/* * jchuff-neon.c - Huffman entropy encoding (64-bit Arm Neon) * * Copyright (C) 2020-2021, Arm Limited. All Rights Reserved. * Copyright (C) 2020, 2022, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "../../../jinclude.h" #include "../../../jpeglib.h" #include "../../../jsimd.h" #include "../../../jdct.h" #include "../../../jsimddct.h" #include "../../jsimd.h" #include "../align.h" #include "../jchuff.h" #include "neon-compat.h" #include #include ALIGN(16) static const uint8_t jsimd_huff_encode_one_block_consts[] = { 0, 1, 2, 3, 16, 17, 32, 33, 18, 19, 4, 5, 6, 7, 20, 21, 34, 35, 48, 49, 255, 255, 50, 51, 36, 37, 22, 23, 8, 9, 10, 11, 255, 255, 6, 7, 20, 21, 34, 35, 48, 49, 255, 255, 50, 51, 36, 37, 54, 55, 40, 41, 26, 27, 12, 13, 14, 15, 28, 29, 42, 43, 56, 57, 6, 7, 20, 21, 34, 35, 48, 49, 50, 51, 36, 37, 22, 23, 8, 9, 26, 27, 12, 13, 255, 255, 14, 15, 28, 29, 42, 43, 56, 57, 255, 255, 52, 53, 54, 55, 40, 41, 26, 27, 12, 13, 255, 255, 14, 15, 28, 29, 26, 27, 40, 41, 42, 43, 28, 29, 14, 15, 30, 31, 44, 45, 46, 47 }; /* The AArch64 implementation of the FLUSH() macro triggers a UBSan misaligned * address warning because the macro sometimes writes a 64-bit value to a * non-64-bit-aligned address. That behavior is technically undefined per * the C specification, but it is supported by the AArch64 architecture and * compilers. */ #if defined(__has_feature) #if __has_feature(undefined_behavior_sanitizer) __attribute__((no_sanitize("alignment"))) #endif #endif JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { uint16_t block_diff[DCTSIZE2]; /* Load lookup table indices for rows of zig-zag ordering. */ #ifdef HAVE_VLD1Q_U8_X4 const uint8x16x4_t idx_rows_0123 = vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE); const uint8x16x4_t idx_rows_4567 = vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE); #else /* GCC does not currently support intrinsics vl1dq__x4(). */ const uint8x16x4_t idx_rows_0123 = { { vld1q_u8(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 2 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 4 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 6 * DCTSIZE) } }; const uint8x16x4_t idx_rows_4567 = { { vld1q_u8(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 10 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 12 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 14 * DCTSIZE) } }; #endif /* Load 8x8 block of DCT coefficients. */ #ifdef HAVE_VLD1Q_U8_X4 const int8x16x4_t tbl_rows_0123 = vld1q_s8_x4((int8_t *)(block + 0 * DCTSIZE)); const int8x16x4_t tbl_rows_4567 = vld1q_s8_x4((int8_t *)(block + 4 * DCTSIZE)); #else const int8x16x4_t tbl_rows_0123 = { { vld1q_s8((int8_t *)(block + 0 * DCTSIZE)), vld1q_s8((int8_t *)(block + 1 * DCTSIZE)), vld1q_s8((int8_t *)(block + 2 * DCTSIZE)), vld1q_s8((int8_t *)(block + 3 * DCTSIZE)) } }; const int8x16x4_t tbl_rows_4567 = { { vld1q_s8((int8_t *)(block + 4 * DCTSIZE)), vld1q_s8((int8_t *)(block + 5 * DCTSIZE)), vld1q_s8((int8_t *)(block + 6 * DCTSIZE)), vld1q_s8((int8_t *)(block + 7 * DCTSIZE)) } }; #endif /* Initialise extra lookup tables. */ const int8x16x4_t tbl_rows_2345 = { { tbl_rows_0123.val[2], tbl_rows_0123.val[3], tbl_rows_4567.val[0], tbl_rows_4567.val[1] } }; const int8x16x3_t tbl_rows_567 = { { tbl_rows_4567.val[1], tbl_rows_4567.val[2], tbl_rows_4567.val[3] } }; /* Shuffle coefficients into zig-zag order. */ int16x8_t row0 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[0])); int16x8_t row1 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[1])); int16x8_t row2 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_0123.val[2])); int16x8_t row3 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[3])); int16x8_t row4 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[0])); int16x8_t row5 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_4567.val[1])); int16x8_t row6 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[2])); int16x8_t row7 = vreinterpretq_s16_s8(vqtbl3q_s8(tbl_rows_567, idx_rows_4567.val[3])); /* Compute DC coefficient difference value (F.1.1.5.1). */ row0 = vsetq_lane_s16(block[0] - last_dc_val, row0, 0); /* Initialize AC coefficient lanes not reachable by lookup tables. */ row1 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[0]), 0), row1, 2); row2 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]), 4), row2, 0); row2 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]), 0), row2, 5); row5 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]), 7), row5, 2); row5 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]), 3), row5, 7); row6 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[3]), 7), row6, 5); /* DCT block is now in zig-zag order; start Huffman encoding process. */ /* Construct bitmap to accelerate encoding of AC coefficients. A set bit * means that the corresponding coefficient != 0. */ uint16x8_t row0_ne_0 = vtstq_s16(row0, row0); uint16x8_t row1_ne_0 = vtstq_s16(row1, row1); uint16x8_t row2_ne_0 = vtstq_s16(row2, row2); uint16x8_t row3_ne_0 = vtstq_s16(row3, row3); uint16x8_t row4_ne_0 = vtstq_s16(row4, row4); uint16x8_t row5_ne_0 = vtstq_s16(row5, row5); uint16x8_t row6_ne_0 = vtstq_s16(row6, row6); uint16x8_t row7_ne_0 = vtstq_s16(row7, row7); uint8x16_t row10_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row1_ne_0), vreinterpretq_u8_u16(row0_ne_0)); uint8x16_t row32_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row3_ne_0), vreinterpretq_u8_u16(row2_ne_0)); uint8x16_t row54_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row5_ne_0), vreinterpretq_u8_u16(row4_ne_0)); uint8x16_t row76_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row7_ne_0), vreinterpretq_u8_u16(row6_ne_0)); /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */ const uint8x16_t bitmap_mask = vreinterpretq_u8_u64(vdupq_n_u64(0x0102040810204080)); uint8x16_t bitmap_rows_10 = vandq_u8(row10_ne_0, bitmap_mask); uint8x16_t bitmap_rows_32 = vandq_u8(row32_ne_0, bitmap_mask); uint8x16_t bitmap_rows_54 = vandq_u8(row54_ne_0, bitmap_mask); uint8x16_t bitmap_rows_76 = vandq_u8(row76_ne_0, bitmap_mask); uint8x16_t bitmap_rows_3210 = vpaddq_u8(bitmap_rows_32, bitmap_rows_10); uint8x16_t bitmap_rows_7654 = vpaddq_u8(bitmap_rows_76, bitmap_rows_54); uint8x16_t bitmap_rows_76543210 = vpaddq_u8(bitmap_rows_7654, bitmap_rows_3210); uint8x8_t bitmap_all = vpadd_u8(vget_low_u8(bitmap_rows_76543210), vget_high_u8(bitmap_rows_76543210)); /* Shift left to remove DC bit. */ bitmap_all = vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap_all), 1)); /* Count bits set (number of non-zero coefficients) in bitmap. */ unsigned int non_zero_coefficients = vaddv_u8(vcnt_u8(bitmap_all)); /* Move bitmap to 64-bit scalar register. */ uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0); /* Set up state and bit buffer for output bitstream. */ working_state *state_ptr = (working_state *)state; int free_bits = state_ptr->cur.free_bits; size_t put_buffer = state_ptr->cur.put_buffer; /* Encode DC coefficient. */ /* For negative coeffs: diff = abs(coeff) -1 = ~abs(coeff) */ int16x8_t abs_row0 = vabsq_s16(row0); int16x8_t row0_lz = vclzq_s16(abs_row0); uint16x8_t row0_mask = vshlq_u16(vcltzq_s16(row0), vnegq_s16(row0_lz)); uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask); /* Find nbits required to specify sign and amplitude of coefficient. */ unsigned int lz = vgetq_lane_u16(vreinterpretq_u16_s16(row0_lz), 0); unsigned int nbits = 16 - lz; /* Emit Huffman-coded symbol and additional diff bits. */ unsigned int diff = vgetq_lane_u16(row0_diff, 0); PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff) /* Encode AC coefficients. */ unsigned int r = 0; /* r = run length of zeros */ unsigned int i = 1; /* i = number of coefficients encoded */ /* Code and size information for a run length of 16 zero coefficients */ const unsigned int code_0xf0 = actbl->ehufco[0xf0]; const unsigned int size_0xf0 = actbl->ehufsi[0xf0]; /* The most efficient method of computing nbits and diff depends on the * number of non-zero coefficients. If the bitmap is not too sparse (> 8 * non-zero AC coefficients), it is beneficial to do all of the work using * Neon; else we do some of the work using Neon and the rest on demand using * scalar code. */ if (non_zero_coefficients > 8) { uint8_t block_nbits[DCTSIZE2]; int16x8_t abs_row1 = vabsq_s16(row1); int16x8_t abs_row2 = vabsq_s16(row2); int16x8_t abs_row3 = vabsq_s16(row3); int16x8_t abs_row4 = vabsq_s16(row4); int16x8_t abs_row5 = vabsq_s16(row5); int16x8_t abs_row6 = vabsq_s16(row6); int16x8_t abs_row7 = vabsq_s16(row7); int16x8_t row1_lz = vclzq_s16(abs_row1); int16x8_t row2_lz = vclzq_s16(abs_row2); int16x8_t row3_lz = vclzq_s16(abs_row3); int16x8_t row4_lz = vclzq_s16(abs_row4); int16x8_t row5_lz = vclzq_s16(abs_row5); int16x8_t row6_lz = vclzq_s16(abs_row6); int16x8_t row7_lz = vclzq_s16(abs_row7); /* Narrow leading zero count to 8 bits. */ uint8x16_t row01_lz = vuzp1q_u8(vreinterpretq_u8_s16(row0_lz), vreinterpretq_u8_s16(row1_lz)); uint8x16_t row23_lz = vuzp1q_u8(vreinterpretq_u8_s16(row2_lz), vreinterpretq_u8_s16(row3_lz)); uint8x16_t row45_lz = vuzp1q_u8(vreinterpretq_u8_s16(row4_lz), vreinterpretq_u8_s16(row5_lz)); uint8x16_t row67_lz = vuzp1q_u8(vreinterpretq_u8_s16(row6_lz), vreinterpretq_u8_s16(row7_lz)); /* Compute nbits needed to specify magnitude of each coefficient. */ uint8x16_t row01_nbits = vsubq_u8(vdupq_n_u8(16), row01_lz); uint8x16_t row23_nbits = vsubq_u8(vdupq_n_u8(16), row23_lz); uint8x16_t row45_nbits = vsubq_u8(vdupq_n_u8(16), row45_lz); uint8x16_t row67_nbits = vsubq_u8(vdupq_n_u8(16), row67_lz); /* Store nbits. */ vst1q_u8(block_nbits + 0 * DCTSIZE, row01_nbits); vst1q_u8(block_nbits + 2 * DCTSIZE, row23_nbits); vst1q_u8(block_nbits + 4 * DCTSIZE, row45_nbits); vst1q_u8(block_nbits + 6 * DCTSIZE, row67_nbits); /* Mask bits not required to specify sign and amplitude of diff. */ uint16x8_t row1_mask = vshlq_u16(vcltzq_s16(row1), vnegq_s16(row1_lz)); uint16x8_t row2_mask = vshlq_u16(vcltzq_s16(row2), vnegq_s16(row2_lz)); uint16x8_t row3_mask = vshlq_u16(vcltzq_s16(row3), vnegq_s16(row3_lz)); uint16x8_t row4_mask = vshlq_u16(vcltzq_s16(row4), vnegq_s16(row4_lz)); uint16x8_t row5_mask = vshlq_u16(vcltzq_s16(row5), vnegq_s16(row5_lz)); uint16x8_t row6_mask = vshlq_u16(vcltzq_s16(row6), vnegq_s16(row6_lz)); uint16x8_t row7_mask = vshlq_u16(vcltzq_s16(row7), vnegq_s16(row7_lz)); /* diff = abs(coeff) ^ sign(coeff) [no-op for positive coefficients] */ uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), row1_mask); uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), row2_mask); uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), row3_mask); uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), row4_mask); uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), row5_mask); uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), row6_mask); uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), row7_mask); /* Store diff bits. */ vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff); vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff); vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff); vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff); vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff); vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff); vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff); vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff); while (bitmap != 0) { r = BUILTIN_CLZLL(bitmap); i += r; bitmap <<= r; nbits = block_nbits[i]; diff = block_diff[i]; while (r > 15) { /* If run length > 15, emit special run-length-16 codes. */ PUT_BITS(code_0xf0, size_0xf0) r -= 16; } /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ unsigned int rs = (r << 4) + nbits; PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) i++; bitmap <<= 1; } } else if (bitmap != 0) { uint16_t block_abs[DCTSIZE2]; /* Compute and store absolute value of coefficients. */ int16x8_t abs_row1 = vabsq_s16(row1); int16x8_t abs_row2 = vabsq_s16(row2); int16x8_t abs_row3 = vabsq_s16(row3); int16x8_t abs_row4 = vabsq_s16(row4); int16x8_t abs_row5 = vabsq_s16(row5); int16x8_t abs_row6 = vabsq_s16(row6); int16x8_t abs_row7 = vabsq_s16(row7); vst1q_u16(block_abs + 0 * DCTSIZE, vreinterpretq_u16_s16(abs_row0)); vst1q_u16(block_abs + 1 * DCTSIZE, vreinterpretq_u16_s16(abs_row1)); vst1q_u16(block_abs + 2 * DCTSIZE, vreinterpretq_u16_s16(abs_row2)); vst1q_u16(block_abs + 3 * DCTSIZE, vreinterpretq_u16_s16(abs_row3)); vst1q_u16(block_abs + 4 * DCTSIZE, vreinterpretq_u16_s16(abs_row4)); vst1q_u16(block_abs + 5 * DCTSIZE, vreinterpretq_u16_s16(abs_row5)); vst1q_u16(block_abs + 6 * DCTSIZE, vreinterpretq_u16_s16(abs_row6)); vst1q_u16(block_abs + 7 * DCTSIZE, vreinterpretq_u16_s16(abs_row7)); /* Compute diff bits (without nbits mask) and store. */ uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), vcltzq_s16(row1)); uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), vcltzq_s16(row2)); uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), vcltzq_s16(row3)); uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), vcltzq_s16(row4)); uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), vcltzq_s16(row5)); uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), vcltzq_s16(row6)); uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), vcltzq_s16(row7)); vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff); vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff); vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff); vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff); vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff); vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff); vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff); vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff); /* Same as above but must mask diff bits and compute nbits on demand. */ while (bitmap != 0) { r = BUILTIN_CLZLL(bitmap); i += r; bitmap <<= r; lz = BUILTIN_CLZ(block_abs[i]); nbits = 32 - lz; diff = ((unsigned int)block_diff[i] << lz) >> lz; while (r > 15) { /* If run length > 15, emit special run-length-16 codes. */ PUT_BITS(code_0xf0, size_0xf0) r -= 16; } /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ unsigned int rs = (r << 4) + nbits; PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) i++; bitmap <<= 1; } } /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code. * The value of RS for the EOB code is 0. */ if (i != 64) { PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0]) } state_ptr->cur.put_buffer = put_buffer; state_ptr->cur.free_bits = free_bits; return buffer; }