/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/arm/mem_neon.h" #include "vp9/common/vp9_scan.h" #include "vp9/encoder/vp9_block.h" static INLINE void calculate_dqcoeff_and_store(const int16x8_t qcoeff, const int16x8_t dequant, tran_low_t *dqcoeff_ptr) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4_t dqcoeff_0 = vmull_s16(vget_low_s16(qcoeff), vget_low_s16(dequant)); const int32x4_t dqcoeff_1 = vmull_s16(vget_high_s16(qcoeff), vget_high_s16(dequant)); vst1q_s32(dqcoeff_ptr, dqcoeff_0); vst1q_s32(dqcoeff_ptr + 4, dqcoeff_1); #else vst1q_s16(dqcoeff_ptr, vmulq_s16(qcoeff, dequant)); #endif // CONFIG_VP9_HIGHBITDEPTH } static INLINE int16x8_t quantize_b_neon(const tran_low_t *coeff_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16x8_t zbin, const int16x8_t round, const int16x8_t quant, const int16x8_t quant_shift, const int16x8_t dequant) { // Load coeffs as 8 x 16-bit ints, take sign and abs values const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); const int16x8_t coeff_abs = vabsq_s16(coeff); // Calculate mask of elements outside the bin const int16x8_t zbin_mask = vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin)); // Get the rounded values const int16x8_t rounded = vqaddq_s16(coeff_abs, round); // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16 int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1); qcoeff = vaddq_s16(qcoeff, rounded); // (qcoeff * quant_shift * 2) >> 16 >> 1 == (qcoeff * quant_shift) >> 16 qcoeff = vshrq_n_s16(vqdmulhq_s16(qcoeff, quant_shift), 1); // Restore the sign bit. qcoeff = veorq_s16(qcoeff, coeff_sign); qcoeff = vsubq_s16(qcoeff, coeff_sign); // Only keep the relevant coeffs qcoeff = vandq_s16(qcoeff, zbin_mask); store_s16q_to_tran_low(qcoeff_ptr, qcoeff); calculate_dqcoeff_and_store(qcoeff, dequant, dqcoeff_ptr); return qcoeff; } void vpx_quantize_b_neon(const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { const int16x8_t neg_one = vdupq_n_s16(-1); uint16x8_t eob_max; // Only the first element of each vector is DC. int16x8_t zbin = vld1q_s16(zbin_ptr); int16x8_t round = vld1q_s16(round_ptr); int16x8_t quant = vld1q_s16(quant_ptr); int16x8_t quant_shift = vld1q_s16(quant_shift_ptr); int16x8_t dequant = vld1q_s16(dequant_ptr); // Process first 8 values which include a dc component. { const uint16x8_t v_iscan = vreinterpretq_u16_s16(vld1q_s16(iscan)); const int16x8_t qcoeff = quantize_b_neon(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, zbin, round, quant, quant_shift, dequant); // Set non-zero elements to -1 and use that to extract values for eob. eob_max = vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan); __builtin_prefetch(coeff_ptr + 64); coeff_ptr += 8; iscan += 8; qcoeff_ptr += 8; dqcoeff_ptr += 8; } n_coeffs -= 8; { zbin = vdupq_lane_s16(vget_low_s16(zbin), 1); round = vdupq_lane_s16(vget_low_s16(round), 1); quant = vdupq_lane_s16(vget_low_s16(quant), 1); quant_shift = vdupq_lane_s16(vget_low_s16(quant_shift), 1); dequant = vdupq_lane_s16(vget_low_s16(dequant), 1); do { const uint16x8_t v_iscan = vreinterpretq_u16_s16(vld1q_s16(iscan)); const int16x8_t qcoeff = quantize_b_neon(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, zbin, round, quant, quant_shift, dequant); // Set non-zero elements to -1 and use that to extract values for eob. eob_max = vmaxq_u16(eob_max, vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan)); __builtin_prefetch(coeff_ptr + 64); coeff_ptr += 8; iscan += 8; qcoeff_ptr += 8; dqcoeff_ptr += 8; n_coeffs -= 8; } while (n_coeffs > 0); } #if VPX_ARCH_AARCH64 *eob_ptr = vmaxvq_u16(eob_max); #else { const uint16x4_t eob_max_0 = vmax_u16(vget_low_u16(eob_max), vget_high_u16(eob_max)); const uint16x4_t eob_max_1 = vpmax_u16(eob_max_0, eob_max_0); const uint16x4_t eob_max_2 = vpmax_u16(eob_max_1, eob_max_1); vst1_lane_u16(eob_ptr, eob_max_2, 0); } #endif // VPX_ARCH_AARCH64 // Need these here, else the compiler complains about mixing declarations and // code in C90 (void)scan; } static INLINE int32x4_t extract_sign_bit(int32x4_t a) { return vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(a), 31)); } static INLINE void calculate_dqcoeff_and_store_32x32(const int16x8_t qcoeff, const int16x8_t dequant, tran_low_t *dqcoeff_ptr) { int32x4_t dqcoeff_0 = vmull_s16(vget_low_s16(qcoeff), vget_low_s16(dequant)); int32x4_t dqcoeff_1 = vmull_s16(vget_high_s16(qcoeff), vget_high_s16(dequant)); // Add 1 if negative to round towards zero because the C uses division. dqcoeff_0 = vaddq_s32(dqcoeff_0, extract_sign_bit(dqcoeff_0)); dqcoeff_1 = vaddq_s32(dqcoeff_1, extract_sign_bit(dqcoeff_1)); #if CONFIG_VP9_HIGHBITDEPTH dqcoeff_0 = vshrq_n_s32(dqcoeff_0, 1); dqcoeff_1 = vshrq_n_s32(dqcoeff_1, 1); vst1q_s32(dqcoeff_ptr, dqcoeff_0); vst1q_s32(dqcoeff_ptr + 4, dqcoeff_1); #else vst1q_s16(dqcoeff_ptr, vcombine_s16(vshrn_n_s32(dqcoeff_0, 1), vshrn_n_s32(dqcoeff_1, 1))); #endif // CONFIG_VP9_HIGHBITDEPTH } static INLINE int16x8_t quantize_b_32x32_neon(const tran_low_t *coeff_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16x8_t zbin, const int16x8_t round, const int16x8_t quant, const int16x8_t quant_shift, const int16x8_t dequant) { // Load coeffs as 8 x 16-bit ints, take sign and abs values const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); const int16x8_t coeff_abs = vabsq_s16(coeff); // Calculate mask of elements outside the bin const int16x8_t zbin_mask = vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin)); // Get the rounded values const int16x8_t rounded = vqaddq_s16(coeff_abs, round); // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16 int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1); qcoeff = vaddq_s16(qcoeff, rounded); // (qcoeff * quant_shift * 2) >> 16 == (qcoeff * quant_shift) >> 15 qcoeff = vqdmulhq_s16(qcoeff, quant_shift); // Restore the sign bit. qcoeff = veorq_s16(qcoeff, coeff_sign); qcoeff = vsubq_s16(qcoeff, coeff_sign); // Only keep the relevant coeffs qcoeff = vandq_s16(qcoeff, zbin_mask); store_s16q_to_tran_low(qcoeff_ptr, qcoeff); calculate_dqcoeff_and_store_32x32(qcoeff, dequant, dqcoeff_ptr); return qcoeff; } // Main difference is that zbin values are halved before comparison and dqcoeff // values are divided by 2. zbin is rounded but dqcoeff is not. void vpx_quantize_b_32x32_neon(const tran_low_t *coeff_ptr, const struct macroblock_plane *mb_plane, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const struct ScanOrder *scan_order) { const int16x8_t neg_one = vdupq_n_s16(-1); uint16x8_t eob_max; int i; const int16_t *iscan = scan_order->iscan; // Only the first element of each vector is DC. int16x8_t zbin = vrshrq_n_s16(vld1q_s16(mb_plane->zbin), 1); int16x8_t round = vrshrq_n_s16(vld1q_s16(mb_plane->round), 1); int16x8_t quant = vld1q_s16(mb_plane->quant); int16x8_t quant_shift = vld1q_s16(mb_plane->quant_shift); int16x8_t dequant = vld1q_s16(dequant_ptr); // Process first 8 values which include a dc component. { const uint16x8_t v_iscan = vreinterpretq_u16_s16(vld1q_s16(iscan)); const int16x8_t qcoeff = quantize_b_32x32_neon(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, zbin, round, quant, quant_shift, dequant); // Set non-zero elements to -1 and use that to extract values for eob. eob_max = vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan); __builtin_prefetch(coeff_ptr + 64); coeff_ptr += 8; iscan += 8; qcoeff_ptr += 8; dqcoeff_ptr += 8; } { zbin = vdupq_lane_s16(vget_low_s16(zbin), 1); round = vdupq_lane_s16(vget_low_s16(round), 1); quant = vdupq_lane_s16(vget_low_s16(quant), 1); quant_shift = vdupq_lane_s16(vget_low_s16(quant_shift), 1); dequant = vdupq_lane_s16(vget_low_s16(dequant), 1); for (i = 1; i < 32 * 32 / 8; ++i) { const uint16x8_t v_iscan = vreinterpretq_u16_s16(vld1q_s16(iscan)); const int16x8_t qcoeff = quantize_b_32x32_neon(coeff_ptr, qcoeff_ptr, dqcoeff_ptr, zbin, round, quant, quant_shift, dequant); // Set non-zero elements to -1 and use that to extract values for eob. eob_max = vmaxq_u16(eob_max, vandq_u16(vtstq_s16(qcoeff, neg_one), v_iscan)); __builtin_prefetch(coeff_ptr + 64); coeff_ptr += 8; iscan += 8; qcoeff_ptr += 8; dqcoeff_ptr += 8; } } #if VPX_ARCH_AARCH64 *eob_ptr = vmaxvq_u16(eob_max); #else { const uint16x4_t eob_max_0 = vmax_u16(vget_low_u16(eob_max), vget_high_u16(eob_max)); const uint16x4_t eob_max_1 = vpmax_u16(eob_max_0, eob_max_0); const uint16x4_t eob_max_2 = vpmax_u16(eob_max_1, eob_max_1); vst1_lane_u16(eob_ptr, eob_max_2, 0); } #endif // VPX_ARCH_AARCH64 }