/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/x64/Assembler-x64.h" #include "gc/Tracer.h" #include "util/Memory.h" using namespace js; using namespace js::jit; ABIArgGenerator::ABIArgGenerator() : #if defined(XP_WIN) regIndex_(0), stackOffset_(ShadowStackSpace), #else intRegIndex_(0), floatRegIndex_(0), stackOffset_(0), #endif current_() { } ABIArg ABIArgGenerator::next(MIRType type) { #if defined(XP_WIN) static_assert(NumIntArgRegs == NumFloatArgRegs); if (regIndex_ == NumIntArgRegs) { if (type == MIRType::Simd128) { // On Win64, >64 bit args need to be passed by reference. However, wasm // doesn't allow passing SIMD values to JS, so the only way to reach this // is wasm to wasm calls. Ergo we can break the native ABI here and use // the Wasm ABI instead. stackOffset_ = AlignBytes(stackOffset_, SimdMemoryAlignment); current_ = ABIArg(stackOffset_); stackOffset_ += Simd128DataSize; } else { current_ = ABIArg(stackOffset_); stackOffset_ += sizeof(uint64_t); } return current_; } switch (type) { case MIRType::Int32: case MIRType::Int64: case MIRType::Pointer: case MIRType::RefOrNull: case MIRType::StackResults: current_ = ABIArg(IntArgRegs[regIndex_++]); break; case MIRType::Float32: current_ = ABIArg(FloatArgRegs[regIndex_++].asSingle()); break; case MIRType::Double: current_ = ABIArg(FloatArgRegs[regIndex_++]); break; case MIRType::Simd128: // On Win64, >64 bit args need to be passed by reference, but wasm // doesn't allow passing SIMD values to FFIs. The only way to reach // here is asm to asm calls, so we can break the ABI here. current_ = ABIArg(FloatArgRegs[regIndex_++].asSimd128()); break; default: MOZ_CRASH("Unexpected argument type"); } return current_; #else switch (type) { case MIRType::Int32: case MIRType::Int64: case MIRType::Pointer: case MIRType::RefOrNull: case MIRType::StackResults: if (intRegIndex_ == NumIntArgRegs) { current_ = ABIArg(stackOffset_); stackOffset_ += sizeof(uint64_t); break; } current_ = ABIArg(IntArgRegs[intRegIndex_++]); break; case MIRType::Double: case MIRType::Float32: if (floatRegIndex_ == NumFloatArgRegs) { current_ = ABIArg(stackOffset_); stackOffset_ += sizeof(uint64_t); break; } if (type == MIRType::Float32) { current_ = ABIArg(FloatArgRegs[floatRegIndex_++].asSingle()); } else { current_ = ABIArg(FloatArgRegs[floatRegIndex_++]); } break; case MIRType::Simd128: if (floatRegIndex_ == NumFloatArgRegs) { stackOffset_ = AlignBytes(stackOffset_, SimdMemoryAlignment); current_ = ABIArg(stackOffset_); stackOffset_ += Simd128DataSize; break; } current_ = ABIArg(FloatArgRegs[floatRegIndex_++].asSimd128()); break; default: MOZ_CRASH("Unexpected argument type"); } return current_; #endif } void Assembler::addPendingJump(JmpSrc src, ImmPtr target, RelocationKind reloc) { MOZ_ASSERT(target.value != nullptr); // Emit reloc before modifying the jump table, since it computes a 0-based // index. This jump is not patchable at runtime. if (reloc == RelocationKind::JITCODE) { jumpRelocations_.writeUnsigned(src.offset()); } static_assert(MaxCodeBytesPerProcess <= uint64_t(2) * 1024 * 1024 * 1024, "Code depends on using int32_t for cross-JitCode jump offsets"); MOZ_ASSERT_IF(reloc == RelocationKind::JITCODE, AddressIsInExecutableMemory(target.value)); RelativePatch patch(src.offset(), target.value, reloc); if (reloc == RelocationKind::JITCODE || AddressIsInExecutableMemory(target.value)) { enoughMemory_ &= codeJumps_.append(patch); } else { enoughMemory_ &= extendedJumps_.append(patch); } } void Assembler::finish() { if (oom()) { return; } AutoCreatedBy acb(*this, "Assembler::finish"); if (!extendedJumps_.length()) { // Since we may be folowed by non-executable data, eagerly insert an // undefined instruction byte to prevent processors from decoding // gibberish into their pipelines. See Intel performance guides. masm.ud2(); return; } // Emit the jump table. masm.haltingAlign(SizeOfJumpTableEntry); extendedJumpTable_ = masm.size(); // Zero the extended jumps table. for (size_t i = 0; i < extendedJumps_.length(); i++) { #ifdef DEBUG size_t oldSize = masm.size(); #endif MOZ_ASSERT(hasCreator()); masm.jmp_rip(2); MOZ_ASSERT_IF(!masm.oom(), masm.size() - oldSize == 6); // Following an indirect branch with ud2 hints to the hardware that // there's no fall-through. This also aligns the 64-bit immediate. masm.ud2(); MOZ_ASSERT_IF(!masm.oom(), masm.size() - oldSize == 8); masm.immediate64(0); MOZ_ASSERT_IF(!masm.oom(), masm.size() - oldSize == SizeOfExtendedJump); MOZ_ASSERT_IF(!masm.oom(), masm.size() - oldSize == SizeOfJumpTableEntry); } } void Assembler::executableCopy(uint8_t* buffer) { AssemblerX86Shared::executableCopy(buffer); for (RelativePatch& rp : codeJumps_) { uint8_t* src = buffer + rp.offset; MOZ_ASSERT(rp.target); MOZ_RELEASE_ASSERT(X86Encoding::CanRelinkJump(src, rp.target)); X86Encoding::SetRel32(src, rp.target); } for (size_t i = 0; i < extendedJumps_.length(); i++) { RelativePatch& rp = extendedJumps_[i]; uint8_t* src = buffer + rp.offset; MOZ_ASSERT(rp.target); if (X86Encoding::CanRelinkJump(src, rp.target)) { X86Encoding::SetRel32(src, rp.target); } else { // An extended jump table must exist, and its offset must be in // range. MOZ_ASSERT(extendedJumpTable_); MOZ_ASSERT((extendedJumpTable_ + i * SizeOfJumpTableEntry) <= size() - SizeOfJumpTableEntry); // Patch the jump to go to the extended jump entry. uint8_t* entry = buffer + extendedJumpTable_ + i * SizeOfJumpTableEntry; X86Encoding::SetRel32(src, entry); // Now patch the pointer, note that we need to align it to // *after* the extended jump, i.e. after the 64-bit immedate. X86Encoding::SetPointer(entry + SizeOfExtendedJump, rp.target); } } } class RelocationIterator { CompactBufferReader reader_; uint32_t offset_ = 0; public: explicit RelocationIterator(CompactBufferReader& reader) : reader_(reader) {} bool read() { if (!reader_.more()) { return false; } offset_ = reader_.readUnsigned(); return true; } uint32_t offset() const { return offset_; } }; JitCode* Assembler::CodeFromJump(JitCode* code, uint8_t* jump) { uint8_t* target = (uint8_t*)X86Encoding::GetRel32Target(jump); MOZ_ASSERT(!code->containsNativePC(target), "Extended jump table not used for cross-JitCode jumps"); return JitCode::FromExecutable(target); } void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader) { RelocationIterator iter(reader); while (iter.read()) { JitCode* child = CodeFromJump(code, code->raw() + iter.offset()); TraceManuallyBarrieredEdge(trc, &child, "rel32"); MOZ_ASSERT(child == CodeFromJump(code, code->raw() + iter.offset())); } }