_t sourceByte = i + aNumBytes; m.u8[i] = sourceByte < 16 ? a1234.u8[sourceByte] : a5678.u8[sourceByte - 16]; } return m; } template inline int16_t SaturateTo16(T a) { return int16_t(a >= INT16_MIN ? (a <= INT16_MAX ? a : INT16_MAX) : INT16_MIN); } inline Scalari16x8_t PackAndSaturate32To16(Scalari32x4_t m1, Scalari32x4_t m2) { Scalari16x8_t m; m.i16[0] = SaturateTo16(m1.i32[0]); m.i16[1] = SaturateTo16(m1.i32[1]); m.i16[2] = SaturateTo16(m1.i32[2]); m.i16[3] = SaturateTo16(m1.i32[3]); m.i16[4] = SaturateTo16(m2.i32[0]); m.i16[5] = SaturateTo16(m2.i32[1]); m.i16[6] = SaturateTo16(m2.i32[2]); m.i16[7] = SaturateTo16(m2.i32[3]); return m; } template inline uint16_t SaturateToU16(T a) { return uint16_t(umin(a & -(a >= 0), INT16_MAX)); } inline Scalaru16x8_t PackAndSaturate32ToU16(Scalari32x4_t m1, Scalari32x4_t m2) { Scalaru16x8_t m; m.u16[0] = SaturateToU16(m1.i32[0]); m.u16[1] = SaturateToU16(m1.i32[1]); m.u16[2] = SaturateToU16(m1.i32[2]); m.u16[3] = SaturateToU16(m1.i32[3]); m.u16[4] = SaturateToU16(m2.i32[0]); m.u16[5] = SaturateToU16(m2.i32[1]); m.u16[6] = SaturateToU16(m2.i32[2]); m.u16[7] = SaturateToU16(m2.i32[3]); return m; } template inline uint8_t SaturateTo8(T a) { return uint8_t(umin(a & -(a >= 0), 255)); } inline Scalaru8x16_t PackAndSaturate32To8(Scalari32x4_t m1, Scalari32x4_t m2, Scalari32x4_t m3, const Scalari32x4_t& m4) { Scalaru8x16_t m; m.u8[0] = SaturateTo8(m1.i32[0]); m.u8[1] = SaturateTo8(m1.i32[1]); m.u8[2] = SaturateTo8(m1.i32[2]); m.u8[3] = SaturateTo8(m1.i32[3]); m.u8[4] = SaturateTo8(m2.i32[0]); m.u8[5] = SaturateTo8(m2.i32[1]); m.u8[6] = SaturateTo8(m2.i32[2]); m.u8[7] = SaturateTo8(m2.i32[3]); m.u8[8] = SaturateTo8(m3.i32[0]); m.u8[9] = SaturateTo8(m3.i32[1]); m.u8[10] = SaturateTo8(m3.i32[2]); m.u8[11] = SaturateTo8(m3.i32[3]); m.u8[12] = SaturateTo8(m4.i32[0]); m.u8[13] = SaturateTo8(m4.i32[1]); m.u8[14] = SaturateTo8(m4.i32[2]); m.u8[15] = SaturateTo8(m4.i32[3]); return m; } inline Scalaru8x16_t PackAndSaturate16To8(Scalari16x8_t m1, Scalari16x8_t m2) { Scalaru8x16_t m; m.u8[0] = SaturateTo8(m1.i16[0]); m.u8[1] = SaturateTo8(m1.i16[1]); m.u8[2] = SaturateTo8(m1.i16[2]); m.u8[3] = SaturateTo8(m1.i16[3]); m.u8[4] = SaturateTo8(m1.i16[4]); m.u8[5] = SaturateTo8(m1.i16[5]); m.u8[6] = SaturateTo8(m1.i16[6]); m.u8[7] = SaturateTo8(m1.i16[7]); m.u8[8] = SaturateTo8(m2.i16[0]); m.u8[9] = SaturateTo8(m2.i16[1]); m.u8[10] = SaturateTo8(m2.i16[2]); m.u8[11] = SaturateTo8(m2.i16[3]); m.u8[12] = SaturateTo8(m2.i16[4]); m.u8[13] = SaturateTo8(m2.i16[5]); m.u8[14] = SaturateTo8(m2.i16[6]); m.u8[15] = SaturateTo8(m2.i16[7]); return m; } // Fast approximate division by 255. It has the property that // for all 0 <= n <= 255*255, FAST_DIVIDE_BY_255(n) == n/255. // But it only uses two adds and two shifts instead of an // integer division (which is expensive on many processors). // // equivalent to v/255 template inline B FastDivideBy255(A v) { return ((v << 8) + v + 255) >> 16; } inline Scalaru16x8_t FastDivideBy255_16(Scalaru16x8_t m) { return FromU16(FastDivideBy255(int32_t(m.u16[0])), FastDivideBy255(int32_t(m.u16[1])), FastDivideBy255(int32_t(m.u16[2])), FastDivideBy255(int32_t(m.u16[3])), FastDivideBy255(int32_t(m.u16[4])), FastDivideBy255(int32_t(m.u16[5])), FastDivideBy255(int32_t(m.u16[6])), FastDivideBy255(int32_t(m.u16[7]))); } inline Scalari32x4_t FastDivideBy255(Scalari32x4_t m) { return From32( FastDivideBy255(m.i32[0]), FastDivideBy255(m.i32[1]), FastDivideBy255(m.i32[2]), FastDivideBy255(m.i32[3])); } inline Scalaru8x16_t Pick(Scalaru8x16_t mask, Scalaru8x16_t a, Scalaru8x16_t b) { return From8( (a.u8[0] & (~mask.u8[0])) | (b.u8[0] & mask.u8[0]), (a.u8[1] & (~mask.u8[1])) | (b.u8[1] & mask.u8[1]), (a.u8[2] & (~mask.u8[2])) | (b.u8[2] & mask.u8[2]), (a.u8[3] & (~mask.u8[3])) | (b.u8[3] & mask.u8[3]), (a.u8[4] & (~mask.u8[4])) | (b.u8[4] & mask.u8[4]), (a.u8[5] & (~mask.u8[5])) | (b.u8[5] & mask.u8[5]), (a.u8[6] & (~mask.u8[6])) | (b.u8[6] & mask.u8[6]), (a.u8[7] & (~mask.u8[7])) | (b.u8[7] & mask.u8[7]), (a.u8[8 + 0] & (~mask.u8[8 + 0])) | (b.u8[8 + 0] & mask.u8[8 + 0]), (a.u8[8 + 1] & (~mask.u8[8 + 1])) | (b.u8[8 + 1] & mask.u8[8 + 1]), (a.u8[8 + 2] & (~mask.u8[8 + 2])) | (b.u8[8 + 2] & mask.u8[8 + 2]), (a.u8[8 + 3] & (~mask.u8[8 + 3])) | (b.u8[8 + 3] & mask.u8[8 + 3]), (a.u8[8 + 4] & (~mask.u8[8 + 4])) | (b.u8[8 + 4] & mask.u8[8 + 4]), (a.u8[8 + 5] & (~mask.u8[8 + 5])) | (b.u8[8 + 5] & mask.u8[8 + 5]), (a.u8[8 + 6] & (~mask.u8[8 + 6])) | (b.u8[8 + 6] & mask.u8[8 + 6]), (a.u8[8 + 7] & (~mask.u8[8 + 7])) | (b.u8[8 + 7] & mask.u8[8 + 7])); } inline Scalari32x4_t Pick(Scalari32x4_t mask, Scalari32x4_t a, Scalari32x4_t b) { return From32( (a.i32[0] & (~mask.i32[0])) | (b.i32[0] & mask.i32[0]), (a.i32[1] & (~mask.i32[1])) | (b.i32[1] & mask.i32[1]), (a.i32[2] & (~mask.i32[2])) | (b.i32[2] & mask.i32[2]), (a.i32[3] & (~mask.i32[3])) | (b.i32[3] & mask.i32[3])); } inline Scalarf32x4_t MixF32(Scalarf32x4_t a, Scalarf32x4_t b, float t) { return FromF32(a.f32[0] + (b.f32[0] - a.f32[0]) * t, a.f32[1] + (b.f32[1] - a.f32[1]) * t, a.f32[2] + (b.f32[2] - a.f32[2]) * t, a.f32[3] + (b.f32[3] - a.f32[3]) * t); } inline Scalarf32x4_t WSumF32(Scalarf32x4_t a, Scalarf32x4_t b, float wa, float wb) { return FromF32( a.f32[0] * wa + b.f32[0] * wb, a.f32[1] * wa + b.f32[1] * wb, a.f32[2] * wa + b.f32[2] * wb, a.f32[3] * wa + b.f32[3] * wb); } inline Scalarf32x4_t AbsF32(Scalarf32x4_t a) { return FromF32(fabs(a.f32[0]), fabs(a.f32[1]), fabs(a.f32[2]), fabs(a.f32[3])); } inline Scalarf32x4_t AddF32(Scalarf32x4_t a, Scalarf32x4_t b) { return FromF32(a.f32[0] + b.f32[0], a.f32[1] + b.f32[1], a.f32[2] + b.f32[2], a.f32[3] + b.f32[3]); } inline Scalarf32x4_t MulF32(Scalarf32x4_t a, Scalarf32x4_t b) { return FromF32(a.f32[0] * b.f32[0], a.f32[1] * b.f32[1], a.f32[2] * b.f32[2], a.f32[3] * b.f32[3]); } inline Scalarf32x4_t DivF32(Scalarf32x4_t a, Scalarf32x4_t b) { return FromF32(a.f32[0] / b.f32[0], a.f32[1] / b.f32[1], a.f32[2] / b.f32[2], a.f32[3] / b.f32[3]); } template inline Scalarf32x4_t SplatF32(Scalarf32x4_t m) { AssertIndex(); return FromF32(m.f32[aIndex], m.f32[aIndex], m.f32[aIndex], m.f32[aIndex]); } inline Scalari32x4_t F32ToI32(Scalarf32x4_t m) { return From32( int32_t(floor(m.f32[0] + 0.5f)), int32_t(floor(m.f32[1] + 0.5f)), int32_t(floor(m.f32[2] + 0.5f)), int32_t(floor(m.f32[3] + 0.5f))); } #ifdef SIMD_COMPILE_SSE2 // SSE2 template <> inline __m128i Load8<__m128i>(const uint8_t* aSource) { return _mm_load_si128((const __m128i*)aSource); } inline void Store8(uint8_t* aTarget, __m128i aM) { _mm_store_si128((__m128i*)aTarget, aM); } template <> inline __m128i FromZero8<__m128i>() { return _mm_setzero_si128(); } template <> inline __m128i From8<__m128i>(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) { return _mm_setr_epi16((b << 8) + a, (d << 8) + c, (e << 8) + f, (h << 8) + g, (j << 8) + i, (l << 8) + k, (m << 8) + n, (p << 8) + o); } template <> inline __m128i FromI16<__m128i>(int16_t a, int16_t b, int16_t c, int16_t d, int16_t e, int16_t f, int16_t g, int16_t h) { return _mm_setr_epi16(a, b, c, d, e, f, g, h); } template <> inline __m128i FromU16<__m128i>(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) { return _mm_setr_epi16(a, b, c, d, e, f, g, h); } template <> inline __m128i FromI16<__m128i>(int16_t a) { return _mm_set1_epi16(a); } template <> inline __m128i FromU16<__m128i>(uint16_t a) { return _mm_set1_epi16((int16_t)a); } template <> inline __m128i From32<__m128i>(int32_t a, int32_t b, int32_t c, int32_t d) { return _mm_setr_epi32(a, b, c, d); } template <> inline __m128i From32<__m128i>(int32_t a) { return _mm_set1_epi32(a); } template <> inline __m128 FromF32<__m128>(float a, float b, float c, float d) { return _mm_setr_ps(a, b, c, d); } template <> inline __m128 FromF32<__m128>(float a) { return _mm_set1_ps(a); } template inline __m128i ShiftRight16(__m128i aM) { return _mm_srli_epi16(aM, aNumberOfBits); } template inline __m128i ShiftRight32(__m128i aM) { return _mm_srai_epi32(aM, aNumberOfBits); } inline __m128i Add16(__m128i aM1, __m128i aM2) { return _mm_add_epi16(aM1, aM2); } inline __m128i Add32(__m128i aM1, __m128i aM2) { return _mm_add_epi32(aM1, aM2); } inline __m128i Sub16(__m128i aM1, __m128i aM2) { return _mm_sub_epi16(aM1, aM2); } inline __m128i Sub32(__m128i aM1, __m128i aM2) { return _mm_sub_epi32(aM1, aM2); } inline __m128i Min8(__m128i aM1, __m128i aM2) { return _mm_min_epu8(aM1, aM2); } inline __m128i Max8(__m128i aM1, __m128i aM2) { return _mm_max_epu8(aM1, aM2); } inline __m128i Min32(__m128i aM1, __m128i aM2) { __m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2); __m128i m1_greater_than_m2 = _mm_cmpgt_epi32(aM1, aM2); return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m1_greater_than_m2)); } inline __m128i Max32(__m128i aM1, __m128i aM2) { __m128i m1_minus_m2 = _mm_sub_epi32(aM1, aM2); __m128i m2_greater_than_m1 = _mm_cmpgt_epi32(aM2, aM1); return _mm_sub_epi32(aM1, _mm_and_si128(m1_minus_m2, m2_greater_than_m1)); } inline __m128i Mul16(__m128i aM1, __m128i aM2) { return _mm_mullo_epi16(aM1, aM2); } inline __m128i MulU16(__m128i aM1, __m128i aM2) { return _mm_mullo_epi16(aM1, aM2); } inline void Mul16x4x2x2To32x4x2(__m128i aFactorsA1B1, __m128i aFactorsA2B2, __m128i& aProductA, __m128i& aProductB) { __m128i prodAB_lo = _mm_mullo_epi16(aFactorsA1B1, aFactorsA2B2); __m128i prodAB_hi = _mm_mulhi_epi16(aFactorsA1B1, aFactorsA2B2); aProductA = _mm_unpacklo_epi16(prodAB_lo, prodAB_hi); aProductB = _mm_unpackhi_epi16(prodAB_lo, prodAB_hi); } inline __m128i MulAdd16x8x2To32x4(__m128i aFactorsA, __m128i aFactorsB) { return _mm_madd_epi16(aFactorsA, aFactorsB); } template inline __m128i Shuffle32(__m128i aM) { AssertIndex(); AssertIndex(); AssertIndex(); AssertIndex(); return _mm_shuffle_epi32(aM, _MM_SHUFFLE(i0, i1, i2, i3)); } template inline __m128i ShuffleLo16(__m128i aM) { AssertIndex(); AssertIndex(); AssertIndex(); AssertIndex(); return _mm_shufflelo_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3)); } template inline __m128i ShuffleHi16(__m128i aM) { AssertIndex(); AssertIndex(); AssertIndex(); AssertIndex(); return _mm_shufflehi_epi16(aM, _MM_SHUFFLE(i0, i1, i2, i3)); } template inline __m128i Splat32(__m128i aM) { return Shuffle32(aM); } template inline __m128i Splat32On8(__m128i aM) { return Shuffle32(aM); } template inline __m128i Splat16(__m128i aM) { AssertIndex(); AssertIndex(); return ShuffleHi16( ShuffleLo16(aM)); } inline __m128i UnpackLo8x8ToI16x8(__m128i m) { __m128i zero = _mm_set1_epi8(0); return _mm_unpacklo_epi8(m, zero); } inline __m128i UnpackHi8x8ToI16x8(__m128i m) { __m128i zero = _mm_set1_epi8(0); return _mm_unpackhi_epi8(m, zero); } inline __m128i UnpackLo8x8ToU16x8(__m128i m) { __m128i zero = _mm_set1_epi8(0); return _mm_unpacklo_epi8(m, zero); } inline __m128i UnpackHi8x8ToU16x8(__m128i m) { __m128i zero = _mm_set1_epi8(0); return _mm_unpackhi_epi8(m, zero); } inline __m128i InterleaveLo8(__m128i m1, __m128i m2) { return _mm_unpacklo_epi8(m1, m2); } inline __m128i InterleaveHi8(__m128i m1, __m128i m2) { return _mm_unpackhi_epi8(m1, m2); } inline __m128i InterleaveLo16(__m128i m1, __m128i m2) { return _mm_unpacklo_epi16(m1, m2); } inline __m128i InterleaveHi16(__m128i m1, __m128i m2) { return _mm_unpackhi_epi16(m1, m2); } inline __m128i InterleaveLo32(__m128i m1, __m128i m2) { return _mm_unpacklo_epi32(m1, m2); } template inline __m128i Rotate8(__m128i a1234, __m128i a5678) { return _mm_or_si128(_mm_srli_si128(a1234, aNumBytes), _mm_slli_si128(a5678, 16 - aNumBytes)); } inline __m128i PackAndSaturate32To16(__m128i m1, __m128i m2) { return _mm_packs_epi32(m1, m2); } inline __m128i PackAndSaturate32ToU16(__m128i m1, __m128i m2) { return _mm_packs_epi32(m1, m2); } inline __m128i PackAndSaturate32To8(__m128i m1, __m128i m2, __m128i m3, const __m128i& m4) { // Pack into 8 16bit signed integers (saturating). __m128i m12 = _mm_packs_epi32(m1, m2); __m128i m34 = _mm_packs_epi32(m3, m4); // Pack into 16 8bit unsigned integers (saturating). return _mm_packus_epi16(m12, m34); } inline __m128i PackAndSaturate16To8(__m128i m1, __m128i m2) { // Pack into 16 8bit unsigned integers (saturating). return _mm_packus_epi16(m1, m2); } inline __m128i FastDivideBy255(__m128i m) { // v = m << 8 __m128i v = _mm_slli_epi32(m, 8); // v = v + (m + (255,255,255,255)) v = _mm_add_epi32(v, _mm_add_epi32(m, _mm_set1_epi32(255))); // v = v >> 16 return _mm_srai_epi32(v, 16); } inline __m128i FastDivideBy255_16(__m128i m) { __m128i zero = _mm_set1_epi16(0); __m128i lo = _mm_unpacklo_epi16(m, zero); __m128i hi = _mm_unpackhi_epi16(m, zero); return _mm_packs_epi32(FastDivideBy255(lo), FastDivideBy255(hi)); } inline __m128i Pick(__m128i mask, __m128i a, __m128i b) { return _mm_or_si128(_mm_andnot_si128(mask, a), _mm_and_si128(mask, b)); } inline __m128 MixF32(__m128 a, __m128 b, float t) { return _mm_add_ps(a, _mm_mul_ps(_mm_sub_ps(b, a), _mm_set1_ps(t))); } inline __m128 WSumF32(__m128 a, __m128 b, float wa, float wb) { return _mm_add_ps(_mm_mul_ps(a, _mm_set1_ps(wa)), _mm_mul_ps(b, _mm_set1_ps(wb))); } inline __m128 AbsF32(__m128 a) { return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a), a); } inline __m128 AddF32(__m128 a, __m128 b) { return _mm_add_ps(a, b); } inline __m128 MulF32(__m128 a, __m128 b) { return _mm_mul_ps(a, b); } inline __m128 DivF32(__m128 a, __m128 b) { return _mm_div_ps(a, b); } template inline __m128 SplatF32(__m128 m) { AssertIndex(); return _mm_shuffle_ps(m, m, _MM_SHUFFLE(aIndex, aIndex, aIndex, aIndex)); } inline __m128i F32ToI32(__m128 m) { return _mm_cvtps_epi32(m); } #endif // SIMD_COMPILE_SSE2 } // namespace simd } // namespace gfx } // namespace mozilla #endif // _MOZILLA_GFX_SIMD_H_