/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_x64_Assembler_x64_h #define jit_x64_Assembler_x64_h #include #include "jit/JitCode.h" #include "jit/shared/Assembler-shared.h" namespace js { namespace jit { static constexpr Register rax{X86Encoding::rax}; static constexpr Register rbx{X86Encoding::rbx}; static constexpr Register rcx{X86Encoding::rcx}; static constexpr Register rdx{X86Encoding::rdx}; static constexpr Register rsi{X86Encoding::rsi}; static constexpr Register rdi{X86Encoding::rdi}; static constexpr Register rbp{X86Encoding::rbp}; static constexpr Register r8{X86Encoding::r8}; static constexpr Register r9{X86Encoding::r9}; static constexpr Register r10{X86Encoding::r10}; static constexpr Register r11{X86Encoding::r11}; static constexpr Register r12{X86Encoding::r12}; static constexpr Register r13{X86Encoding::r13}; static constexpr Register r14{X86Encoding::r14}; static constexpr Register r15{X86Encoding::r15}; static constexpr Register rsp{X86Encoding::rsp}; static constexpr FloatRegister xmm0 = FloatRegister(X86Encoding::xmm0, FloatRegisters::Double); static constexpr FloatRegister xmm1 = FloatRegister(X86Encoding::xmm1, FloatRegisters::Double); static constexpr FloatRegister xmm2 = FloatRegister(X86Encoding::xmm2, FloatRegisters::Double); static constexpr FloatRegister xmm3 = FloatRegister(X86Encoding::xmm3, FloatRegisters::Double); static constexpr FloatRegister xmm4 = FloatRegister(X86Encoding::xmm4, FloatRegisters::Double); static constexpr FloatRegister xmm5 = FloatRegister(X86Encoding::xmm5, FloatRegisters::Double); static constexpr FloatRegister xmm6 = FloatRegister(X86Encoding::xmm6, FloatRegisters::Double); static constexpr FloatRegister xmm7 = FloatRegister(X86Encoding::xmm7, FloatRegisters::Double); static constexpr FloatRegister xmm8 = FloatRegister(X86Encoding::xmm8, FloatRegisters::Double); static constexpr FloatRegister xmm9 = FloatRegister(X86Encoding::xmm9, FloatRegisters::Double); static constexpr FloatRegister xmm10 = FloatRegister(X86Encoding::xmm10, FloatRegisters::Double); static constexpr FloatRegister xmm11 = FloatRegister(X86Encoding::xmm11, FloatRegisters::Double); static constexpr FloatRegister xmm12 = FloatRegister(X86Encoding::xmm12, FloatRegisters::Double); static constexpr FloatRegister xmm13 = FloatRegister(X86Encoding::xmm13, FloatRegisters::Double); static constexpr FloatRegister xmm14 = FloatRegister(X86Encoding::xmm14, FloatRegisters::Double); static constexpr FloatRegister xmm15 = FloatRegister(X86Encoding::xmm15, FloatRegisters::Double); // Vector registers fixed for use with some instructions, e.g. PBLENDVB. static constexpr FloatRegister vmm0 = FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128); // X86-common synonyms. static constexpr Register eax = rax; static constexpr Register ebx = rbx; static constexpr Register ecx = rcx; static constexpr Register edx = rdx; static constexpr Register esi = rsi; static constexpr Register edi = rdi; static constexpr Register ebp = rbp; static constexpr Register esp = rsp; static constexpr Register InvalidReg{X86Encoding::invalid_reg}; static constexpr FloatRegister InvalidFloatReg = FloatRegister(); static constexpr Register StackPointer = rsp; static constexpr Register FramePointer = rbp; static constexpr Register JSReturnReg = rcx; // Avoid, except for assertions. static constexpr Register JSReturnReg_Type = JSReturnReg; static constexpr Register JSReturnReg_Data = JSReturnReg; static constexpr Register ScratchReg = r11; // Helper class for ScratchRegister usage. Asserts that only one piece // of code thinks it has exclusive ownership of the scratch register. struct ScratchRegisterScope : public AutoRegisterScope { explicit ScratchRegisterScope(MacroAssembler& masm) : AutoRegisterScope(masm, ScratchReg) {} }; static constexpr Register ReturnReg = rax; static constexpr Register HeapReg = r15; static constexpr Register64 ReturnReg64(rax); static constexpr FloatRegister ReturnFloat32Reg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Single); static constexpr FloatRegister ReturnDoubleReg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Double); static constexpr FloatRegister ReturnSimd128Reg = FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128); static constexpr FloatRegister ScratchFloat32Reg_ = FloatRegister(X86Encoding::xmm15, FloatRegisters::Single); static constexpr FloatRegister ScratchDoubleReg_ = FloatRegister(X86Encoding::xmm15, FloatRegisters::Double); static constexpr FloatRegister ScratchSimd128Reg = FloatRegister(X86Encoding::xmm15, FloatRegisters::Simd128); // Avoid rbp, which is the FramePointer, which is unavailable in some modes. static constexpr Register CallTempReg0 = rax; static constexpr Register CallTempReg1 = rdi; static constexpr Register CallTempReg2 = rbx; static constexpr Register CallTempReg3 = rcx; static constexpr Register CallTempReg4 = rsi; static constexpr Register CallTempReg5 = rdx; // Different argument registers for WIN64 #if defined(_WIN64) static constexpr Register IntArgReg0 = rcx; static constexpr Register IntArgReg1 = rdx; static constexpr Register IntArgReg2 = r8; static constexpr Register IntArgReg3 = r9; static constexpr uint32_t NumIntArgRegs = 4; static constexpr Register IntArgRegs[NumIntArgRegs] = {rcx, rdx, r8, r9}; static constexpr Register CallTempNonArgRegs[] = {rax, rdi, rbx, rsi}; static constexpr uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs); static constexpr FloatRegister FloatArgReg0 = xmm0; static constexpr FloatRegister FloatArgReg1 = xmm1; static constexpr FloatRegister FloatArgReg2 = xmm2; static constexpr FloatRegister FloatArgReg3 = xmm3; static constexpr uint32_t NumFloatArgRegs = 4; static constexpr FloatRegister FloatArgRegs[NumFloatArgRegs] = {xmm0, xmm1, xmm2, xmm3}; #else static constexpr Register IntArgReg0 = rdi; static constexpr Register IntArgReg1 = rsi; static constexpr Register IntArgReg2 = rdx; static constexpr Register IntArgReg3 = rcx; static constexpr Register IntArgReg4 = r8; static constexpr Register IntArgReg5 = r9; static constexpr uint32_t NumIntArgRegs = 6; static constexpr Register IntArgRegs[NumIntArgRegs] = {rdi, rsi, rdx, rcx, r8, r9}; static constexpr Register CallTempNonArgRegs[] = {rax, rbx}; static constexpr uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs); static constexpr FloatRegister FloatArgReg0 = xmm0; static constexpr FloatRegister FloatArgReg1 = xmm1; static constexpr FloatRegister FloatArgReg2 = xmm2; static constexpr FloatRegister FloatArgReg3 = xmm3; static constexpr FloatRegister FloatArgReg4 = xmm4; static constexpr FloatRegister FloatArgReg5 = xmm5; static constexpr FloatRegister FloatArgReg6 = xmm6; static constexpr FloatRegister FloatArgReg7 = xmm7; static constexpr uint32_t NumFloatArgRegs = 8; static constexpr FloatRegister FloatArgRegs[NumFloatArgRegs] = { xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7}; #endif // Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use // JSReturnOperand). static constexpr Register RegExpMatcherRegExpReg = CallTempReg0; static constexpr Register RegExpMatcherStringReg = CallTempReg1; static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2; // Registers used by RegExpExecTest stub (do not use ReturnReg). static constexpr Register RegExpExecTestRegExpReg = CallTempReg1; static constexpr Register RegExpExecTestStringReg = CallTempReg2; // Registers used by RegExpSearcher stub (do not use ReturnReg). static constexpr Register RegExpSearcherRegExpReg = CallTempReg1; static constexpr Register RegExpSearcherStringReg = CallTempReg2; static constexpr Register RegExpSearcherLastIndexReg = CallTempReg3; class ABIArgGenerator { #if defined(XP_WIN) unsigned regIndex_; #else unsigned intRegIndex_; unsigned floatRegIndex_; #endif uint32_t stackOffset_; ABIArg current_; public: ABIArgGenerator(); ABIArg next(MIRType argType); ABIArg& current() { return current_; } uint32_t stackBytesConsumedSoFar() const { return stackOffset_; } void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; } }; // These registers may be volatile or nonvolatile. // Avoid r11, which is the MacroAssembler's ScratchReg. static constexpr Register ABINonArgReg0 = rax; static constexpr Register ABINonArgReg1 = rbx; static constexpr Register ABINonArgReg2 = r10; static constexpr Register ABINonArgReg3 = r12; // This register may be volatile or nonvolatile. Avoid xmm15 which is the // ScratchDoubleReg. static constexpr FloatRegister ABINonArgDoubleReg = FloatRegister(X86Encoding::xmm8, FloatRegisters::Double); // These registers may be volatile or nonvolatile. // Note: these three registers are all guaranteed to be different static constexpr Register ABINonArgReturnReg0 = r10; static constexpr Register ABINonArgReturnReg1 = r12; static constexpr Register ABINonVolatileReg = r13; // This register is guaranteed to be clobberable during the prologue and // epilogue of an ABI call which must preserve both ABI argument, return // and non-volatile registers. static constexpr Register ABINonArgReturnVolatileReg = r10; // Instance pointer argument register for WebAssembly functions. This must not // alias any other register used for passing function arguments or return // values. Preserved by WebAssembly functions. static constexpr Register InstanceReg = r14; // Registers used for asm.js/wasm table calls. These registers must be disjoint // from the ABI argument registers, InstanceReg and each other. static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0; static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1; static constexpr Register WasmTableCallSigReg = ABINonArgReg2; static constexpr Register WasmTableCallIndexReg = ABINonArgReg3; // Registers used for ref calls. static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0; static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1; static constexpr Register WasmCallRefReg = ABINonArgReg3; // Register used as a scratch along the return path in the fast js -> wasm stub // code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg. // It must be a volatile register. static constexpr Register WasmJitEntryReturnScratch = rbx; static constexpr Register OsrFrameReg = IntArgReg3; static constexpr Register PreBarrierReg = rdx; static constexpr Register InterpreterPCReg = r14; static constexpr uint32_t ABIStackAlignment = 16; static constexpr uint32_t CodeAlignment = 16; static constexpr uint32_t JitStackAlignment = 16; static constexpr uint32_t JitStackValueAlignment = JitStackAlignment / sizeof(Value); static_assert(JitStackAlignment % sizeof(Value) == 0 && JitStackValueAlignment >= 1, "Stack alignment should be a non-zero multiple of sizeof(Value)"); static constexpr uint32_t SimdMemoryAlignment = 16; static_assert(CodeAlignment % SimdMemoryAlignment == 0, "Code alignment should be larger than any of the alignments " "which are used for " "the constant sections of the code buffer. Thus it should be " "larger than the " "alignment for SIMD constants."); static_assert(JitStackAlignment % SimdMemoryAlignment == 0, "Stack alignment should be larger than any of the alignments " "which are used for " "spilled values. Thus it should be larger than the alignment " "for SIMD accesses."); static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment; static constexpr uint32_t WasmTrapInstructionLength = 2; // See comments in wasm::GenerateFunctionPrologue. The difference between these // is the size of the largest callable prologue on the platform. static constexpr uint32_t WasmCheckedCallEntryOffset = 0u; static constexpr Scale ScalePointer = TimesEight; } // namespace jit } // namespace js #include "jit/x86-shared/Assembler-x86-shared.h" namespace js { namespace jit { // Return operand from a JS -> JS call. static constexpr ValueOperand JSReturnOperand = ValueOperand(JSReturnReg); class Assembler : public AssemblerX86Shared { // x64 jumps may need extra bits of relocation, because a jump may extend // beyond the signed 32-bit range. To account for this we add an extended // jump table at the bottom of the instruction stream, and if a jump // overflows its range, it will redirect here. // // Each entry in this table is a jmp [rip], followed by a ud2 to hint to the // hardware branch predictor that there is no fallthrough, followed by the // eight bytes containing an immediate address. This comes out to 16 bytes. // +1 byte for opcode // +1 byte for mod r/m // +4 bytes for rip-relative offset (2) // +2 bytes for ud2 instruction // +8 bytes for 64-bit address // static const uint32_t SizeOfExtendedJump = 1 + 1 + 4 + 2 + 8; static const uint32_t SizeOfJumpTableEntry = 16; // Two kinds of jumps on x64: // // * codeJumps_ tracks jumps with target within the executable code region // for the process. These jumps don't need entries in the extended jump // table because source and target must be within 2 GB of each other. // // * extendedJumps_ tracks jumps with target outside the executable code // region. These jumps need entries in the extended jump table described // above. using PendingJumpVector = Vector; PendingJumpVector codeJumps_; PendingJumpVector extendedJumps_; uint32_t extendedJumpTable_; static JitCode* CodeFromJump(JitCode* code, uint8_t* jump); private: void addPendingJump(JmpSrc src, ImmPtr target, RelocationKind reloc); public: using AssemblerX86Shared::j; using AssemblerX86Shared::jmp; using AssemblerX86Shared::pop; using AssemblerX86Shared::push; using AssemblerX86Shared::vmovq; Assembler() : extendedJumpTable_(0) {} static void TraceJumpRelocations(JSTracer* trc, JitCode* code, CompactBufferReader& reader); // The buffer is about to be linked, make sure any constant pools or excess // bookkeeping has been flushed to the instruction stream. void finish(); // Copy the assembly code to the given buffer, and perform any pending // relocations relying on the target address. void executableCopy(uint8_t* buffer); void assertNoGCThings() const { #ifdef DEBUG MOZ_ASSERT(dataRelocations_.length() == 0); for (auto& j : codeJumps_) { MOZ_ASSERT(j.kind == RelocationKind::HARDCODED); } for (auto& j : extendedJumps_) { MOZ_ASSERT(j.kind == RelocationKind::HARDCODED); } #endif } // Actual assembly emitting functions. void push(const ImmGCPtr ptr) { movq(ptr, ScratchReg); push(ScratchReg); } void push(const ImmWord ptr) { // We often end up with ImmWords that actually fit into int32. // Be aware of the sign extension behavior. if (ptr.value <= INT32_MAX) { push(Imm32(ptr.value)); } else { movq(ptr, ScratchReg); push(ScratchReg); } } void push(ImmPtr imm) { push(ImmWord(uintptr_t(imm.value))); } void push(FloatRegister src) { subq(Imm32(sizeof(double)), StackPointer); vmovsd(src, Address(StackPointer, 0)); } CodeOffset pushWithPatch(ImmWord word) { CodeOffset label = movWithPatch(word, ScratchReg); push(ScratchReg); return label; } void pop(FloatRegister src) { vmovsd(Address(StackPointer, 0), src); addq(Imm32(sizeof(double)), StackPointer); } CodeOffset movWithPatch(ImmWord word, Register dest) { masm.movq_i64r(word.value, dest.encoding()); return CodeOffset(masm.currentOffset()); } CodeOffset movWithPatch(ImmPtr imm, Register dest) { return movWithPatch(ImmWord(uintptr_t(imm.value)), dest); } // This is for patching during code generation, not after. void patchAddq(CodeOffset offset, int32_t n) { unsigned char* code = masm.data(); X86Encoding::SetInt32(code + offset.offset(), n); } // Load an ImmWord value into a register. Note that this instruction will // attempt to optimize its immediate field size. When a full 64-bit // immediate is needed for a relocation, use movWithPatch. void movq(ImmWord word, Register dest) { // Load a 64-bit immediate into a register. If the value falls into // certain ranges, we can use specialized instructions which have // smaller encodings. if (word.value <= UINT32_MAX) { // movl has a 32-bit unsigned (effectively) immediate field. masm.movl_i32r((uint32_t)word.value, dest.encoding()); } else if ((intptr_t)word.value >= INT32_MIN && (intptr_t)word.value <= INT32_MAX) { // movq has a 32-bit signed immediate field. masm.movq_i32r((int32_t)(intptr_t)word.value, dest.encoding()); } else { // Otherwise use movabs. masm.movq_i64r(word.value, dest.encoding()); } } void movq(ImmPtr imm, Register dest) { movq(ImmWord(uintptr_t(imm.value)), dest); } void movq(ImmGCPtr ptr, Register dest) { masm.movq_i64r(uintptr_t(ptr.value), dest.encoding()); writeDataRelocation(ptr); } void movq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.movq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.movq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.movq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.movq_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void movq(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.movq_rr(src.encoding(), dest.reg()); break; case Operand::MEM_REG_DISP: masm.movq_rm(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_SCALE: masm.movq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; case Operand::MEM_ADDRESS32: masm.movq_rm(src.encoding(), dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } } void movq(Imm32 imm32, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.movl_i32r(imm32.value, dest.reg()); break; case Operand::MEM_REG_DISP: masm.movq_i32m(imm32.value, dest.disp(), dest.base()); break; case Operand::MEM_SCALE: masm.movq_i32m(imm32.value, dest.disp(), dest.base(), dest.index(), dest.scale()); break; case Operand::MEM_ADDRESS32: masm.movq_i32m(imm32.value, dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } } void vmovq(Register src, FloatRegister dest) { masm.vmovq_rr(src.encoding(), dest.encoding()); } void vmovq(FloatRegister src, Register dest) { masm.vmovq_rr(src.encoding(), dest.encoding()); } void movq(Register src, Register dest) { masm.movq_rr(src.encoding(), dest.encoding()); } void cmovCCq(Condition cond, const Operand& src, Register dest) { X86Encoding::Condition cc = static_cast(cond); switch (src.kind()) { case Operand::REG: masm.cmovCCq_rr(cc, src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.cmovCCq_mr(cc, src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.cmovCCq_mr(cc, src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void cmovCCq(Condition cond, Register src, Register dest) { X86Encoding::Condition cc = static_cast(cond); masm.cmovCCq_rr(cc, src.encoding(), dest.encoding()); } void cmovzq(const Operand& src, Register dest) { cmovCCq(Condition::Zero, src, dest); } void cmovnzq(const Operand& src, Register dest) { cmovCCq(Condition::NonZero, src, dest); } template void lock_addq(T src, const Operand& op) { masm.prefix_lock(); addq(src, op); } template void lock_subq(T src, const Operand& op) { masm.prefix_lock(); subq(src, op); } template void lock_andq(T src, const Operand& op) { masm.prefix_lock(); andq(src, op); } template void lock_orq(T src, const Operand& op) { masm.prefix_lock(); orq(src, op); } template void lock_xorq(T src, const Operand& op) { masm.prefix_lock(); xorq(src, op); } void lock_cmpxchgq(Register src, const Operand& mem) { masm.prefix_lock(); switch (mem.kind()) { case Operand::MEM_REG_DISP: masm.cmpxchgq(src.encoding(), mem.disp(), mem.base()); break; case Operand::MEM_SCALE: masm.cmpxchgq(src.encoding(), mem.disp(), mem.base(), mem.index(), mem.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void xchgq(Register src, Register dest) { masm.xchgq_rr(src.encoding(), dest.encoding()); } void xchgq(Register src, const Operand& mem) { switch (mem.kind()) { case Operand::MEM_REG_DISP: masm.xchgq_rm(src.encoding(), mem.disp(), mem.base()); break; case Operand::MEM_SCALE: masm.xchgq_rm(src.encoding(), mem.disp(), mem.base(), mem.index(), mem.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void lock_xaddq(Register srcdest, const Operand& mem) { switch (mem.kind()) { case Operand::MEM_REG_DISP: masm.lock_xaddq_rm(srcdest.encoding(), mem.disp(), mem.base()); break; case Operand::MEM_SCALE: masm.lock_xaddq_rm(srcdest.encoding(), mem.disp(), mem.base(), mem.index(), mem.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void movsbq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.movsbq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.movsbq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.movsbq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void movzbq(const Operand& src, Register dest) { // movzbl zero-extends to 64 bits and is one byte smaller, so use that // instead. movzbl(src, dest); } void movswq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.movswq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.movswq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.movswq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void movzwq(const Operand& src, Register dest) { // movzwl zero-extends to 64 bits and is one byte smaller, so use that // instead. movzwl(src, dest); } void movslq(Register src, Register dest) { masm.movslq_rr(src.encoding(), dest.encoding()); } void movslq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.movslq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.movslq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.movslq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void andq(Register src, Register dest) { masm.andq_rr(src.encoding(), dest.encoding()); } void andq(Imm32 imm, Register dest) { masm.andq_ir(imm.value, dest.encoding()); } void andq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.andq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.andq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.andq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.andq_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void andq(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.andq_rr(src.encoding(), dest.reg()); break; case Operand::MEM_REG_DISP: masm.andq_rm(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_SCALE: masm.andq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void addq(Imm32 imm, Register dest) { masm.addq_ir(imm.value, dest.encoding()); } CodeOffset addqWithPatch(Imm32 imm, Register dest) { masm.addq_i32r(imm.value, dest.encoding()); return CodeOffset(masm.currentOffset()); } void addq(Imm32 imm, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.addq_ir(imm.value, dest.reg()); break; case Operand::MEM_REG_DISP: masm.addq_im(imm.value, dest.disp(), dest.base()); break; case Operand::MEM_ADDRESS32: masm.addq_im(imm.value, dest.address()); break; default: MOZ_CRASH("unexpected operand kind"); } } void addq(Register src, Register dest) { masm.addq_rr(src.encoding(), dest.encoding()); } void addq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.addq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.addq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.addq_mr(src.address(), dest.encoding()); break; case Operand::MEM_SCALE: masm.addq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void addq(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.addq_rr(src.encoding(), dest.reg()); break; case Operand::MEM_REG_DISP: masm.addq_rm(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_SCALE: masm.addq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void subq(Imm32 imm, Register dest) { masm.subq_ir(imm.value, dest.encoding()); } void subq(Register src, Register dest) { masm.subq_rr(src.encoding(), dest.encoding()); } void subq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.subq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.subq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.subq_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void subq(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.subq_rr(src.encoding(), dest.reg()); break; case Operand::MEM_REG_DISP: masm.subq_rm(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_SCALE: masm.subq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void shlq(Imm32 imm, Register dest) { masm.shlq_ir(imm.value, dest.encoding()); } void shrq(Imm32 imm, Register dest) { masm.shrq_ir(imm.value, dest.encoding()); } void sarq(Imm32 imm, Register dest) { masm.sarq_ir(imm.value, dest.encoding()); } void shlq_cl(Register dest) { masm.shlq_CLr(dest.encoding()); } void shrq_cl(Register dest) { masm.shrq_CLr(dest.encoding()); } void sarq_cl(Register dest) { masm.sarq_CLr(dest.encoding()); } void sarxq(Register src, Register shift, Register dest) { MOZ_ASSERT(HasBMI2()); masm.sarxq_rrr(src.encoding(), shift.encoding(), dest.encoding()); } void shlxq(Register src, Register shift, Register dest) { MOZ_ASSERT(HasBMI2()); masm.shlxq_rrr(src.encoding(), shift.encoding(), dest.encoding()); } void shrxq(Register src, Register shift, Register dest) { MOZ_ASSERT(HasBMI2()); masm.shrxq_rrr(src.encoding(), shift.encoding(), dest.encoding()); } void rolq(Imm32 imm, Register dest) { masm.rolq_ir(imm.value, dest.encoding()); } void rolq_cl(Register dest) { masm.rolq_CLr(dest.encoding()); } void rorq(Imm32 imm, Register dest) { masm.rorq_ir(imm.value, dest.encoding()); } void rorq_cl(Register dest) { masm.rorq_CLr(dest.encoding()); } void orq(Imm32 imm, Register dest) { masm.orq_ir(imm.value, dest.encoding()); } void orq(Register src, Register dest) { masm.orq_rr(src.encoding(), dest.encoding()); } void orq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.orq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.orq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.orq_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void orq(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.orq_rr(src.encoding(), dest.reg()); break; case Operand::MEM_REG_DISP: masm.orq_rm(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_SCALE: masm.orq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void xorq(Register src, Register dest) { masm.xorq_rr(src.encoding(), dest.encoding()); } void xorq(Imm32 imm, Register dest) { masm.xorq_ir(imm.value, dest.encoding()); } void xorq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.xorq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.xorq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.xorq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; case Operand::MEM_ADDRESS32: masm.xorq_mr(src.address(), dest.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void xorq(Register src, const Operand& dest) { switch (dest.kind()) { case Operand::REG: masm.xorq_rr(src.encoding(), dest.reg()); break; case Operand::MEM_REG_DISP: masm.xorq_rm(src.encoding(), dest.disp(), dest.base()); break; case Operand::MEM_SCALE: masm.xorq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(), dest.scale()); break; default: MOZ_CRASH("unexpected operand kind"); } } void bsrq(const Register& src, const Register& dest) { masm.bsrq_rr(src.encoding(), dest.encoding()); } void bsfq(const Register& src, const Register& dest) { masm.bsfq_rr(src.encoding(), dest.encoding()); } void bswapq(const Register& reg) { masm.bswapq_r(reg.encoding()); } void lzcntq(const Register& src, const Register& dest) { masm.lzcntq_rr(src.encoding(), dest.encoding()); } void tzcntq(const Register& src, const Register& dest) { masm.tzcntq_rr(src.encoding(), dest.encoding()); } void popcntq(const Register& src, const Register& dest) { masm.popcntq_rr(src.encoding(), dest.encoding()); } void imulq(Imm32 imm, Register src, Register dest) { masm.imulq_ir(imm.value, src.encoding(), dest.encoding()); } void imulq(Register src, Register dest) { masm.imulq_rr(src.encoding(), dest.encoding()); } void imulq(const Operand& src, Register dest) { switch (src.kind()) { case Operand::REG: masm.imulq_rr(src.reg(), dest.encoding()); break; case Operand::MEM_REG_DISP: masm.imulq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_ADDRESS32: MOZ_CRASH("NYI"); break; default: MOZ_CRASH("unexpected operand kind"); } } void cqo() { masm.cqo(); } void idivq(Register divisor) { masm.idivq_r(divisor.encoding()); } void udivq(Register divisor) { masm.divq_r(divisor.encoding()); } void vcvtsi2sdq(Register src, FloatRegister dest) { masm.vcvtsi2sdq_rr(src.encoding(), dest.encoding()); } void vpextrq(unsigned lane, FloatRegister src, Register dest) { MOZ_ASSERT(HasSSE41()); masm.vpextrq_irr(lane, src.encoding(), dest.encoding()); } void vpinsrq(unsigned lane, Register src1, FloatRegister src0, FloatRegister dest) { MOZ_ASSERT(HasSSE41()); masm.vpinsrq_irr(lane, src1.encoding(), src0.encoding(), dest.encoding()); } void negq(Register reg) { masm.negq_r(reg.encoding()); } void notq(Register reg) { masm.notq_r(reg.encoding()); } void mov(ImmWord word, Register dest) { // Use xor for setting registers to zero, as it is specially optimized // for this purpose on modern hardware. Note that it does clobber FLAGS // though. Use xorl instead of xorq since they are functionally // equivalent (32-bit instructions zero-extend their results to 64 bits) // and xorl has a smaller encoding. if (word.value == 0) { xorl(dest, dest); } else { movq(word, dest); } } void mov(ImmPtr imm, Register dest) { movq(imm, dest); } void mov(wasm::SymbolicAddress imm, Register dest) { masm.movq_i64r(-1, dest.encoding()); append(wasm::SymbolicAccess(CodeOffset(masm.currentOffset()), imm)); } void mov(const Operand& src, Register dest) { movq(src, dest); } void mov(Register src, const Operand& dest) { movq(src, dest); } void mov(Imm32 imm32, const Operand& dest) { movq(imm32, dest); } void mov(Register src, Register dest) { movq(src, dest); } void mov(CodeLabel* label, Register dest) { masm.movq_i64r(/* placeholder */ 0, dest.encoding()); label->patchAt()->bind(masm.size()); } void xchg(Register src, Register dest) { xchgq(src, dest); } void lea(const Operand& src, Register dest) { switch (src.kind()) { case Operand::MEM_REG_DISP: masm.leaq_mr(src.disp(), src.base(), dest.encoding()); break; case Operand::MEM_SCALE: masm.leaq_mr(src.disp(), src.base(), src.index(), src.scale(), dest.encoding()); break; default: MOZ_CRASH("unexepcted operand kind"); } } void cmovz32(const Operand& src, Register dest) { return cmovzl(src, dest); } void cmovzPtr(const Operand& src, Register dest) { return cmovzq(src, dest); } CodeOffset loadRipRelativeInt32(Register dest) { return CodeOffset(masm.movl_ripr(dest.encoding()).offset()); } CodeOffset loadRipRelativeInt64(Register dest) { return CodeOffset(masm.movq_ripr(dest.encoding()).offset()); } CodeOffset loadRipRelativeDouble(FloatRegister dest) { return CodeOffset(masm.vmovsd_ripr(dest.encoding()).offset()); } CodeOffset loadRipRelativeFloat32(FloatRegister dest) { return CodeOffset(masm.vmovss_ripr(dest.encoding()).offset()); } CodeOffset loadRipRelativeInt32x4(FloatRegister dest) { return CodeOffset(masm.vmovdqa_ripr(dest.encoding()).offset()); } CodeOffset loadRipRelativeFloat32x4(FloatRegister dest) { return CodeOffset(masm.vmovaps_ripr(dest.encoding()).offset()); } CodeOffset leaRipRelative(Register dest) { return CodeOffset(masm.leaq_rip(dest.encoding()).offset()); } void cmpq(Register rhs, Register lhs) { masm.cmpq_rr(rhs.encoding(), lhs.encoding()); } void cmpq(Register rhs, const Operand& lhs) { switch (lhs.kind()) { case Operand::REG: masm.cmpq_rr(rhs.encoding(), lhs.reg()); break; case Operand::MEM_REG_DISP: masm.cmpq_rm(rhs.encoding(), lhs.disp(), lhs.base()); break; case Operand::MEM_SCALE: masm.cmpq_rm(rhs.encoding(), lhs.disp(), lhs.base(), lhs.index(), lhs.scale()); break; case Operand::MEM_ADDRESS32: masm.cmpq_rm(rhs.encoding(), lhs.address()); break; default: MOZ_CRASH("unexpected operand kind"); } } void cmpq(Imm32 rhs, Register lhs) { masm.cmpq_ir(rhs.value, lhs.encoding()); } void cmpq(Imm32 rhs, const Operand& lhs) { switch (lhs.kind()) { case Operand::REG: masm.cmpq_ir(rhs.value, lhs.reg()); break; case Operand::MEM_REG_DISP: masm.cmpq_im(rhs.value, lhs.disp(), lhs.base()); break; case Operand::MEM_SCALE: masm.cmpq_im(rhs.value, lhs.disp(), lhs.base(), lhs.index(), lhs.scale()); break; case Operand::MEM_ADDRESS32: masm.cmpq_im(rhs.value, lhs.address()); break; default: MOZ_CRASH("unexpected operand kind"); } } void cmpq(const Operand& rhs, Register lhs) { switch (rhs.kind()) { case Operand::REG: masm.cmpq_rr(rhs.reg(), lhs.encoding()); break; case Operand::MEM_REG_DISP: masm.cmpq_mr(rhs.disp(), rhs.base(), lhs.encoding()); break; default: MOZ_CRASH("unexpected operand kind"); } } void testq(Imm32 rhs, Register lhs) { masm.testq_ir(rhs.value, lhs.encoding()); } void testq(Register rhs, Register lhs) { masm.testq_rr(rhs.encoding(), lhs.encoding()); } void testq(Imm32 rhs, const Operand& lhs) { switch (lhs.kind()) { case Operand::REG: masm.testq_ir(rhs.value, lhs.reg()); break; case Operand::MEM_REG_DISP: masm.testq_i32m(rhs.value, lhs.disp(), lhs.base()); break; default: MOZ_CRASH("unexpected operand kind"); break; } } void jmp(ImmPtr target, RelocationKind reloc = RelocationKind::HARDCODED) { MOZ_ASSERT(hasCreator()); JmpSrc src = masm.jmp(); addPendingJump(src, target, reloc); } void j(Condition cond, ImmPtr target, RelocationKind reloc = RelocationKind::HARDCODED) { JmpSrc src = masm.jCC(static_cast(cond)); addPendingJump(src, target, reloc); } void jmp(JitCode* target) { jmp(ImmPtr(target->raw()), RelocationKind::JITCODE); } void j(Condition cond, JitCode* target) { j(cond, ImmPtr(target->raw()), RelocationKind::JITCODE); } void call(JitCode* target) { JmpSrc src = masm.call(); addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE); } void call(ImmWord target) { call(ImmPtr((void*)target.value)); } void call(ImmPtr target) { JmpSrc src = masm.call(); addPendingJump(src, target, RelocationKind::HARDCODED); } // Emit a CALL or CMP (nop) instruction. ToggleCall can be used to patch // this instruction. CodeOffset toggledCall(JitCode* target, bool enabled) { CodeOffset offset(size()); JmpSrc src = enabled ? masm.call() : masm.cmp_eax(); addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE); MOZ_ASSERT_IF(!oom(), size() - offset.offset() == ToggledCallSize(nullptr)); return offset; } static size_t ToggledCallSize(uint8_t* code) { // Size of a call instruction. return 5; } // Do not mask shared implementations. using AssemblerX86Shared::call; void vcvttsd2sq(FloatRegister src, Register dest) { masm.vcvttsd2sq_rr(src.encoding(), dest.encoding()); } void vcvttss2sq(FloatRegister src, Register dest) { masm.vcvttss2sq_rr(src.encoding(), dest.encoding()); } void vcvtsq2sd(Register src1, FloatRegister src0, FloatRegister dest) { masm.vcvtsq2sd_rr(src1.encoding(), src0.encoding(), dest.encoding()); } void vcvtsq2ss(Register src1, FloatRegister src0, FloatRegister dest) { masm.vcvtsq2ss_rr(src1.encoding(), src0.encoding(), dest.encoding()); } }; static inline bool GetIntArgReg(uint32_t intArg, uint32_t floatArg, Register* out) { #if defined(_WIN64) uint32_t arg = intArg + floatArg; #else uint32_t arg = intArg; #endif if (arg >= NumIntArgRegs) { return false; } *out = IntArgRegs[arg]; return true; } // Get a register in which we plan to put a quantity that will be used as an // integer argument. This differs from GetIntArgReg in that if we have no more // actual argument registers to use we will fall back on using whatever // CallTempReg* don't overlap the argument registers, and only fail once those // run out too. static inline bool GetTempRegForIntArg(uint32_t usedIntArgs, uint32_t usedFloatArgs, Register* out) { if (GetIntArgReg(usedIntArgs, usedFloatArgs, out)) { return true; } // Unfortunately, we have to assume things about the point at which // GetIntArgReg returns false, because we need to know how many registers it // can allocate. #if defined(_WIN64) uint32_t arg = usedIntArgs + usedFloatArgs; #else uint32_t arg = usedIntArgs; #endif arg -= NumIntArgRegs; if (arg >= NumCallTempNonArgRegs) { return false; } *out = CallTempNonArgRegs[arg]; return true; } static inline bool GetFloatArgReg(uint32_t intArg, uint32_t floatArg, FloatRegister* out) { #if defined(_WIN64) uint32_t arg = intArg + floatArg; #else uint32_t arg = floatArg; #endif if (floatArg >= NumFloatArgRegs) { return false; } *out = FloatArgRegs[arg]; return true; } } // namespace jit } // namespace js #endif /* jit_x64_Assembler_x64_h */