/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_riscv64_LIR_riscv64_h #define jit_riscv64_LIR_riscv64_h namespace js { namespace jit { class LUnbox : public LInstructionHelper<1, 1, 0> { protected: LUnbox(LNode::Opcode opcode, const LAllocation& input) : LInstructionHelper(opcode) { setOperand(0, input); } public: LIR_HEADER(Unbox); explicit LUnbox(const LAllocation& input) : LInstructionHelper(classOpcode) { setOperand(0, input); } static const size_t Input = 0; MUnbox* mir() const { return mir_->toUnbox(); } const char* extraName() const { return StringFromMIRType(mir()->type()); } }; class LUnboxFloatingPoint : public LUnbox { MIRType type_; public: LIR_HEADER(UnboxFloatingPoint); LUnboxFloatingPoint(const LAllocation& input, MIRType type) : LUnbox(classOpcode, input), type_(type) {} MIRType type() const { return type_; } }; // Convert a 32-bit unsigned integer to a double. class LWasmUint32ToDouble : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmUint32ToDouble) explicit LWasmUint32ToDouble(const LAllocation& input) : LInstructionHelper(classOpcode) { setOperand(0, input); } }; // Convert a 32-bit unsigned integer to a float32. class LWasmUint32ToFloat32 : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmUint32ToFloat32) explicit LWasmUint32ToFloat32(const LAllocation& input) : LInstructionHelper(classOpcode) { setOperand(0, input); } }; class LDivI : public LBinaryMath<1> { public: LIR_HEADER(DivI); LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } MDiv* mir() const { return mir_->toDiv(); } }; class LDivPowTwoI : public LInstructionHelper<1, 1, 1> { const int32_t shift_; public: LIR_HEADER(DivPowTwoI) LDivPowTwoI(const LAllocation& lhs, int32_t shift, const LDefinition& temp) : LInstructionHelper(classOpcode), shift_(shift) { setOperand(0, lhs); setTemp(0, temp); } const LAllocation* numerator() { return getOperand(0); } int32_t shift() const { return shift_; } MDiv* mir() const { return mir_->toDiv(); } }; class LModI : public LBinaryMath<1> { public: LIR_HEADER(ModI); LModI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& callTemp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, callTemp); } const LDefinition* callTemp() { return getTemp(0); } MMod* mir() const { return mir_->toMod(); } }; class LModPowTwoI : public LInstructionHelper<1, 1, 0> { const int32_t shift_; public: LIR_HEADER(ModPowTwoI); LModPowTwoI(const LAllocation& lhs, int32_t shift) : LInstructionHelper(classOpcode), shift_(shift) { setOperand(0, lhs); } int32_t shift() const { return shift_; } MMod* mir() const { return mir_->toMod(); } }; class LModMaskI : public LInstructionHelper<1, 1, 2> { const int32_t shift_; public: LIR_HEADER(ModMaskI); LModMaskI(const LAllocation& lhs, const LDefinition& temp0, const LDefinition& temp1, int32_t shift) : LInstructionHelper(classOpcode), shift_(shift) { setOperand(0, lhs); setTemp(0, temp0); setTemp(1, temp1); } int32_t shift() const { return shift_; } MMod* mir() const { return mir_->toMod(); } }; // Takes a tableswitch with an integer to decide class LTableSwitch : public LInstructionHelper<0, 1, 2> { public: LIR_HEADER(TableSwitch); LTableSwitch(const LAllocation& in, const LDefinition& inputCopy, const LDefinition& jumpTablePointer, MTableSwitch* ins) : LInstructionHelper(classOpcode) { setOperand(0, in); setTemp(0, inputCopy); setTemp(1, jumpTablePointer); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } const LAllocation* index() { return getOperand(0); } const LDefinition* tempInt() { return getTemp(0); } // This is added to share the same CodeGenerator prefixes. const LDefinition* tempPointer() { return getTemp(1); } }; // Takes a tableswitch with an integer to decide class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 3> { public: LIR_HEADER(TableSwitchV); LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy, const LDefinition& floatCopy, const LDefinition& jumpTablePointer, MTableSwitch* ins) : LInstructionHelper(classOpcode) { setBoxOperand(InputValue, input); setTemp(0, inputCopy); setTemp(1, floatCopy); setTemp(2, jumpTablePointer); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } static const size_t InputValue = 0; const LDefinition* tempInt() { return getTemp(0); } const LDefinition* tempFloat() { return getTemp(1); } const LDefinition* tempPointer() { return getTemp(2); } }; class LMulI : public LBinaryMath<0> { public: LIR_HEADER(MulI); LMulI() : LBinaryMath(classOpcode) {} MMul* mir() { return mir_->toMul(); } }; class LUDivOrMod : public LBinaryMath<0> { public: LIR_HEADER(UDivOrMod); LUDivOrMod() : LBinaryMath(classOpcode) {} MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeDivideByZero() const { if (mir_->isMod()) { return mir_->toMod()->canBeDivideByZero(); } return mir_->toDiv()->canBeDivideByZero(); } bool trapOnError() const { if (mir_->isMod()) { return mir_->toMod()->trapOnError(); } return mir_->toDiv()->trapOnError(); } wasm::BytecodeOffset bytecodeOffset() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); if (mir_->isMod()) { return mir_->toMod()->bytecodeOffset(); } return mir_->toDiv()->bytecodeOffset(); } }; class LWasmCompareExchangeI64 : public LInstructionHelper { public: LIR_HEADER(WasmCompareExchangeI64); LWasmCompareExchangeI64(const LAllocation& ptr, const LInt64Allocation& oldValue, const LInt64Allocation& newValue) : LInstructionHelper(classOpcode) { setOperand(0, ptr); setInt64Operand(1, oldValue); setInt64Operand(1 + INT64_PIECES, newValue); } const LAllocation* ptr() { return getOperand(0); } const LInt64Allocation oldValue() { return getInt64Operand(1); } const LInt64Allocation newValue() { return getInt64Operand(1 + INT64_PIECES); } const MWasmCompareExchangeHeap* mir() const { return mir_->toWasmCompareExchangeHeap(); } }; class LWasmAtomicExchangeI64 : public LInstructionHelper { public: LIR_HEADER(WasmAtomicExchangeI64); LWasmAtomicExchangeI64(const LAllocation& ptr, const LInt64Allocation& value) : LInstructionHelper(classOpcode) { setOperand(0, ptr); setInt64Operand(1, value); } const LAllocation* ptr() { return getOperand(0); } const LInt64Allocation value() { return getInt64Operand(1); } const MWasmAtomicExchangeHeap* mir() const { return mir_->toWasmAtomicExchangeHeap(); } }; class LWasmAtomicBinopI64 : public LInstructionHelper { public: LIR_HEADER(WasmAtomicBinopI64); LWasmAtomicBinopI64(const LAllocation& ptr, const LInt64Allocation& value) : LInstructionHelper(classOpcode) { setOperand(0, ptr); setInt64Operand(1, value); } const LAllocation* ptr() { return getOperand(0); } const LInt64Allocation value() { return getInt64Operand(1); } const MWasmAtomicBinopHeap* mir() const { return mir_->toWasmAtomicBinopHeap(); } }; class LDivOrModI64 : public LBinaryMath<1> { public: LIR_HEADER(DivOrModI64) LDivOrModI64(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } const LDefinition* remainder() { return getTemp(0); } MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeDivideByZero() const { if (mir_->isMod()) { return mir_->toMod()->canBeDivideByZero(); } return mir_->toDiv()->canBeDivideByZero(); } bool canBeNegativeOverflow() const { if (mir_->isMod()) { return mir_->toMod()->canBeNegativeDividend(); } return mir_->toDiv()->canBeNegativeOverflow(); } wasm::BytecodeOffset bytecodeOffset() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); if (mir_->isMod()) { return mir_->toMod()->bytecodeOffset(); } return mir_->toDiv()->bytecodeOffset(); } }; class LUDivOrModI64 : public LBinaryMath<1> { public: LIR_HEADER(UDivOrModI64); LUDivOrModI64(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } const LDefinition* remainder() { return getTemp(0); } const char* extraName() const { return mir()->isTruncated() ? "Truncated" : nullptr; } MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeDivideByZero() const { if (mir_->isMod()) { return mir_->toMod()->canBeDivideByZero(); } return mir_->toDiv()->canBeDivideByZero(); } wasm::BytecodeOffset bytecodeOffset() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); if (mir_->isMod()) { return mir_->toMod()->bytecodeOffset(); } return mir_->toDiv()->bytecodeOffset(); } }; class LWasmTruncateToInt64 : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(WasmTruncateToInt64); explicit LWasmTruncateToInt64(const LAllocation& in) : LInstructionHelper(classOpcode) { setOperand(0, in); } MWasmTruncateToInt64* mir() const { return mir_->toWasmTruncateToInt64(); } }; class LInt64ToFloatingPoint : public LInstructionHelper<1, 1, 0> { public: LIR_HEADER(Int64ToFloatingPoint); explicit LInt64ToFloatingPoint(const LInt64Allocation& in) : LInstructionHelper(classOpcode) { setInt64Operand(0, in); } MInt64ToFloatingPoint* mir() const { return mir_->toInt64ToFloatingPoint(); } }; } // namespace jit } // namespace js #endif /* jit_riscv64_LIR_riscv64_h */