/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef jit_x86_shared_LIR_x86_shared_h #define jit_x86_shared_LIR_x86_shared_h namespace js { namespace jit { class LDivI : public LBinaryMath<1> { public: LIR_HEADER(DivI) LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } const char* extraName() const { if (mir()->isTruncated()) { if (mir()->canBeNegativeZero()) { return mir()->canBeNegativeOverflow() ? "Truncate_NegativeZero_NegativeOverflow" : "Truncate_NegativeZero"; } return mir()->canBeNegativeOverflow() ? "Truncate_NegativeOverflow" : "Truncate"; } if (mir()->canBeNegativeZero()) { return mir()->canBeNegativeOverflow() ? "NegativeZero_NegativeOverflow" : "NegativeZero"; } return mir()->canBeNegativeOverflow() ? "NegativeOverflow" : nullptr; } const LDefinition* remainder() { return getTemp(0); } MDiv* mir() const { return mir_->toDiv(); } }; // Signed division by a power-of-two constant. class LDivPowTwoI : public LBinaryMath<0> { const int32_t shift_; const bool negativeDivisor_; public: LIR_HEADER(DivPowTwoI) LDivPowTwoI(const LAllocation& lhs, const LAllocation& lhsCopy, int32_t shift, bool negativeDivisor) : LBinaryMath(classOpcode), shift_(shift), negativeDivisor_(negativeDivisor) { setOperand(0, lhs); setOperand(1, lhsCopy); } const LAllocation* numerator() { return getOperand(0); } const LAllocation* numeratorCopy() { return getOperand(1); } int32_t shift() const { return shift_; } bool negativeDivisor() const { return negativeDivisor_; } MDiv* mir() const { return mir_->toDiv(); } }; class LDivOrModConstantI : public LInstructionHelper<1, 1, 1> { const int32_t denominator_; public: LIR_HEADER(DivOrModConstantI) LDivOrModConstantI(const LAllocation& lhs, int32_t denominator, const LDefinition& temp) : LInstructionHelper(classOpcode), denominator_(denominator) { setOperand(0, lhs); setTemp(0, temp); } const LAllocation* numerator() { return getOperand(0); } int32_t denominator() const { return denominator_; } MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeNegativeDividend() const { if (mir_->isMod()) { return mir_->toMod()->canBeNegativeDividend(); } return mir_->toDiv()->canBeNegativeDividend(); } }; class LModI : public LBinaryMath<1> { public: LIR_HEADER(ModI) LModI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } const char* extraName() const { return mir()->isTruncated() ? "Truncated" : nullptr; } const LDefinition* remainder() { return getDef(0); } MMod* mir() const { return mir_->toMod(); } }; // This class performs a simple x86 'div', yielding either a quotient or // remainder depending on whether this instruction is defined to output eax // (quotient) or edx (remainder). class LUDivOrMod : public LBinaryMath<1> { public: LIR_HEADER(UDivOrMod); LUDivOrMod(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setTemp(0, temp); } const LDefinition* remainder() { return getTemp(0); } const char* extraName() const { return mir()->isTruncated() ? "Truncated" : nullptr; } MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeDivideByZero() const { if (mir_->isMod()) { return mir_->toMod()->canBeDivideByZero(); } return mir_->toDiv()->canBeDivideByZero(); } bool trapOnError() const { if (mir_->isMod()) { return mir_->toMod()->trapOnError(); } return mir_->toDiv()->trapOnError(); } wasm::BytecodeOffset bytecodeOffset() const { if (mir_->isMod()) { return mir_->toMod()->bytecodeOffset(); } return mir_->toDiv()->bytecodeOffset(); } }; class LUDivOrModConstant : public LInstructionHelper<1, 1, 1> { const uint32_t denominator_; public: LIR_HEADER(UDivOrModConstant) LUDivOrModConstant(const LAllocation& lhs, uint32_t denominator, const LDefinition& temp) : LInstructionHelper(classOpcode), denominator_(denominator) { setOperand(0, lhs); setTemp(0, temp); } const LAllocation* numerator() { return getOperand(0); } uint32_t denominator() const { return denominator_; } MBinaryArithInstruction* mir() const { MOZ_ASSERT(mir_->isDiv() || mir_->isMod()); return static_cast(mir_); } bool canBeNegativeDividend() const { if (mir_->isMod()) { return mir_->toMod()->canBeNegativeDividend(); } return mir_->toDiv()->canBeNegativeDividend(); } bool trapOnError() const { if (mir_->isMod()) { return mir_->toMod()->trapOnError(); } return mir_->toDiv()->trapOnError(); } wasm::BytecodeOffset bytecodeOffset() const { if (mir_->isMod()) { return mir_->toMod()->bytecodeOffset(); } return mir_->toDiv()->bytecodeOffset(); } }; class LModPowTwoI : public LInstructionHelper<1, 1, 0> { const int32_t shift_; public: LIR_HEADER(ModPowTwoI) LModPowTwoI(const LAllocation& lhs, int32_t shift) : LInstructionHelper(classOpcode), shift_(shift) { setOperand(0, lhs); } int32_t shift() const { return shift_; } const LDefinition* remainder() { return getDef(0); } MMod* mir() const { return mir_->toMod(); } }; // Takes a tableswitch with an integer to decide class LTableSwitch : public LInstructionHelper<0, 1, 2> { public: LIR_HEADER(TableSwitch) LTableSwitch(const LAllocation& in, const LDefinition& inputCopy, const LDefinition& jumpTablePointer, MTableSwitch* ins) : LInstructionHelper(classOpcode) { setOperand(0, in); setTemp(0, inputCopy); setTemp(1, jumpTablePointer); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } const LAllocation* index() { return getOperand(0); } const LDefinition* tempInt() { return getTemp(0); } const LDefinition* tempPointer() { return getTemp(1); } }; // Takes a tableswitch with a value to decide class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 3> { public: LIR_HEADER(TableSwitchV) LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy, const LDefinition& floatCopy, const LDefinition& jumpTablePointer, MTableSwitch* ins) : LInstructionHelper(classOpcode) { setBoxOperand(InputValue, input); setTemp(0, inputCopy); setTemp(1, floatCopy); setTemp(2, jumpTablePointer); setMir(ins); } MTableSwitch* mir() const { return mir_->toTableSwitch(); } static const size_t InputValue = 0; const LDefinition* tempInt() { return getTemp(0); } const LDefinition* tempFloat() { return getTemp(1); } const LDefinition* tempPointer() { return getTemp(2); } }; class LMulI : public LBinaryMath<0, 1> { public: LIR_HEADER(MulI) LMulI(const LAllocation& lhs, const LAllocation& rhs, const LAllocation& lhsCopy) : LBinaryMath(classOpcode) { setOperand(0, lhs); setOperand(1, rhs); setOperand(2, lhsCopy); } const char* extraName() const { return (mir()->mode() == MMul::Integer) ? "Integer" : (mir()->canBeNegativeZero() ? "CanBeNegativeZero" : nullptr); } MMul* mir() const { return mir_->toMul(); } const LAllocation* lhsCopy() { return this->getOperand(2); } }; class LInt64ToFloatingPoint : public LInstructionHelper<1, INT64_PIECES, 1> { public: LIR_HEADER(Int64ToFloatingPoint); LInt64ToFloatingPoint(const LInt64Allocation& in, const LDefinition& temp) : LInstructionHelper(classOpcode) { setInt64Operand(0, in); setTemp(0, temp); } MInt64ToFloatingPoint* mir() const { return mir_->toInt64ToFloatingPoint(); } const LDefinition* temp() { return getTemp(0); } }; } // namespace jit } // namespace js #endif /* jit_x86_shared_LIR_x86_shared_h */