; ; jidctfst.asm - fast integer IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 32 GLOBAL_DATA(jconst_idct_ifast_sse2) EXTN(jconst_idct_ifast_sse2): PW_F1414 times 8 dw F_1_414 << CONST_SHIFT PW_F1847 times 8 dw F_1_847 << CONST_SHIFT PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT PW_F1082 times 8 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = jpeg_component_info *compptr ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13d = JDIMENSION output_col %define original_rbp rbp + 0 %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_idct_ifast_sse2) EXTN(jsimd_idct_ifast_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 4 ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 mov eax, dword [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1, xmm0 packsswb xmm1, xmm1 packsswb xmm1, xmm1 movd eax, xmm1 test rax, rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm7, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm7, xmm7 ; xmm7=(04 04 05 05 06 06 07 07) pshufd xmm6, xmm0, 0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) pshufd xmm2, xmm0, 0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) pshufd xmm5, xmm0, 0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) pshufd xmm0, xmm0, 0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) pshufd xmm1, xmm7, 0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) pshufd xmm4, xmm7, 0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) pshufd xmm3, xmm7, 0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) pshufd xmm7, xmm7, 0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 jmp near .column_end %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4, xmm0 movdqa xmm5, xmm1 psubw xmm0, xmm2 ; xmm0=tmp11 psubw xmm1, xmm3 paddw xmm4, xmm2 ; xmm4=tmp10 paddw xmm5, xmm3 ; xmm5=tmp13 psllw xmm1, PRE_MULTIPLY_SCALE_BITS pmulhw xmm1, [rel PW_F1414] psubw xmm1, xmm5 ; xmm1=tmp12 movdqa xmm6, xmm4 movdqa xmm7, xmm0 psubw xmm4, xmm5 ; xmm4=tmp3 psubw xmm0, xmm1 ; xmm0=tmp2 paddw xmm6, xmm5 ; xmm6=tmp0 paddw xmm7, xmm1 ; xmm7=tmp1 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 ; -- Odd part movdqa xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4, xmm2 movdqa xmm0, xmm5 psubw xmm2, xmm1 ; xmm2=z12 psubw xmm5, xmm3 ; xmm5=z10 paddw xmm4, xmm1 ; xmm4=z11 paddw xmm0, xmm3 ; xmm0=z13 movdqa xmm1, xmm5 ; xmm1=z10(unscaled) psllw xmm2, PRE_MULTIPLY_SCALE_BITS psllw xmm5, PRE_MULTIPLY_SCALE_BITS movdqa xmm3, xmm4 psubw xmm4, xmm0 paddw xmm3, xmm0 ; xmm3=tmp7 psllw xmm4, PRE_MULTIPLY_SCALE_BITS pmulhw xmm4, [rel PW_F1414] ; xmm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm0, xmm5 paddw xmm5, xmm2 pmulhw xmm5, [rel PW_F1847] ; xmm5=z5 pmulhw xmm0, [rel PW_MF1613] pmulhw xmm2, [rel PW_F1082] psubw xmm0, xmm1 psubw xmm2, xmm5 ; xmm2=tmp10 paddw xmm0, xmm5 ; xmm0=tmp12 ; -- Final output stage psubw xmm0, xmm3 ; xmm0=tmp6 movdqa xmm1, xmm6 movdqa xmm5, xmm7 paddw xmm6, xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) paddw xmm7, xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) psubw xmm1, xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) psubw xmm5, xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) psubw xmm4, xmm0 ; xmm4=tmp5 movdqa xmm3, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm7 ; xmm6=(00 10 01 11 02 12 03 13) punpckhwd xmm3, xmm7 ; xmm3=(04 14 05 15 06 16 07 17) movdqa xmm0, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm1 ; xmm5=(60 70 61 71 62 72 63 73) punpckhwd xmm0, xmm1 ; xmm0=(64 74 65 75 66 76 67 77) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) paddw xmm2, xmm4 ; xmm2=tmp4 movdqa xmm5, xmm7 movdqa xmm0, xmm1 paddw xmm7, xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) paddw xmm1, xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) psubw xmm5, xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) psubw xmm0, xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) movdqa xmm4, xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7, xmm0 ; xmm7=(20 30 21 31 22 32 23 33) punpckhwd xmm4, xmm0 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm2, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm5 ; xmm1=(40 50 41 51 42 52 43 53) punpckhwd xmm2, xmm5 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm0, xmm3 ; transpose coefficients(phase 2) punpckldq xmm3, xmm4 ; xmm3=(04 14 24 34 05 15 25 35) punpckhdq xmm0, xmm4 ; xmm0=(06 16 26 36 07 17 27 37) movdqa xmm5, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm7 ; xmm6=(00 10 20 30 01 11 21 31) punpckhdq xmm5, xmm7 ; xmm5=(02 12 22 32 03 13 23 33) movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) movdqa xmm3, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm4 ; xmm1=(40 50 60 70 41 51 61 71) punpckhdq xmm3, xmm4 ; xmm3=(42 52 62 72 43 53 63 73) movdqa xmm0, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm7 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm0, xmm7 ; xmm0=(46 56 66 76 47 57 67 77) movdqa xmm4, xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6, xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm4, xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) movdqa xmm7, xmm5 ; transpose coefficients(phase 3) punpcklqdq xmm5, xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm7, xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 movdqa xmm4, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm4, xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) movdqa xmm7, xmm3 ; transpose coefficients(phase 3) punpcklqdq xmm3, xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm7, xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 movdqa xmm2, xmm6 movdqa xmm0, xmm5 psubw xmm6, xmm1 ; xmm6=tmp11 psubw xmm5, xmm3 paddw xmm2, xmm1 ; xmm2=tmp10 paddw xmm0, xmm3 ; xmm0=tmp13 psllw xmm5, PRE_MULTIPLY_SCALE_BITS pmulhw xmm5, [rel PW_F1414] psubw xmm5, xmm0 ; xmm5=tmp12 movdqa xmm1, xmm2 movdqa xmm3, xmm6 psubw xmm2, xmm0 ; xmm2=tmp3 psubw xmm6, xmm5 ; xmm6=tmp2 paddw xmm1, xmm0 ; xmm1=tmp0 paddw xmm3, xmm5 ; xmm3=tmp1 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 ; -- Odd part ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 movdqa xmm2, xmm0 movdqa xmm6, xmm4 psubw xmm0, xmm7 ; xmm0=z12 psubw xmm4, xmm5 ; xmm4=z10 paddw xmm2, xmm7 ; xmm2=z11 paddw xmm6, xmm5 ; xmm6=z13 movdqa xmm7, xmm4 ; xmm7=z10(unscaled) psllw xmm0, PRE_MULTIPLY_SCALE_BITS psllw xmm4, PRE_MULTIPLY_SCALE_BITS movdqa xmm5, xmm2 psubw xmm2, xmm6 paddw xmm5, xmm6 ; xmm5=tmp7 psllw xmm2, PRE_MULTIPLY_SCALE_BITS pmulhw xmm2, [rel PW_F1414] ; xmm2=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm6, xmm4 paddw xmm4, xmm0 pmulhw xmm4, [rel PW_F1847] ; xmm4=z5 pmulhw xmm6, [rel PW_MF1613] pmulhw xmm0, [rel PW_F1082] psubw xmm6, xmm7 psubw xmm0, xmm4 ; xmm0=tmp10 paddw xmm6, xmm4 ; xmm6=tmp12 ; -- Final output stage psubw xmm6, xmm5 ; xmm6=tmp6 movdqa xmm7, xmm1 movdqa xmm4, xmm3 paddw xmm1, xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) paddw xmm3, xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) psraw xmm1, (PASS1_BITS+3) ; descale psraw xmm3, (PASS1_BITS+3) ; descale psubw xmm7, xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) psubw xmm4, xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) psraw xmm7, (PASS1_BITS+3) ; descale psraw xmm4, (PASS1_BITS+3) ; descale psubw xmm2, xmm6 ; xmm2=tmp5 packsswb xmm1, xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3, xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 paddw xmm0, xmm2 ; xmm0=tmp4 movdqa xmm4, xmm5 movdqa xmm7, xmm6 paddw xmm5, xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) paddw xmm6, xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) psraw xmm5, (PASS1_BITS+3) ; descale psraw xmm6, (PASS1_BITS+3) ; descale psubw xmm4, xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) psubw xmm7, xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) psraw xmm4, (PASS1_BITS+3) ; descale psraw xmm7, (PASS1_BITS+3) ; descale movdqa xmm2, [rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP] packsswb xmm5, xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm7, xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm1, xmm2 paddb xmm3, xmm2 paddb xmm5, xmm2 paddb xmm7, xmm2 movdqa xmm0, xmm1 ; transpose coefficients(phase 1) punpcklbw xmm1, xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0, xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm6, xmm5 ; transpose coefficients(phase 1) punpcklbw xmm5, xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm6, xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4, xmm1 ; transpose coefficients(phase 2) punpcklwd xmm1, xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4, xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm2, xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6, xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm2, xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm3, xmm1 ; transpose coefficients(phase 3) punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm3, xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm7, xmm4 ; transpose coefficients(phase 3) punpckldq xmm4, xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm7, xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm5, xmm1, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0, xmm3, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm6, xmm4, 0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm2, xmm7, 0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 mov rdxp, JSAMPROW [rdi+4*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7 mov rdxp, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0 mov rdxp, JSAMPROW [rdi+5*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2 uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32