/* * Copyright 2014 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // Enable LIBYUV_USE_ST2, LIBYUV_USE_ST3, LIBYUV_USE_ST4 for CPUs that prefer // STn over ZIP1+ST1 // Exynos M1, M2, M3 are slow with ST2, ST3 and ST4 instructions. // This module is for GCC Neon armv8 64 bit. #if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) // v0.8h: Y // v1.16b: 8U, 8V // Read 8 Y, 4 U and 4 V from 422 #define READYUV422 \ "ldr d0, [%[src_y]], #8 \n" \ "ld1 {v1.s}[0], [%[src_u]], #4 \n" \ "ld1 {v1.s}[1], [%[src_v]], #4 \n" \ "zip1 v0.16b, v0.16b, v0.16b \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "zip1 v1.16b, v1.16b, v1.16b \n" \ "prfm pldl1keep, [%[src_u], 128] \n" \ "prfm pldl1keep, [%[src_v], 128] \n" // Read 8 Y, 8 U and 8 V from 444 #define READYUV444 \ "ldr d0, [%[src_y]], #8 \n" \ "ld1 {v1.d}[0], [%[src_u]], #8 \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "ld1 {v1.d}[1], [%[src_v]], #8 \n" \ "prfm pldl1keep, [%[src_u], 448] \n" \ "zip1 v0.16b, v0.16b, v0.16b \n" \ "prfm pldl1keep, [%[src_v], 448] \n" // Read 8 Y, and set 4 U and 4 V to 128 #define READYUV400 \ "ldr d0, [%[src_y]], #8 \n" \ "movi v1.16b, #128 \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "zip1 v0.16b, v0.16b, v0.16b \n" static const uvec8 kNV12Table = {0, 0, 2, 2, 4, 4, 6, 6, 1, 1, 3, 3, 5, 5, 7, 7}; static const uvec8 kNV21Table = {1, 1, 3, 3, 5, 5, 7, 7, 0, 0, 2, 2, 4, 4, 6, 6}; // Read 8 Y and 4 UV from NV12 or NV21 #define READNV12 \ "ldr d0, [%[src_y]], #8 \n" \ "ldr d1, [%[src_uv]], #8 \n" \ "zip1 v0.16b, v0.16b, v0.16b \n" \ "prfm pldl1keep, [%[src_y], 448] \n" \ "tbl v1.16b, {v1.16b}, v2.16b \n" \ "prfm pldl1keep, [%[src_uv], 448] \n" // Read 8 YUY2 #define READYUY2 \ "ld2 {v0.8b, v1.8b}, [%[src_yuy2]], #16 \n" \ "zip1 v0.16b, v0.16b, v0.16b \n" \ "prfm pldl1keep, [%[src_yuy2], 448] \n" \ "tbl v1.16b, {v1.16b}, v2.16b \n" // Read 8 UYVY #define READUYVY \ "ld2 {v3.8b, v4.8b}, [%[src_uyvy]], #16 \n" \ "zip1 v0.16b, v4.16b, v4.16b \n" \ "prfm pldl1keep, [%[src_uyvy], 448] \n" \ "tbl v1.16b, {v3.16b}, v2.16b \n" // UB VR UG VG // YG BB BG BR #define YUVTORGB_SETUP \ "ld4r {v28.16b, v29.16b, v30.16b, v31.16b}, [%[kUVCoeff]] \n" \ "ld4r {v24.8h, v25.8h, v26.8h, v27.8h}, [%[kRGBCoeffBias]] \n" // v16.8h: B // v17.8h: G // v18.8h: R // Convert from YUV to 2.14 fixed point RGB #define YUVTORGB \ "umull2 v3.4s, v0.8h, v24.8h \n" \ "umull v6.8h, v1.8b, v30.8b \n" \ "umull v0.4s, v0.4h, v24.4h \n" \ "umlal2 v6.8h, v1.16b, v31.16b \n" /* DG */ \ "uqshrn v0.4h, v0.4s, #16 \n" \ "uqshrn2 v0.8h, v3.4s, #16 \n" /* Y */ \ "umull v4.8h, v1.8b, v28.8b \n" /* DB */ \ "umull2 v5.8h, v1.16b, v29.16b \n" /* DR */ \ "add v17.8h, v0.8h, v26.8h \n" /* G */ \ "add v16.8h, v0.8h, v4.8h \n" /* B */ \ "add v18.8h, v0.8h, v5.8h \n" /* R */ \ "uqsub v17.8h, v17.8h, v6.8h \n" /* G */ \ "uqsub v16.8h, v16.8h, v25.8h \n" /* B */ \ "uqsub v18.8h, v18.8h, v27.8h \n" /* R */ // Convert from 2.14 fixed point RGB To 8 bit RGB #define RGBTORGB8 \ "uqshrn v17.8b, v17.8h, #6 \n" \ "uqshrn v16.8b, v16.8h, #6 \n" \ "uqshrn v18.8b, v18.8h, #6 \n" #define YUVTORGB_REGS \ "v0", "v1", "v3", "v4", "v5", "v6", "v7", "v16", "v17", "v18", "v24", "v25", \ "v26", "v27", "v28", "v29", "v30", "v31" void I444ToARGBRow_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" /* A */ "1: \n" READYUV444 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v19"); } void I444ToRGB24Row_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "1: \n" READYUV444 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS); } void I422ToARGBRow_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" /* A */ "1: \n" READYUV422 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v19"); } void I444AlphaToARGBRow_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, const uint8_t* src_a, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "1: \n" "ld1 {v19.8b}, [%[src_a]], #8 \n" READYUV444 "prfm pldl1keep, [%[src_a], 448] \n" YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [src_a] "+r"(src_a), // %[src_a] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v19"); } void I422AlphaToARGBRow_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, const uint8_t* src_a, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "1: \n" "ld1 {v19.8b}, [%[src_a]], #8 \n" READYUV422 "prfm pldl1keep, [%[src_a], 448] \n" YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [src_a] "+r"(src_a), // %[src_a] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v19"); } void I422ToRGBARow_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgba, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v15.8b, #255 \n" /* A */ "1: \n" READYUV422 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v15.8b,v16.8b,v17.8b,v18.8b}, [%[dst_rgba]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_rgba] "+r"(dst_rgba), // %[dst_rgba] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v15"); } void I422ToRGB24Row_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "1: \n" READYUV422 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS); } #define ARGBTORGB565 \ "shll v18.8h, v18.8b, #8 \n" /* R */ \ "shll v17.8h, v17.8b, #8 \n" /* G */ \ "shll v16.8h, v16.8b, #8 \n" /* B */ \ "sri v18.8h, v17.8h, #5 \n" /* RG */ \ "sri v18.8h, v16.8h, #11 \n" /* RGB */ void I422ToRGB565Row_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "1: \n" READYUV422 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" ARGBTORGB565 "st1 {v18.8h}, [%[dst_rgb565]], #16 \n" // store 8 pixels RGB565. "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_rgb565] "+r"(dst_rgb565), // %[dst_rgb565] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS); } #define ARGBTOARGB1555 \ "shll v0.8h, v19.8b, #8 \n" /* A */ \ "shll v18.8h, v18.8b, #8 \n" /* R */ \ "shll v17.8h, v17.8b, #8 \n" /* G */ \ "shll v16.8h, v16.8b, #8 \n" /* B */ \ "sri v0.8h, v18.8h, #1 \n" /* AR */ \ "sri v0.8h, v17.8h, #6 \n" /* ARG */ \ "sri v0.8h, v16.8h, #11 \n" /* ARGB */ void I422ToARGB1555Row_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb1555, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" "1: \n" READYUV422 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" ARGBTOARGB1555 "st1 {v0.8h}, [%[dst_argb1555]], #16 \n" // store 8 pixels // RGB565. "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_argb1555] "+r"(dst_argb1555), // %[dst_argb1555] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v19"); } #define ARGBTOARGB4444 \ /* Input v16.8b<=B, v17.8b<=G, v18.8b<=R, v19.8b<=A, v23.8b<=0x0f */ \ "ushr v16.8b, v16.8b, #4 \n" /* B */ \ "bic v17.8b, v17.8b, v23.8b \n" /* G */ \ "ushr v18.8b, v18.8b, #4 \n" /* R */ \ "bic v19.8b, v19.8b, v23.8b \n" /* A */ \ "orr v0.8b, v16.8b, v17.8b \n" /* BG */ \ "orr v1.8b, v18.8b, v19.8b \n" /* RA */ \ "zip1 v0.16b, v0.16b, v1.16b \n" /* BGRA */ void I422ToARGB4444Row_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb4444, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v23.16b, #0x0f \n" // bits to clear with // vbic. "1: \n" READYUV422 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "movi v19.8b, #255 \n" ARGBTOARGB4444 "st1 {v0.8h}, [%[dst_argb4444]], #16 \n" // store 8 // pixels // ARGB4444. "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_u] "+r"(src_u), // %[src_u] [src_v] "+r"(src_v), // %[src_v] [dst_argb4444] "+r"(dst_argb4444), // %[dst_argb4444] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v19", "v23"); } void I400ToARGBRow_NEON(const uint8_t* src_y, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" "1: \n" READYUV400 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias] : "cc", "memory", YUVTORGB_REGS, "v19"); } #if LIBYUV_USE_ST4 void J400ToARGBRow_NEON(const uint8_t* src_y, uint8_t* dst_argb, int width) { asm volatile( "movi v23.8b, #255 \n" "1: \n" "ld1 {v20.8b}, [%0], #8 \n" "prfm pldl1keep, [%0, 448] \n" "orr v21.8b, v20.8b, v20.8b \n" "orr v22.8b, v20.8b, v20.8b \n" "subs %w2, %w2, #8 \n" "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%1], #32 \n" "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v20", "v21", "v22", "v23"); } #else void J400ToARGBRow_NEON(const uint8_t* src_y, uint8_t* dst_argb, int width) { asm volatile( "movi v20.8b, #255 \n" "1: \n" "ldr d16, [%0], #8 \n" "subs %w2, %w2, #8 \n" "zip1 v18.16b, v16.16b, v16.16b \n" // YY "zip1 v19.16b, v16.16b, v20.16b \n" // YA "prfm pldl1keep, [%0, 448] \n" "zip1 v16.16b, v18.16b, v19.16b \n" // YYYA "zip2 v17.16b, v18.16b, v19.16b \n" "stp q16, q17, [%1], #32 \n" "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v16", "v17", "v18", "v19", "v20"); } #endif // LIBYUV_USE_ST4 void NV12ToARGBRow_NEON(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" "ldr q2, [%[kNV12Table]] \n" "1: \n" READNV12 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_uv] "+r"(src_uv), // %[src_uv] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kNV12Table] "r"(&kNV12Table) : "cc", "memory", YUVTORGB_REGS, "v2", "v19"); } void NV21ToARGBRow_NEON(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" "ldr q2, [%[kNV12Table]] \n" "1: \n" READNV12 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_uv] "+r"(src_vu), // %[src_uv] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kNV12Table] "r"(&kNV21Table) : "cc", "memory", YUVTORGB_REGS, "v2", "v19"); } void NV12ToRGB24Row_NEON(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "ldr q2, [%[kNV12Table]] \n" "1: \n" READNV12 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_uv] "+r"(src_uv), // %[src_uv] [dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kNV12Table] "r"(&kNV12Table) : "cc", "memory", YUVTORGB_REGS, "v2"); } void NV21ToRGB24Row_NEON(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "ldr q2, [%[kNV12Table]] \n" "1: \n" READNV12 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n" "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_uv] "+r"(src_vu), // %[src_uv] [dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kNV12Table] "r"(&kNV21Table) : "cc", "memory", YUVTORGB_REGS, "v2"); } void NV12ToRGB565Row_NEON(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "ldr q2, [%[kNV12Table]] \n" "1: \n" READNV12 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" ARGBTORGB565 "st1 {v18.8h}, [%[dst_rgb565]], #16 \n" // store 8 // pixels // RGB565. "b.gt 1b \n" : [src_y] "+r"(src_y), // %[src_y] [src_uv] "+r"(src_uv), // %[src_uv] [dst_rgb565] "+r"(dst_rgb565), // %[dst_rgb565] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kNV12Table] "r"(&kNV12Table) : "cc", "memory", YUVTORGB_REGS, "v2"); } void YUY2ToARGBRow_NEON(const uint8_t* src_yuy2, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" "ldr q2, [%[kNV12Table]] \n" "1: \n" READYUY2 YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_yuy2] "+r"(src_yuy2), // %[src_yuy2] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kNV12Table] "r"(&kNV12Table) : "cc", "memory", YUVTORGB_REGS, "v2", "v19"); } void UYVYToARGBRow_NEON(const uint8_t* src_uyvy, uint8_t* dst_argb, const struct YuvConstants* yuvconstants, int width) { asm volatile( YUVTORGB_SETUP "movi v19.8b, #255 \n" "ldr q2, [%[kNV12Table]] \n" "1: \n" READUYVY YUVTORGB RGBTORGB8 "subs %w[width], %w[width], #8 \n" "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n" "b.gt 1b \n" : [src_uyvy] "+r"(src_uyvy), // %[src_yuy2] [dst_argb] "+r"(dst_argb), // %[dst_argb] [width] "+r"(width) // %[width] : [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff] [kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias] [kNV12Table] "r"(&kNV12Table) : "cc", "memory", YUVTORGB_REGS, "v2", "v19"); } // Reads 16 pairs of UV and write even values to dst_u and odd to dst_v. void SplitUVRow_NEON(const uint8_t* src_uv, uint8_t* dst_u, uint8_t* dst_v, int width) { asm volatile( "1: \n" "ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pairs of UV "subs %w3, %w3, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "st1 {v0.16b}, [%1], #16 \n" // store U "st1 {v1.16b}, [%2], #16 \n" // store V "b.gt 1b \n" : "+r"(src_uv), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(width) // %3 // Output registers : // Input registers : "cc", "memory", "v0", "v1" // Clobber List ); } // Reads 16 byte Y's from tile and writes out 16 Y's. // MM21 Y tiles are 16x32 so src_tile_stride = 512 bytes // MM21 UV tiles are 8x16 so src_tile_stride = 256 bytes // width measured in bytes so 8 UV = 16. void DetileRow_NEON(const uint8_t* src, ptrdiff_t src_tile_stride, uint8_t* dst, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%0], %3 \n" // load 16 bytes "subs %w2, %w2, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 1792] \n" // 7 tiles of 256b ahead "st1 {v0.16b}, [%1], #16 \n" // store 16 bytes "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "r"(src_tile_stride) // %3 : "cc", "memory", "v0" // Clobber List ); } // Reads 16 byte Y's of 16 bits from tile and writes out 16 Y's. void DetileRow_16_NEON(const uint16_t* src, ptrdiff_t src_tile_stride, uint16_t* dst, int width) { asm volatile( "1: \n" "ld1 {v0.8h,v1.8h}, [%0], %3 \n" // load 16 pixels "subs %w2, %w2, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 3584] \n" // 7 tiles of 512b ahead "st1 {v0.8h,v1.8h}, [%1], #32 \n" // store 16 pixels "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "r"(src_tile_stride * 2) // %3 : "cc", "memory", "v0", "v1" // Clobber List ); } // Read 16 bytes of UV, detile, and write 8 bytes of U and 8 bytes of V. void DetileSplitUVRow_NEON(const uint8_t* src_uv, ptrdiff_t src_tile_stride, uint8_t* dst_u, uint8_t* dst_v, int width) { asm volatile( "1: \n" "ld2 {v0.8b,v1.8b}, [%0], %4 \n" "subs %w3, %w3, #16 \n" "prfm pldl1keep, [%0, 1792] \n" "st1 {v0.8b}, [%1], #8 \n" "st1 {v1.8b}, [%2], #8 \n" "b.gt 1b \n" : "+r"(src_uv), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(width) // %3 : "r"(src_tile_stride) // %4 : "cc", "memory", "v0", "v1" // Clobber List ); } #if LIBYUV_USE_ST2 // Read 16 Y, 8 UV, and write 8 YUY2 void DetileToYUY2_NEON(const uint8_t* src_y, ptrdiff_t src_y_tile_stride, const uint8_t* src_uv, ptrdiff_t src_uv_tile_stride, uint8_t* dst_yuy2, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%0], %4 \n" // load 16 Ys "prfm pldl1keep, [%0, 1792] \n" "ld1 {v1.16b}, [%1], %5 \n" // load 8 UVs "prfm pldl1keep, [%1, 1792] \n" "subs %w3, %w3, #16 \n" // store 8 YUY2 "st2 {v0.16b,v1.16b}, [%2], #32 \n" "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(src_uv), // %1 "+r"(dst_yuy2), // %2 "+r"(width) // %3 : "r"(src_y_tile_stride), // %4 "r"(src_uv_tile_stride) // %5 : "cc", "memory", "v0", "v1" // Clobber list ); } #else // Read 16 Y, 8 UV, and write 8 YUY2 void DetileToYUY2_NEON(const uint8_t* src_y, ptrdiff_t src_y_tile_stride, const uint8_t* src_uv, ptrdiff_t src_uv_tile_stride, uint8_t* dst_yuy2, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%0], %4 \n" // load 16 Ys "ld1 {v1.16b}, [%1], %5 \n" // load 8 UVs "subs %w3, %w3, #16 \n" "prfm pldl1keep, [%0, 1792] \n" "zip1 v2.16b, v0.16b, v1.16b \n" "prfm pldl1keep, [%1, 1792] \n" "zip2 v3.16b, v0.16b, v1.16b \n" "st1 {v2.16b,v3.16b}, [%2], #32 \n" // store 8 YUY2 "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(src_uv), // %1 "+r"(dst_yuy2), // %2 "+r"(width) // %3 : "r"(src_y_tile_stride), // %4 "r"(src_uv_tile_stride) // %5 : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber list ); } #endif // Unpack MT2T into tiled P010 64 pixels at a time. See // tinyurl.com/mtk-10bit-video-format for format documentation. void UnpackMT2T_NEON(const uint8_t* src, uint16_t* dst, size_t size) { const uint8_t* src_lower_bits = src; const uint8_t* src_upper_bits = src + 16; asm volatile( "1: \n" "ld4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%1], #32 \n" "ld1 {v7.8b}, [%0], #8 \n" "shl v6.8b, v7.8b, #2 \n" "shl v5.8b, v7.8b, #4 \n" "shl v4.8b, v7.8b, #6 \n" "zip1 v0.16b, v4.16b, v0.16b \n" "zip1 v1.16b, v5.16b, v1.16b \n" "zip1 v2.16b, v6.16b, v2.16b \n" "zip1 v3.16b, v7.16b, v3.16b \n" "sri v0.8h, v0.8h, #10 \n" "sri v1.8h, v1.8h, #10 \n" "sri v2.8h, v2.8h, #10 \n" "sri v3.8h, v3.8h, #10 \n" "st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%2], #64 \n" "ld4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%1], #32 \n" "ld1 {v7.8b}, [%0], #8 \n" "shl v6.8b, v7.8b, #2 \n" "shl v5.8b, v7.8b, #4 \n" "shl v4.8b, v7.8b, #6 \n" "zip1 v0.16b, v4.16b, v0.16b \n" "zip1 v1.16b, v5.16b, v1.16b \n" "zip1 v2.16b, v6.16b, v2.16b \n" "zip1 v3.16b, v7.16b, v3.16b \n" "sri v0.8h, v0.8h, #10 \n" "sri v1.8h, v1.8h, #10 \n" "sri v2.8h, v2.8h, #10 \n" "sri v3.8h, v3.8h, #10 \n" "st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%2], #64 \n" "mov %0, %1 \n" "add %1, %0, #16 \n" "subs %3, %3, #80 \n" "b.gt 1b \n" : "+r"(src_lower_bits), // %0 "+r"(src_upper_bits), // %1 "+r"(dst), // %2 "+r"(size) // %3 : : "cc", "memory", "w0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12"); } #if LIBYUV_USE_ST2 // Reads 16 U's and V's and writes out 16 pairs of UV. void MergeUVRow_NEON(const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_uv, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load U "ld1 {v1.16b}, [%1], #16 \n" // load V "subs %w3, %w3, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "prfm pldl1keep, [%1, 448] \n" "st2 {v0.16b,v1.16b}, [%2], #32 \n" // store 16 pairs of UV "b.gt 1b \n" : "+r"(src_u), // %0 "+r"(src_v), // %1 "+r"(dst_uv), // %2 "+r"(width) // %3 // Output registers : // Input registers : "cc", "memory", "v0", "v1" // Clobber List ); } void MergeUVRow_16_NEON(const uint16_t* src_u, const uint16_t* src_v, uint16_t* dst_uv, int depth, int width) { int shift = 16 - depth; asm volatile( "dup v2.8h, %w4 \n" "1: \n" "ld1 {v0.8h}, [%0], #16 \n" // load 8 U "subs %w3, %w3, #8 \n" // 8 src pixels per loop "ld1 {v1.8h}, [%1], #16 \n" // load 8 V "ushl v0.8h, v0.8h, v2.8h \n" "prfm pldl1keep, [%0, 448] \n" "ushl v1.8h, v1.8h, v2.8h \n" "prfm pldl1keep, [%1, 448] \n" "st2 {v0.8h, v1.8h}, [%2], #32 \n" // store 8 UV pixels "b.gt 1b \n" : "+r"(src_u), // %0 "+r"(src_v), // %1 "+r"(dst_uv), // %2 "+r"(width) // %3 : "r"(shift) // %4 : "cc", "memory", "v0", "v1", "v2"); } #else // Reads 16 U's and V's and writes out 16 pairs of UV. void MergeUVRow_NEON(const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_uv, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load U "ld1 {v1.16b}, [%1], #16 \n" // load V "subs %w3, %w3, #16 \n" // 16 processed per loop "zip1 v2.16b, v0.16b, v1.16b \n" "prfm pldl1keep, [%0, 448] \n" "zip2 v3.16b, v0.16b, v1.16b \n" "prfm pldl1keep, [%1, 448] \n" "st1 {v2.16b,v3.16b}, [%2], #32 \n" // store 16 pairs of UV "b.gt 1b \n" : "+r"(src_u), // %0 "+r"(src_v), // %1 "+r"(dst_uv), // %2 "+r"(width) // %3 // Output registers : // Input registers : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } void MergeUVRow_16_NEON(const uint16_t* src_u, const uint16_t* src_v, uint16_t* dst_uv, int depth, int width) { int shift = 16 - depth; asm volatile( "dup v4.8h, %w4 \n" "1: \n" "ld1 {v0.8h}, [%0], #16 \n" // load 8 U "subs %w3, %w3, #8 \n" // 8 src pixels per loop "ld1 {v1.8h}, [%1], #16 \n" // load 8 V "ushl v0.8h, v0.8h, v4.8h \n" "ushl v1.8h, v1.8h, v4.8h \n" "prfm pldl1keep, [%0, 448] \n" "zip1 v2.8h, v0.8h, v1.8h \n" "zip2 v3.8h, v0.8h, v1.8h \n" "prfm pldl1keep, [%1, 448] \n" "st1 {v2.8h, v3.8h}, [%2], #32 \n" // store 8 UV pixels "b.gt 1b \n" : "+r"(src_u), // %0 "+r"(src_v), // %1 "+r"(dst_uv), // %2 "+r"(width) // %3 : "r"(shift) // %4 : "cc", "memory", "v0", "v1", "v2", "v1", "v2", "v3", "v4"); } #endif // LIBYUV_USE_ST2 // Reads 16 packed RGB and write to planar dst_r, dst_g, dst_b. void SplitRGBRow_NEON(const uint8_t* src_rgb, uint8_t* dst_r, uint8_t* dst_g, uint8_t* dst_b, int width) { asm volatile( "1: \n" "ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 RGB "subs %w4, %w4, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "st1 {v0.16b}, [%1], #16 \n" // store R "st1 {v1.16b}, [%2], #16 \n" // store G "st1 {v2.16b}, [%3], #16 \n" // store B "b.gt 1b \n" : "+r"(src_rgb), // %0 "+r"(dst_r), // %1 "+r"(dst_g), // %2 "+r"(dst_b), // %3 "+r"(width) // %4 : // Input registers : "cc", "memory", "v0", "v1", "v2" // Clobber List ); } // Reads 16 planar R's, G's and B's and writes out 16 packed RGB at a time void MergeRGBRow_NEON(const uint8_t* src_r, const uint8_t* src_g, const uint8_t* src_b, uint8_t* dst_rgb, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load R "ld1 {v1.16b}, [%1], #16 \n" // load G "ld1 {v2.16b}, [%2], #16 \n" // load B "subs %w4, %w4, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "prfm pldl1keep, [%1, 448] \n" "prfm pldl1keep, [%2, 448] \n" "st3 {v0.16b,v1.16b,v2.16b}, [%3], #48 \n" // store 16 RGB "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(dst_rgb), // %3 "+r"(width) // %4 : // Input registers : "cc", "memory", "v0", "v1", "v2" // Clobber List ); } // Reads 16 packed ARGB and write to planar dst_r, dst_g, dst_b, dst_a. void SplitARGBRow_NEON(const uint8_t* src_rgba, uint8_t* dst_r, uint8_t* dst_g, uint8_t* dst_b, uint8_t* dst_a, int width) { asm volatile( "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ARGB "subs %w5, %w5, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "st1 {v0.16b}, [%3], #16 \n" // store B "st1 {v1.16b}, [%2], #16 \n" // store G "st1 {v2.16b}, [%1], #16 \n" // store R "st1 {v3.16b}, [%4], #16 \n" // store A "b.gt 1b \n" : "+r"(src_rgba), // %0 "+r"(dst_r), // %1 "+r"(dst_g), // %2 "+r"(dst_b), // %3 "+r"(dst_a), // %4 "+r"(width) // %5 : // Input registers : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } #if LIBYUV_USE_ST4 // Reads 16 planar R's, G's, B's and A's and writes out 16 packed ARGB at a time void MergeARGBRow_NEON(const uint8_t* src_r, const uint8_t* src_g, const uint8_t* src_b, const uint8_t* src_a, uint8_t* dst_argb, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%2], #16 \n" // load B "ld1 {v1.16b}, [%1], #16 \n" // load G "ld1 {v2.16b}, [%0], #16 \n" // load R "ld1 {v3.16b}, [%3], #16 \n" // load A "subs %w5, %w5, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "prfm pldl1keep, [%1, 448] \n" "prfm pldl1keep, [%2, 448] \n" "prfm pldl1keep, [%3, 448] \n" "st4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%4], #64 \n" // store 16ARGB "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(src_a), // %3 "+r"(dst_argb), // %4 "+r"(width) // %5 : // Input registers : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } #else // Reads 16 planar R's, G's, B's and A's and writes out 16 packed ARGB at a time void MergeARGBRow_NEON(const uint8_t* src_r, const uint8_t* src_g, const uint8_t* src_b, const uint8_t* src_a, uint8_t* dst_argb, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%2], #16 \n" // load B "ld1 {v1.16b}, [%1], #16 \n" // load G "ld1 {v2.16b}, [%0], #16 \n" // load R "ld1 {v3.16b}, [%3], #16 \n" // load A "subs %w5, %w5, #16 \n" // 16 processed per loop "prfm pldl1keep, [%2, 448] \n" "zip1 v4.16b, v0.16b, v1.16b \n" // BG "zip1 v5.16b, v2.16b, v3.16b \n" // RA "prfm pldl1keep, [%1, 448] \n" "zip2 v6.16b, v0.16b, v1.16b \n" // BG "zip2 v7.16b, v2.16b, v3.16b \n" // RA "prfm pldl1keep, [%0, 448] \n" "zip1 v0.8h, v4.8h, v5.8h \n" // BGRA "zip2 v1.8h, v4.8h, v5.8h \n" "prfm pldl1keep, [%3, 448] \n" "zip1 v2.8h, v6.8h, v7.8h \n" "zip2 v3.8h, v6.8h, v7.8h \n" "st1 {v0.16b,v1.16b,v2.16b,v3.16b}, [%4], #64 \n" // store 16ARGB "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(src_a), // %3 "+r"(dst_argb), // %4 "+r"(width) // %5 : // Input registers : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" // Clobber List ); } #endif // LIBYUV_USE_ST4 // Reads 16 packed ARGB and write to planar dst_r, dst_g, dst_b. void SplitXRGBRow_NEON(const uint8_t* src_rgba, uint8_t* dst_r, uint8_t* dst_g, uint8_t* dst_b, int width) { asm volatile( "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ARGB "subs %w4, %w4, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "st1 {v0.16b}, [%3], #16 \n" // store B "st1 {v1.16b}, [%2], #16 \n" // store G "st1 {v2.16b}, [%1], #16 \n" // store R "b.gt 1b \n" : "+r"(src_rgba), // %0 "+r"(dst_r), // %1 "+r"(dst_g), // %2 "+r"(dst_b), // %3 "+r"(width) // %4 : // Input registers : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } // Reads 16 planar R's, G's and B's and writes out 16 packed ARGB at a time void MergeXRGBRow_NEON(const uint8_t* src_r, const uint8_t* src_g, const uint8_t* src_b, uint8_t* dst_argb, int width) { asm volatile( "movi v3.16b, #255 \n" // load A(255) "1: \n" "ld1 {v2.16b}, [%0], #16 \n" // load R "ld1 {v1.16b}, [%1], #16 \n" // load G "ld1 {v0.16b}, [%2], #16 \n" // load B "subs %w4, %w4, #16 \n" // 16 processed per loop "prfm pldl1keep, [%0, 448] \n" "prfm pldl1keep, [%1, 448] \n" "prfm pldl1keep, [%2, 448] \n" "st4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%3], #64 \n" // store 16ARGB "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(dst_argb), // %3 "+r"(width) // %4 : // Input registers : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } void MergeXR30Row_NEON(const uint16_t* src_r, const uint16_t* src_g, const uint16_t* src_b, uint8_t* dst_ar30, int depth, int width) { int shift = 10 - depth; asm volatile( "movi v30.16b, #255 \n" "ushr v30.4s, v30.4s, #22 \n" // 1023 "dup v31.4s, %w5 \n" "1: \n" "ldr d2, [%2], #8 \n" // B "ldr d1, [%1], #8 \n" // G "ldr d0, [%0], #8 \n" // R "ushll v2.4s, v2.4h, #0 \n" // B "ushll v1.4s, v1.4h, #0 \n" // G "ushll v0.4s, v0.4h, #0 \n" // R "ushl v2.4s, v2.4s, v31.4s \n" // 000B "ushl v1.4s, v1.4s, v31.4s \n" // G "ushl v0.4s, v0.4s, v31.4s \n" // R "umin v2.4s, v2.4s, v30.4s \n" "umin v1.4s, v1.4s, v30.4s \n" "umin v0.4s, v0.4s, v30.4s \n" "sli v2.4s, v1.4s, #10 \n" // 00GB "sli v2.4s, v0.4s, #20 \n" // 0RGB "orr v2.4s, #0xc0, lsl #24 \n" // ARGB (AR30) "subs %w4, %w4, #4 \n" "str q2, [%3], #16 \n" "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(dst_ar30), // %3 "+r"(width) // %4 : "r"(shift) // %5 : "memory", "cc", "v0", "v1", "v2", "v30", "v31"); } void MergeXR30Row_10_NEON(const uint16_t* src_r, const uint16_t* src_g, const uint16_t* src_b, uint8_t* dst_ar30, int /* depth */, int width) { asm volatile( "movi v30.16b, #255 \n" "ushr v30.4s, v30.4s, #22 \n" // 1023 "1: \n" "ldr d2, [%2], #8 \n" // B "ldr d1, [%1], #8 \n" // G "ldr d0, [%0], #8 \n" // R "ushll v2.4s, v2.4h, #0 \n" // 000B "ushll v1.4s, v1.4h, #0 \n" // G "ushll v0.4s, v0.4h, #0 \n" // R "umin v2.4s, v2.4s, v30.4s \n" "umin v1.4s, v1.4s, v30.4s \n" "umin v0.4s, v0.4s, v30.4s \n" "sli v2.4s, v1.4s, #10 \n" // 00GB "sli v2.4s, v0.4s, #20 \n" // 0RGB "orr v2.4s, #0xc0, lsl #24 \n" // ARGB (AR30) "subs %w4, %w4, #4 \n" "str q2, [%3], #16 \n" "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(dst_ar30), // %3 "+r"(width) // %4 : : "memory", "cc", "v0", "v1", "v2", "v30"); } void MergeAR64Row_NEON(const uint16_t* src_r, const uint16_t* src_g, const uint16_t* src_b, const uint16_t* src_a, uint16_t* dst_ar64, int depth, int width) { int shift = 16 - depth; int mask = (1 << depth) - 1; asm volatile( "dup v30.8h, %w7 \n" "dup v31.8h, %w6 \n" "1: \n" "ldr q2, [%0], #16 \n" // R "ldr q1, [%1], #16 \n" // G "ldr q0, [%2], #16 \n" // B "ldr q3, [%3], #16 \n" // A "umin v2.8h, v2.8h, v30.8h \n" "prfm pldl1keep, [%0, 448] \n" "umin v1.8h, v1.8h, v30.8h \n" "prfm pldl1keep, [%1, 448] \n" "umin v0.8h, v0.8h, v30.8h \n" "prfm pldl1keep, [%2, 448] \n" "umin v3.8h, v3.8h, v30.8h \n" "prfm pldl1keep, [%3, 448] \n" "ushl v2.8h, v2.8h, v31.8h \n" "ushl v1.8h, v1.8h, v31.8h \n" "ushl v0.8h, v0.8h, v31.8h \n" "ushl v3.8h, v3.8h, v31.8h \n" "subs %w5, %w5, #8 \n" "st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%4], #64 \n" "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(src_a), // %3 "+r"(dst_ar64), // %4 "+r"(width) // %5 : "r"(shift), // %6 "r"(mask) // %7 : "memory", "cc", "v0", "v1", "v2", "v3", "v31"); } void MergeXR64Row_NEON(const uint16_t* src_r, const uint16_t* src_g, const uint16_t* src_b, uint16_t* dst_ar64, int depth, int width) { int shift = 16 - depth; int mask = (1 << depth) - 1; asm volatile( "movi v3.16b, #0xff \n" // A (0xffff) "dup v30.8h, %w6 \n" "dup v31.8h, %w5 \n" "1: \n" "ldr q2, [%0], #16 \n" // R "ldr q1, [%1], #16 \n" // G "ldr q0, [%2], #16 \n" // B "umin v2.8h, v2.8h, v30.8h \n" "prfm pldl1keep, [%0, 448] \n" "umin v1.8h, v1.8h, v30.8h \n" "prfm pldl1keep, [%1, 448] \n" "umin v0.8h, v0.8h, v30.8h \n" "prfm pldl1keep, [%2, 448] \n" "ushl v2.8h, v2.8h, v31.8h \n" "ushl v1.8h, v1.8h, v31.8h \n" "ushl v0.8h, v0.8h, v31.8h \n" "subs %w4, %w4, #8 \n" "st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%3], #64 \n" "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(dst_ar64), // %3 "+r"(width) // %4 : "r"(shift), // %5 "r"(mask) // %6 : "memory", "cc", "v0", "v1", "v2", "v3", "v31"); } void MergeARGB16To8Row_NEON(const uint16_t* src_r, const uint16_t* src_g, const uint16_t* src_b, const uint16_t* src_a, uint8_t* dst_argb, int depth, int width) { int shift = 8 - depth; asm volatile( "dup v31.8h, %w6 \n" "1: \n" "ldr q2, [%0], #16 \n" // R "ldr q1, [%1], #16 \n" // G "ldr q0, [%2], #16 \n" // B "ldr q3, [%3], #16 \n" // A "ushl v2.8h, v2.8h, v31.8h \n" "prfm pldl1keep, [%0, 448] \n" "ushl v1.8h, v1.8h, v31.8h \n" "prfm pldl1keep, [%1, 448] \n" "ushl v0.8h, v0.8h, v31.8h \n" "prfm pldl1keep, [%2, 448] \n" "ushl v3.8h, v3.8h, v31.8h \n" "prfm pldl1keep, [%3, 448] \n" "uqxtn v2.8b, v2.8h \n" "uqxtn v1.8b, v1.8h \n" "uqxtn v0.8b, v0.8h \n" "uqxtn v3.8b, v3.8h \n" "subs %w5, %w5, #8 \n" "st4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%4], #32 \n" "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(src_a), // %3 "+r"(dst_argb), // %4 "+r"(width) // %5 : "r"(shift) // %6 : "memory", "cc", "v0", "v1", "v2", "v3", "v31"); } void MergeXRGB16To8Row_NEON(const uint16_t* src_r, const uint16_t* src_g, const uint16_t* src_b, uint8_t* dst_argb, int depth, int width) { int shift = 8 - depth; asm volatile( "dup v31.8h, %w5 \n" "movi v3.8b, #0xff \n" // A (0xff) "1: \n" "ldr q2, [%0], #16 \n" // R "ldr q1, [%1], #16 \n" // G "ldr q0, [%2], #16 \n" // B "ushl v2.8h, v2.8h, v31.8h \n" "prfm pldl1keep, [%0, 448] \n" "ushl v1.8h, v1.8h, v31.8h \n" "prfm pldl1keep, [%1, 448] \n" "ushl v0.8h, v0.8h, v31.8h \n" "prfm pldl1keep, [%2, 448] \n" "uqxtn v2.8b, v2.8h \n" "uqxtn v1.8b, v1.8h \n" "uqxtn v0.8b, v0.8h \n" "subs %w4, %w4, #8 \n" "st4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%3], #32 \n" "b.gt 1b \n" : "+r"(src_r), // %0 "+r"(src_g), // %1 "+r"(src_b), // %2 "+r"(dst_argb), // %3 "+r"(width) // %4 : "r"(shift) // %5 : "memory", "cc", "v0", "v1", "v2", "v3", "v31"); } // Copy multiple of 32. void CopyRow_NEON(const uint8_t* src, uint8_t* dst, int width) { asm volatile( "1: \n" "ldp q0, q1, [%0], #32 \n" "prfm pldl1keep, [%0, 448] \n" "subs %w2, %w2, #32 \n" // 32 processed per loop "stp q0, q1, [%1], #32 \n" "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 // Output registers : // Input registers : "cc", "memory", "v0", "v1" // Clobber List ); } // SetRow writes 'width' bytes using an 8 bit value repeated. void SetRow_NEON(uint8_t* dst, uint8_t v8, int width) { asm volatile( "dup v0.16b, %w2 \n" // duplicate 16 bytes "1: \n" "subs %w1, %w1, #16 \n" // 16 bytes per loop "st1 {v0.16b}, [%0], #16 \n" // store "b.gt 1b \n" : "+r"(dst), // %0 "+r"(width) // %1 : "r"(v8) // %2 : "cc", "memory", "v0"); } void ARGBSetRow_NEON(uint8_t* dst, uint32_t v32, int width) { asm volatile( "dup v0.4s, %w2 \n" // duplicate 4 ints "1: \n" "subs %w1, %w1, #4 \n" // 4 ints per loop "st1 {v0.16b}, [%0], #16 \n" // store "b.gt 1b \n" : "+r"(dst), // %0 "+r"(width) // %1 : "r"(v32) // %2 : "cc", "memory", "v0"); } // Shuffle table for reversing the bytes. static const uvec8 kShuffleMirror = {15u, 14u, 13u, 12u, 11u, 10u, 9u, 8u, 7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u}; void MirrorRow_NEON(const uint8_t* src, uint8_t* dst, int width) { asm volatile( // Start at end of source row. "ld1 {v3.16b}, [%3] \n" // shuffler "add %0, %0, %w2, sxtw \n" "sub %0, %0, #32 \n" "1: \n" "ldr q2, [%0, 16] \n" "ldr q1, [%0], -32 \n" // src -= 32 "subs %w2, %w2, #32 \n" // 32 pixels per loop. "tbl v0.16b, {v2.16b}, v3.16b \n" "tbl v1.16b, {v1.16b}, v3.16b \n" "st1 {v0.16b, v1.16b}, [%1], #32 \n" // store 32 pixels "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "r"(&kShuffleMirror) // %3 : "cc", "memory", "v0", "v1", "v2", "v3"); } // Shuffle table for reversing the UV. static const uvec8 kShuffleMirrorUV = {14u, 15u, 12u, 13u, 10u, 11u, 8u, 9u, 6u, 7u, 4u, 5u, 2u, 3u, 0u, 1u}; void MirrorUVRow_NEON(const uint8_t* src_uv, uint8_t* dst_uv, int width) { asm volatile( // Start at end of source row. "ld1 {v4.16b}, [%3] \n" // shuffler "add %0, %0, %w2, sxtw #1 \n" "sub %0, %0, #32 \n" "1: \n" "ldr q1, [%0, 16] \n" "ldr q0, [%0], -32 \n" // src -= 32 "subs %w2, %w2, #16 \n" // 16 pixels per loop. "tbl v2.16b, {v1.16b}, v4.16b \n" "tbl v3.16b, {v0.16b}, v4.16b \n" "st1 {v2.16b, v3.16b}, [%1], #32 \n" // dst += 32 "b.gt 1b \n" : "+r"(src_uv), // %0 "+r"(dst_uv), // %1 "+r"(width) // %2 : "r"(&kShuffleMirrorUV) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } void MirrorSplitUVRow_NEON(const uint8_t* src_uv, uint8_t* dst_u, uint8_t* dst_v, int width) { asm volatile( // Start at end of source row. "ld1 {v4.16b}, [%4] \n" // shuffler "add %0, %0, %w3, sxtw #1 \n" "sub %0, %0, #32 \n" "1: \n" "ldr q1, [%0, 16] \n" "ldr q0, [%0], -32 \n" // src -= 32 "subs %w3, %w3, #16 \n" // 16 pixels per loop. "tbl v2.16b, {v1.16b}, v4.16b \n" "tbl v3.16b, {v0.16b}, v4.16b \n" "uzp1 v0.16b, v2.16b, v3.16b \n" // U "uzp2 v1.16b, v2.16b, v3.16b \n" // V "st1 {v0.16b}, [%1], #16 \n" // dst += 16 "st1 {v1.16b}, [%2], #16 \n" "b.gt 1b \n" : "+r"(src_uv), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(width) // %3 : "r"(&kShuffleMirrorUV) // %4 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } // Shuffle table for reversing the ARGB. static const uvec8 kShuffleMirrorARGB = {12u, 13u, 14u, 15u, 8u, 9u, 10u, 11u, 4u, 5u, 6u, 7u, 0u, 1u, 2u, 3u}; void ARGBMirrorRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, int width) { asm volatile( // Start at end of source row. "ld1 {v4.16b}, [%3] \n" // shuffler "add %0, %0, %w2, sxtw #2 \n" "sub %0, %0, #32 \n" "1: \n" "ldr q1, [%0, 16] \n" "ldr q0, [%0], -32 \n" // src -= 32 "subs %w2, %w2, #8 \n" // 8 pixels per loop. "tbl v2.16b, {v1.16b}, v4.16b \n" "tbl v3.16b, {v0.16b}, v4.16b \n" "st1 {v2.16b, v3.16b}, [%1], #32 \n" // dst += 32 "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : "r"(&kShuffleMirrorARGB) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } void RGB24MirrorRow_NEON(const uint8_t* src_rgb24, uint8_t* dst_rgb24, int width) { asm volatile( "ld1 {v3.16b}, [%4] \n" // shuffler "add %0, %0, %w2, sxtw #1 \n" // Start at end of row. "add %0, %0, %w2, sxtw \n" "sub %0, %0, #48 \n" "1: \n" "ld3 {v0.16b, v1.16b, v2.16b}, [%0], %3 \n" // src -= 48 "subs %w2, %w2, #16 \n" // 16 pixels per loop. "tbl v0.16b, {v0.16b}, v3.16b \n" "tbl v1.16b, {v1.16b}, v3.16b \n" "tbl v2.16b, {v2.16b}, v3.16b \n" "st3 {v0.16b, v1.16b, v2.16b}, [%1], #48 \n" // dst += 48 "b.gt 1b \n" : "+r"(src_rgb24), // %0 "+r"(dst_rgb24), // %1 "+r"(width) // %2 : "r"((ptrdiff_t)-48), // %3 "r"(&kShuffleMirror) // %4 : "cc", "memory", "v0", "v1", "v2", "v3"); } void RGB24ToARGBRow_NEON(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) { asm volatile( "movi v4.8b, #255 \n" // Alpha "1: \n" "ld3 {v1.8b,v2.8b,v3.8b}, [%0], #24 \n" // load 8 pixels of // RGB24. "prfm pldl1keep, [%0, 448] \n" "subs %w2, %w2, #8 \n" // 8 processed per loop. "st4 {v1.8b,v2.8b,v3.8b,v4.8b}, [%1], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_rgb24), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v1", "v2", "v3", "v4" // Clobber List ); } void RAWToARGBRow_NEON(const uint8_t* src_raw, uint8_t* dst_argb, int width) { asm volatile( "movi v5.8b, #255 \n" // Alpha "1: \n" "ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // read r g b "subs %w2, %w2, #8 \n" // 8 processed per loop. "orr v3.8b, v1.8b, v1.8b \n" // move g "prfm pldl1keep, [%0, 448] \n" "orr v4.8b, v0.8b, v0.8b \n" // move r "st4 {v2.8b,v3.8b,v4.8b,v5.8b}, [%1], #32 \n" // store b g r a "b.gt 1b \n" : "+r"(src_raw), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5" // Clobber List ); } void RAWToRGBARow_NEON(const uint8_t* src_raw, uint8_t* dst_rgba, int width) { asm volatile( "movi v0.8b, #255 \n" // Alpha "1: \n" "ld3 {v3.8b,v4.8b,v5.8b}, [%0], #24 \n" // read r g b "subs %w2, %w2, #8 \n" // 8 processed per loop. "orr v2.8b, v4.8b, v4.8b \n" // move g "prfm pldl1keep, [%0, 448] \n" "orr v1.8b, v5.8b, v5.8b \n" // move r "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store a b g r "b.gt 1b \n" : "+r"(src_raw), // %0 "+r"(dst_rgba), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5" // Clobber List ); } void RAWToRGB24Row_NEON(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) { asm volatile( "1: \n" "ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // read r g b "subs %w2, %w2, #8 \n" // 8 processed per loop. "orr v3.8b, v1.8b, v1.8b \n" // move g "prfm pldl1keep, [%0, 448] \n" "orr v4.8b, v0.8b, v0.8b \n" // move r "st3 {v2.8b,v3.8b,v4.8b}, [%1], #24 \n" // store b g r "b.gt 1b \n" : "+r"(src_raw), // %0 "+r"(dst_rgb24), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List ); } #define RGB565TOARGB \ "shrn v6.8b, v0.8h, #5 \n" /* G xxGGGGGG */ \ "shl v6.8b, v6.8b, #2 \n" /* G GGGGGG00 upper 6 */ \ "ushr v4.8b, v6.8b, #6 \n" /* G 000000GG lower 2 */ \ "orr v1.8b, v4.8b, v6.8b \n" /* G */ \ "xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \ "ushr v0.8h, v0.8h, #11 \n" /* R 000RRRRR */ \ "xtn2 v2.16b,v0.8h \n" /* R in upper part */ \ "shl v2.16b, v2.16b, #3 \n" /* R,B BBBBB000 upper 5 */ \ "ushr v0.16b, v2.16b, #5 \n" /* R,B 00000BBB lower 3 */ \ "orr v0.16b, v0.16b, v2.16b \n" /* R,B */ \ "dup v2.2D, v0.D[1] \n" /* R */ void RGB565ToARGBRow_NEON(const uint8_t* src_rgb565, uint8_t* dst_argb, int width) { asm volatile( "movi v3.8b, #255 \n" // Alpha "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels. "subs %w2, %w2, #8 \n" // 8 processed per loop. "prfm pldl1keep, [%0, 448] \n" RGB565TOARGB "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_rgb565), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v6" // Clobber List ); } #define ARGB1555TOARGB \ "ushr v2.8h, v0.8h, #10 \n" /* R xxxRRRRR */ \ "shl v2.8h, v2.8h, #3 \n" /* R RRRRR000 upper 5 */ \ "xtn v3.8b, v2.8h \n" /* RRRRR000 AAAAAAAA */ \ \ "sshr v2.8h, v0.8h, #15 \n" /* A AAAAAAAA */ \ "xtn2 v3.16b, v2.8h \n" \ \ "xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \ "shrn2 v2.16b,v0.8h, #5 \n" /* G xxxGGGGG */ \ \ "ushr v1.16b, v3.16b, #5 \n" /* R,A 00000RRR lower 3 */ \ "shl v0.16b, v2.16b, #3 \n" /* B,G BBBBB000 upper 5 */ \ "ushr v2.16b, v0.16b, #5 \n" /* B,G 00000BBB lower 3 */ \ \ "orr v0.16b, v0.16b, v2.16b \n" /* B,G */ \ "orr v2.16b, v1.16b, v3.16b \n" /* R,A */ \ "dup v1.2D, v0.D[1] \n" \ "dup v3.2D, v2.D[1] \n" // RGB555TOARGB is same as ARGB1555TOARGB but ignores alpha. #define RGB555TOARGB \ "ushr v2.8h, v0.8h, #10 \n" /* R xxxRRRRR */ \ "shl v2.8h, v2.8h, #3 \n" /* R RRRRR000 upper 5 */ \ "xtn v3.8b, v2.8h \n" /* RRRRR000 */ \ \ "xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \ "shrn2 v2.16b,v0.8h, #5 \n" /* G xxxGGGGG */ \ \ "ushr v1.16b, v3.16b, #5 \n" /* R 00000RRR lower 3 */ \ "shl v0.16b, v2.16b, #3 \n" /* B,G BBBBB000 upper 5 */ \ "ushr v2.16b, v0.16b, #5 \n" /* B,G 00000BBB lower 3 */ \ \ "orr v0.16b, v0.16b, v2.16b \n" /* B,G */ \ "orr v2.16b, v1.16b, v3.16b \n" /* R */ \ "dup v1.2D, v0.D[1] \n" /* G */ void ARGB1555ToARGBRow_NEON(const uint8_t* src_argb1555, uint8_t* dst_argb, int width) { asm volatile( "movi v3.8b, #255 \n" // Alpha "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels. "prfm pldl1keep, [%0, 448] \n" "subs %w2, %w2, #8 \n" // 8 processed per loop. ARGB1555TOARGB "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb1555), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } // Convert v0.8h to b = v0.8b g = v1.8b r = v2.8b // clobbers v3 #define ARGB4444TOARGB \ "shrn v1.8b, v0.8h, #8 \n" /* v1(l) AR */ \ "xtn2 v1.16b, v0.8h \n" /* v1(h) GB */ \ "shl v2.16b, v1.16b, #4 \n" /* B,R BBBB0000 */ \ "ushr v3.16b, v1.16b, #4 \n" /* G,A 0000GGGG */ \ "ushr v0.16b, v2.16b, #4 \n" /* B,R 0000BBBB */ \ "shl v1.16b, v3.16b, #4 \n" /* G,A GGGG0000 */ \ "orr v2.16b, v0.16b, v2.16b \n" /* B,R BBBBBBBB */ \ "orr v3.16b, v1.16b, v3.16b \n" /* G,A GGGGGGGG */ \ "dup v0.2D, v2.D[1] \n" \ "dup v1.2D, v3.D[1] \n" void ARGB4444ToARGBRow_NEON(const uint8_t* src_argb4444, uint8_t* dst_argb, int width) { asm volatile( "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels. "subs %w2, %w2, #8 \n" // 8 processed per loop. "prfm pldl1keep, [%0, 448] \n" ARGB4444TOARGB "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb4444), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List ); } void ARGBToRGB24Row_NEON(const uint8_t* src_argb, uint8_t* dst_rgb24, int width) { asm volatile( "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ARGB "subs %w2, %w2, #16 \n" // 16 pixels per loop. "prfm pldl1keep, [%0, 448] \n" "st3 {v0.16b,v1.16b,v2.16b}, [%1], #48 \n" // store 8 RGB24 "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_rgb24), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } void ARGBToRAWRow_NEON(const uint8_t* src_argb, uint8_t* dst_raw, int width) { asm volatile( "1: \n" "ld4 {v1.8b,v2.8b,v3.8b,v4.8b}, [%0], #32 \n" // load b g r a "subs %w2, %w2, #8 \n" // 8 processed per loop. "orr v4.8b, v2.8b, v2.8b \n" // mov g "prfm pldl1keep, [%0, 448] \n" "orr v5.8b, v1.8b, v1.8b \n" // mov b "st3 {v3.8b,v4.8b,v5.8b}, [%1], #24 \n" // store r g b "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_raw), // %1 "+r"(width) // %2 : : "cc", "memory", "v1", "v2", "v3", "v4", "v5" // Clobber List ); } void YUY2ToYRow_NEON(const uint8_t* src_yuy2, uint8_t* dst_y, int width) { asm volatile( "1: \n" "ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels of YUY2. "subs %w2, %w2, #16 \n" // 16 processed per loop. "prfm pldl1keep, [%0, 448] \n" "st1 {v0.16b}, [%1], #16 \n" // store 16 pixels of Y. "b.gt 1b \n" : "+r"(src_yuy2), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1" // Clobber List ); } void UYVYToYRow_NEON(const uint8_t* src_uyvy, uint8_t* dst_y, int width) { asm volatile( "1: \n" "ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels of UYVY. "subs %w2, %w2, #16 \n" // 16 processed per loop. "prfm pldl1keep, [%0, 448] \n" "st1 {v1.16b}, [%1], #16 \n" // store 16 pixels of Y. "b.gt 1b \n" : "+r"(src_uyvy), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1" // Clobber List ); } void YUY2ToUV422Row_NEON(const uint8_t* src_yuy2, uint8_t* dst_u, uint8_t* dst_v, int width) { asm volatile( "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 YUY2 "subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs. "prfm pldl1keep, [%0, 448] \n" "st1 {v1.8b}, [%1], #8 \n" // store 8 U. "st1 {v3.8b}, [%2], #8 \n" // store 8 V. "b.gt 1b \n" : "+r"(src_yuy2), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } void UYVYToUV422Row_NEON(const uint8_t* src_uyvy, uint8_t* dst_u, uint8_t* dst_v, int width) { asm volatile( "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 UYVY "subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs. "prfm pldl1keep, [%0, 448] \n" "st1 {v0.8b}, [%1], #8 \n" // store 8 U. "st1 {v2.8b}, [%2], #8 \n" // store 8 V. "b.gt 1b \n" : "+r"(src_uyvy), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } void YUY2ToUVRow_NEON(const uint8_t* src_yuy2, int stride_yuy2, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_yuy2b = src_yuy2 + stride_yuy2; asm volatile( "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 pixels "subs %w4, %w4, #16 \n" // 16 pixels = 8 UVs. "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load next row "urhadd v1.8b, v1.8b, v5.8b \n" // average rows of U "prfm pldl1keep, [%0, 448] \n" "urhadd v3.8b, v3.8b, v7.8b \n" // average rows of V "st1 {v1.8b}, [%2], #8 \n" // store 8 U. "st1 {v3.8b}, [%3], #8 \n" // store 8 V. "b.gt 1b \n" : "+r"(src_yuy2), // %0 "+r"(src_yuy2b), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" // Clobber List ); } void UYVYToUVRow_NEON(const uint8_t* src_uyvy, int stride_uyvy, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_uyvyb = src_uyvy + stride_uyvy; asm volatile( "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 pixels "subs %w4, %w4, #16 \n" // 16 pixels = 8 UVs. "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load next row "urhadd v0.8b, v0.8b, v4.8b \n" // average rows of U "prfm pldl1keep, [%0, 448] \n" "urhadd v2.8b, v2.8b, v6.8b \n" // average rows of V "st1 {v0.8b}, [%2], #8 \n" // store 8 U. "st1 {v2.8b}, [%3], #8 \n" // store 8 V. "b.gt 1b \n" : "+r"(src_uyvy), // %0 "+r"(src_uyvyb), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" // Clobber List ); } void YUY2ToNVUVRow_NEON(const uint8_t* src_yuy2, int stride_yuy2, uint8_t* dst_uv, int width) { const uint8_t* src_yuy2b = src_yuy2 + stride_yuy2; asm volatile( "1: \n" "ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels "subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs. "ld2 {v2.16b,v3.16b}, [%1], #32 \n" // load next row "urhadd v4.16b, v1.16b, v3.16b \n" // average rows of UV "prfm pldl1keep, [%0, 448] \n" "st1 {v4.16b}, [%2], #16 \n" // store 8 UV. "b.gt 1b \n" : "+r"(src_yuy2), // %0 "+r"(src_yuy2b), // %1 "+r"(dst_uv), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List ); } // For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA. void ARGBShuffleRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, const uint8_t* shuffler, int width) { asm volatile( "ld1 {v2.16b}, [%3] \n" // shuffler "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 4 pixels. "subs %w2, %w2, #4 \n" // 4 processed per loop "prfm pldl1keep, [%0, 448] \n" "tbl v1.16b, {v0.16b}, v2.16b \n" // look up 4 pixels "st1 {v1.16b}, [%1], #16 \n" // store 4. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : "r"(shuffler) // %3 : "cc", "memory", "v0", "v1", "v2" // Clobber List ); } void I422ToYUY2Row_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_yuy2, int width) { asm volatile( "1: \n" "ld2 {v0.8b, v1.8b}, [%0], #16 \n" // load 16 Ys "subs %w4, %w4, #16 \n" // 16 pixels "orr v2.8b, v1.8b, v1.8b \n" "prfm pldl1keep, [%0, 448] \n" "ld1 {v1.8b}, [%1], #8 \n" // load 8 Us "ld1 {v3.8b}, [%2], #8 \n" // load 8 Vs "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%3], #32 \n" // Store 16 pixels. "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(src_u), // %1 "+r"(src_v), // %2 "+r"(dst_yuy2), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3"); } void I422ToUYVYRow_NEON(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_uyvy, int width) { asm volatile( "1: \n" "ld2 {v1.8b,v2.8b}, [%0], #16 \n" // load 16 Ys "orr v3.8b, v2.8b, v2.8b \n" "prfm pldl1keep, [%0, 448] \n" "ld1 {v0.8b}, [%1], #8 \n" // load 8 Us "ld1 {v2.8b}, [%2], #8 \n" // load 8 Vs "subs %w4, %w4, #16 \n" // 16 pixels "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%3], #32 \n" // Store 16 pixels. "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(src_u), // %1 "+r"(src_v), // %2 "+r"(dst_uyvy), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3"); } void ARGBToRGB565Row_NEON(const uint8_t* src_argb, uint8_t* dst_rgb565, int width) { asm volatile( "1: \n" "ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8 // pixels "subs %w2, %w2, #8 \n" // 8 processed per loop. "prfm pldl1keep, [%0, 448] \n" ARGBTORGB565 "st1 {v18.16b}, [%1], #16 \n" // store 8 pixels RGB565. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_rgb565), // %1 "+r"(width) // %2 : : "cc", "memory", "v16", "v17", "v18", "v19"); } void ARGBToRGB565DitherRow_NEON(const uint8_t* src_argb, uint8_t* dst_rgb, const uint32_t dither4, int width) { asm volatile( "dup v1.4s, %w2 \n" // dither4 "1: \n" "ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%1], #32 \n" // load 8 // pixels "subs %w3, %w3, #8 \n" // 8 processed per loop. "uqadd v16.8b, v16.8b, v1.8b \n" "prfm pldl1keep, [%0, 448] \n" "uqadd v17.8b, v17.8b, v1.8b \n" "uqadd v18.8b, v18.8b, v1.8b \n" ARGBTORGB565 "st1 {v18.16b}, [%0], #16 \n" // store 8 pixels RGB565. "b.gt 1b \n" : "+r"(dst_rgb) // %0 : "r"(src_argb), // %1 "r"(dither4), // %2 "r"(width) // %3 : "cc", "memory", "v1", "v16", "v17", "v18", "v19"); } void ARGBToARGB1555Row_NEON(const uint8_t* src_argb, uint8_t* dst_argb1555, int width) { asm volatile( "1: \n" "ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8 // pixels "subs %w2, %w2, #8 \n" // 8 processed per loop. "prfm pldl1keep, [%0, 448] \n" ARGBTOARGB1555 "st1 {v0.16b}, [%1], #16 \n" // store 8 pixels "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb1555), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v16", "v17", "v18", "v19"); } void ARGBToARGB4444Row_NEON(const uint8_t* src_argb, uint8_t* dst_argb4444, int width) { asm volatile( "movi v23.16b, #0x0f \n" // bits to clear with // vbic. "1: \n" "ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8 // pixels "subs %w2, %w2, #8 \n" // 8 processed per loop. "prfm pldl1keep, [%0, 448] \n" ARGBTOARGB4444 "st1 {v0.16b}, [%1], #16 \n" // store 8 pixels "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb4444), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v16", "v17", "v18", "v19", "v23"); } #if LIBYUV_USE_ST2 void ARGBToAR64Row_NEON(const uint8_t* src_argb, uint16_t* dst_ar64, int width) { asm volatile( "1: \n" "ldp q0, q2, [%0], #32 \n" // load 8 pixels "mov v1.16b, v0.16b \n" "prfm pldl1keep, [%0, 448] \n" "mov v3.16b, v2.16b \n" "subs %w2, %w2, #8 \n" // 8 processed per loop. "st2 {v0.16b, v1.16b}, [%1], #32 \n" // store 4 pixels "st2 {v2.16b, v3.16b}, [%1], #32 \n" // store 4 pixels "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_ar64), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3"); } static const uvec8 kShuffleARGBToABGR = {2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15}; void ARGBToAB64Row_NEON(const uint8_t* src_argb, uint16_t* dst_ab64, int width) { asm volatile( "ldr q4, [%3] \n" // shuffler "1: \n" "ldp q0, q2, [%0], #32 \n" // load 8 pixels "tbl v0.16b, {v0.16b}, v4.16b \n" "tbl v2.16b, {v2.16b}, v4.16b \n" "prfm pldl1keep, [%0, 448] \n" "mov v1.16b, v0.16b \n" "mov v3.16b, v2.16b \n" "subs %w2, %w2, #8 \n" // 8 processed per loop. "st2 {v0.16b, v1.16b}, [%1], #32 \n" // store 4 pixels "st2 {v2.16b, v3.16b}, [%1], #32 \n" // store 4 pixels "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_ab64), // %1 "+r"(width) // %2 : "r"(&kShuffleARGBToABGR) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } #else void ARGBToAR64Row_NEON(const uint8_t* src_argb, uint16_t* dst_ar64, int width) { asm volatile( "1: \n" "ldp q0, q1, [%0], #32 \n" // load 8 ARGB pixels "subs %w2, %w2, #8 \n" // 8 processed per loop. "zip1 v2.16b, v0.16b, v0.16b \n" "zip2 v3.16b, v0.16b, v0.16b \n" "prfm pldl1keep, [%0, 448] \n" "zip1 v4.16b, v1.16b, v1.16b \n" "zip2 v5.16b, v1.16b, v1.16b \n" "st1 {v2.8h, v3.8h, v4.8h, v5.8h}, [%1], #64 \n" // 8 AR64 "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_ar64), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5"); } static const uvec8 kShuffleARGBToAB64[2] = { {2, 2, 1, 1, 0, 0, 3, 3, 6, 6, 5, 5, 4, 4, 7, 7}, {10, 10, 9, 9, 8, 8, 11, 11, 14, 14, 13, 13, 12, 12, 15, 15}}; void ARGBToAB64Row_NEON(const uint8_t* src_argb, uint16_t* dst_ab64, int width) { asm volatile( "ldp q6, q7, [%3] \n" // 2 shufflers "1: \n" "ldp q0, q1, [%0], #32 \n" // load 8 pixels "subs %w2, %w2, #8 \n" // 8 processed per loop. "tbl v2.16b, {v0.16b}, v6.16b \n" // ARGB to AB64 "tbl v3.16b, {v0.16b}, v7.16b \n" "prfm pldl1keep, [%0, 448] \n" "tbl v4.16b, {v1.16b}, v6.16b \n" "tbl v5.16b, {v1.16b}, v7.16b \n" "st1 {v2.8h, v3.8h, v4.8h, v5.8h}, [%1], #64 \n" // 8 AR64 "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_ab64), // %1 "+r"(width) // %2 : "r"(&kShuffleARGBToAB64[0]) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } #endif // LIBYUV_USE_ST2 static const uvec8 kShuffleAR64ToARGB = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}; void AR64ToARGBRow_NEON(const uint16_t* src_ar64, uint8_t* dst_argb, int width) { asm volatile( "ldr q4, [%3] \n" // shuffler "1: \n" "ldp q0, q1, [%0], #32 \n" // load 4 pixels "ldp q2, q3, [%0], #32 \n" // load 4 pixels "tbl v0.16b, {v0.16b, v1.16b}, v4.16b \n" "prfm pldl1keep, [%0, 448] \n" "tbl v2.16b, {v2.16b, v3.16b}, v4.16b \n" "subs %w2, %w2, #8 \n" // 8 processed per loop. "stp q0, q2, [%1], #32 \n" // store 8 pixels "b.gt 1b \n" : "+r"(src_ar64), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : "r"(&kShuffleAR64ToARGB) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } static const uvec8 kShuffleAB64ToARGB = {5, 3, 1, 7, 13, 11, 9, 15, 21, 19, 17, 23, 29, 27, 25, 31}; void AB64ToARGBRow_NEON(const uint16_t* src_ab64, uint8_t* dst_argb, int width) { asm volatile( "ldr q4, [%3] \n" // shuffler "1: \n" "ldp q0, q1, [%0], #32 \n" // load 4 pixels "ldp q2, q3, [%0], #32 \n" // load 4 pixels "tbl v0.16b, {v0.16b, v1.16b}, v4.16b \n" "prfm pldl1keep, [%0, 448] \n" "tbl v2.16b, {v2.16b, v3.16b}, v4.16b \n" "subs %w2, %w2, #8 \n" // 8 processed per loop. "stp q0, q2, [%1], #32 \n" // store 8 pixels "b.gt 1b \n" : "+r"(src_ab64), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : "r"(&kShuffleAB64ToARGB) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } void ARGBExtractAlphaRow_NEON(const uint8_t* src_argb, uint8_t* dst_a, int width) { asm volatile( "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 "prfm pldl1keep, [%0, 448] \n" "subs %w2, %w2, #16 \n" // 16 processed per loop "st1 {v3.16b}, [%1], #16 \n" // store 16 A's. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_a), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } // 8x1 pixels. void ARGBToUV444Row_NEON(const uint8_t* src_argb, uint8_t* dst_u, uint8_t* dst_v, int width) { asm volatile( "movi v24.8b, #112 \n" // UB / VR 0.875 // coefficient "movi v25.8b, #74 \n" // UG -0.5781 coefficient "movi v26.8b, #38 \n" // UR -0.2969 coefficient "movi v27.8b, #18 \n" // VB -0.1406 coefficient "movi v28.8b, #94 \n" // VG -0.7344 coefficient "movi v29.16b,#0x80 \n" // 128.5 "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB "subs %w3, %w3, #8 \n" // 8 processed per loop. "umull v4.8h, v0.8b, v24.8b \n" // B "umlsl v4.8h, v1.8b, v25.8b \n" // G "umlsl v4.8h, v2.8b, v26.8b \n" // R "prfm pldl1keep, [%0, 448] \n" "umull v3.8h, v2.8b, v24.8b \n" // R "umlsl v3.8h, v1.8b, v28.8b \n" // G "umlsl v3.8h, v0.8b, v27.8b \n" // B "addhn v0.8b, v4.8h, v29.8h \n" // +128 -> unsigned "addhn v1.8b, v3.8h, v29.8h \n" // +128 -> unsigned "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%2], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v24", "v25", "v26", "v27", "v28", "v29"); } #define RGBTOUV_SETUP_REG \ "movi v20.8h, #56, lsl #0 \n" /* UB/VR coefficient (0.875) / 2 */ \ "movi v21.8h, #37, lsl #0 \n" /* UG coefficient (-0.5781) / 2 */ \ "movi v22.8h, #19, lsl #0 \n" /* UR coefficient (-0.2969) / 2 */ \ "movi v23.8h, #9, lsl #0 \n" /* VB coefficient (-0.1406) / 2 */ \ "movi v24.8h, #47, lsl #0 \n" /* VG coefficient (-0.7344) / 2 */ \ "movi v25.16b, #0x80 \n" /* 128.5 (0x8080 in 16-bit) */ // 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. // clang-format off #define RGBTOUV(QB, QG, QR) \ "mul v3.8h, " #QB ",v20.8h \n" /* B */ \ "mul v4.8h, " #QR ",v20.8h \n" /* R */ \ "mls v3.8h, " #QG ",v21.8h \n" /* G */ \ "mls v4.8h, " #QG ",v24.8h \n" /* G */ \ "mls v3.8h, " #QR ",v22.8h \n" /* R */ \ "mls v4.8h, " #QB ",v23.8h \n" /* B */ \ "addhn v0.8b, v3.8h, v25.8h \n" /* +128 -> unsigned */ \ "addhn v1.8b, v4.8h, v25.8h \n" /* +128 -> unsigned */ // clang-format on // TODO(fbarchard): Consider vhadd vertical, then vpaddl horizontal, avoid shr. // TODO(fbarchard): consider ptrdiff_t for all strides. void ARGBToUVRow_NEON(const uint8_t* src_argb, int src_stride_argb, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_argb_1 = src_argb + src_stride_argb; asm volatile ( RGBTOUV_SETUP_REG "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16 "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(src_argb_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } // TODO(fbarchard): Subsample match Intel code. void ARGBToUVJRow_NEON(const uint8_t* src_argb, int src_stride_argb, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_argb_1 = src_argb + src_stride_argb; asm volatile ( "movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2 "movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2 "movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2 "movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2 "movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2 "movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit) "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16 "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(src_argb_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void ABGRToUVJRow_NEON(const uint8_t* src_abgr, int src_stride_abgr, uint8_t* dst_uj, uint8_t* dst_vj, int width) { const uint8_t* src_abgr_1 = src_abgr + src_stride_abgr; asm volatile ( "movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2 "movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2 "movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2 "movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2 "movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2 "movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit) "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. "uaddlp v0.8h, v0.16b \n" // R 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v2.16b \n" // B 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16 "uadalp v0.8h, v4.16b \n" // R 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v6.16b \n" // B 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v2.8h, v1.8h, v0.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_abgr), // %0 "+r"(src_abgr_1), // %1 "+r"(dst_uj), // %2 "+r"(dst_vj), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void RGB24ToUVJRow_NEON(const uint8_t* src_rgb24, int src_stride_rgb24, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_rgb24_1 = src_rgb24 + src_stride_rgb24; asm volatile ( "movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2 "movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2 "movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2 "movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2 "movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2 "movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit) "1: \n" "ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 pixels. "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. "ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load next 16 "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_rgb24), // %0 "+r"(src_rgb24_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void RAWToUVJRow_NEON(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_raw_1 = src_raw + src_stride_raw; asm volatile ( "movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2 "movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2 "movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2 "movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2 "movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2 "movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit) "1: \n" "ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 pixels. "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. "ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load next 16 "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v2.8h, v1.8h, v0.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_raw), // %0 "+r"(src_raw_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void BGRAToUVRow_NEON(const uint8_t* src_bgra, int src_stride_bgra, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_bgra_1 = src_bgra + src_stride_bgra; asm volatile ( RGBTOUV_SETUP_REG "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. "uaddlp v0.8h, v3.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v3.8h, v2.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v1.16b \n" // R 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more "uadalp v0.8h, v7.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v3.8h, v6.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v5.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v3.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_bgra), // %0 "+r"(src_bgra_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void ABGRToUVRow_NEON(const uint8_t* src_abgr, int src_stride_abgr, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_abgr_1 = src_abgr + src_stride_abgr; asm volatile ( RGBTOUV_SETUP_REG "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. "uaddlp v3.8h, v2.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v2.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v1.8h, v0.16b \n" // R 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more. "uadalp v3.8h, v6.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v2.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v1.8h, v4.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v3.8h, #1 \n" // 2x average "urshr v2.8h, v2.8h, #1 \n" "urshr v1.8h, v1.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v2.8h, v1.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_abgr), // %0 "+r"(src_abgr_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void RGBAToUVRow_NEON(const uint8_t* src_rgba, int src_stride_rgba, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_rgba_1 = src_rgba + src_stride_rgba; asm volatile ( RGBTOUV_SETUP_REG "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. "uaddlp v0.8h, v1.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v2.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v3.16b \n" // R 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more. "uadalp v0.8h, v5.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v6.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v7.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_rgba), // %0 "+r"(src_rgba_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void RGB24ToUVRow_NEON(const uint8_t* src_rgb24, int src_stride_rgb24, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_rgb24_1 = src_rgb24 + src_stride_rgb24; asm volatile ( RGBTOUV_SETUP_REG "1: \n" "ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 pixels. "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. "ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load 16 more. "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. "urshr v0.8h, v0.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v2.8h, v2.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_rgb24), // %0 "+r"(src_rgb24_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } void RAWToUVRow_NEON(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_raw_1 = src_raw + src_stride_raw; asm volatile ( RGBTOUV_SETUP_REG "1: \n" "ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 RAW pixels. "uaddlp v2.8h, v2.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. "uaddlp v0.8h, v0.16b \n" // R 16 bytes -> 8 shorts. "ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load 8 more RAW pixels "uadalp v2.8h, v6.16b \n" // B 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. "uadalp v0.8h, v4.16b \n" // R 16 bytes -> 8 shorts. "urshr v2.8h, v2.8h, #1 \n" // 2x average "urshr v1.8h, v1.8h, #1 \n" "urshr v0.8h, v0.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v2.8h, v1.8h, v0.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_raw), // %0 "+r"(src_raw_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v23", "v24", "v25" ); } // 16x2 pixels -> 8x1. width is number of rgb pixels. e.g. 16. void RGB565ToUVRow_NEON(const uint8_t* src_rgb565, int src_stride_rgb565, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_rgb565_1 = src_rgb565 + src_stride_rgb565; asm volatile( RGBTOUV_SETUP_REG "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels. RGB565TOARGB "uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%0], #16 \n" // next 8 RGB565 pixels. RGB565TOARGB "uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%1], #16 \n" // load 8 RGB565 pixels. RGB565TOARGB "uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%1], #16 \n" // next 8 RGB565 pixels. RGB565TOARGB "uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ins v16.D[1], v26.D[0] \n" "ins v17.D[1], v27.D[0] \n" "ins v18.D[1], v28.D[0] \n" "urshr v0.8h, v16.8h, #1 \n" // 2x average "urshr v1.8h, v17.8h, #1 \n" "urshr v2.8h, v18.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_rgb565), // %0 "+r"(src_rgb565_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28"); } // 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. void ARGB1555ToUVRow_NEON(const uint8_t* src_argb1555, int src_stride_argb1555, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_argb1555_1 = src_argb1555 + src_stride_argb1555; asm volatile( RGBTOUV_SETUP_REG "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels. RGB555TOARGB "uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%0], #16 \n" // next 8 ARGB1555 pixels. RGB555TOARGB "uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%1], #16 \n" // load 8 ARGB1555 pixels. RGB555TOARGB "uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%1], #16 \n" // next 8 ARGB1555 pixels. RGB555TOARGB "uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ins v16.D[1], v26.D[0] \n" "ins v17.D[1], v27.D[0] \n" "ins v18.D[1], v28.D[0] \n" "urshr v0.8h, v16.8h, #1 \n" // 2x average "urshr v1.8h, v17.8h, #1 \n" "urshr v2.8h, v18.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_argb1555), // %0 "+r"(src_argb1555_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28"); } // 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. void ARGB4444ToUVRow_NEON(const uint8_t* src_argb4444, int src_stride_argb4444, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* src_argb4444_1 = src_argb4444 + src_stride_argb4444; asm volatile( RGBTOUV_SETUP_REG // sets v20-v25 "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels. ARGB4444TOARGB "uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%0], #16 \n" // next 8 ARGB4444 pixels. ARGB4444TOARGB "uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%1], #16 \n" // load 8 ARGB4444 pixels. ARGB4444TOARGB "uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "prfm pldl1keep, [%1, 448] \n" "uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ld1 {v0.16b}, [%1], #16 \n" // next 8 ARGB4444 pixels. ARGB4444TOARGB "uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. "uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. "uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. "ins v16.D[1], v26.D[0] \n" "ins v17.D[1], v27.D[0] \n" "ins v18.D[1], v28.D[0] \n" "urshr v0.8h, v16.8h, #1 \n" // 2x average "urshr v1.8h, v17.8h, #1 \n" "urshr v2.8h, v18.8h, #1 \n" "subs %w4, %w4, #16 \n" // 16 processed per loop. RGBTOUV(v0.8h, v1.8h, v2.8h) "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. "b.gt 1b \n" : "+r"(src_argb4444), // %0 "+r"(src_argb4444_1), // %1 "+r"(dst_u), // %2 "+r"(dst_v), // %3 "+r"(width) // %4 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28" ); } void RGB565ToYRow_NEON(const uint8_t* src_rgb565, uint8_t* dst_y, int width) { asm volatile( "movi v24.8b, #25 \n" // B * 0.1016 coefficient "movi v25.8b, #129 \n" // G * 0.5078 coefficient "movi v26.8b, #66 \n" // R * 0.2578 coefficient "movi v27.8b, #16 \n" // Add 16 constant "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels. "subs %w2, %w2, #8 \n" // 8 processed per loop. RGB565TOARGB "umull v3.8h, v0.8b, v24.8b \n" // B "prfm pldl1keep, [%0, 448] \n" "umlal v3.8h, v1.8b, v25.8b \n" // G "umlal v3.8h, v2.8b, v26.8b \n" // R "uqrshrn v0.8b, v3.8h, #8 \n" // 16 bit to 8 bit Y "uqadd v0.8b, v0.8b, v27.8b \n" "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. "b.gt 1b \n" : "+r"(src_rgb565), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v6", "v24", "v25", "v26", "v27"); } void ARGB1555ToYRow_NEON(const uint8_t* src_argb1555, uint8_t* dst_y, int width) { asm volatile( "movi v4.8b, #25 \n" // B * 0.1016 coefficient "movi v5.8b, #129 \n" // G * 0.5078 coefficient "movi v6.8b, #66 \n" // R * 0.2578 coefficient "movi v7.8b, #16 \n" // Add 16 constant "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels. "subs %w2, %w2, #8 \n" // 8 processed per loop. ARGB1555TOARGB "umull v3.8h, v0.8b, v4.8b \n" // B "prfm pldl1keep, [%0, 448] \n" "umlal v3.8h, v1.8b, v5.8b \n" // G "umlal v3.8h, v2.8b, v6.8b \n" // R "uqrshrn v0.8b, v3.8h, #8 \n" // 16 bit to 8 bit Y "uqadd v0.8b, v0.8b, v7.8b \n" "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. "b.gt 1b \n" : "+r"(src_argb1555), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } void ARGB4444ToYRow_NEON(const uint8_t* src_argb4444, uint8_t* dst_y, int width) { asm volatile( "movi v24.8b, #25 \n" // B * 0.1016 coefficient "movi v25.8b, #129 \n" // G * 0.5078 coefficient "movi v26.8b, #66 \n" // R * 0.2578 coefficient "movi v27.8b, #16 \n" // Add 16 constant "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels. "subs %w2, %w2, #8 \n" // 8 processed per loop. ARGB4444TOARGB "umull v3.8h, v0.8b, v24.8b \n" // B "prfm pldl1keep, [%0, 448] \n" "umlal v3.8h, v1.8b, v25.8b \n" // G "umlal v3.8h, v2.8b, v26.8b \n" // R "uqrshrn v0.8b, v3.8h, #8 \n" // 16 bit to 8 bit Y "uqadd v0.8b, v0.8b, v27.8b \n" "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. "b.gt 1b \n" : "+r"(src_argb4444), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v24", "v25", "v26", "v27"); } struct RgbConstants { uint8_t kRGBToY[4]; uint16_t kAddY; uint16_t pad; }; // RGB to JPeg coefficients // B * 0.1140 coefficient = 29 // G * 0.5870 coefficient = 150 // R * 0.2990 coefficient = 77 // Add 0.5 = 0x80 static const struct RgbConstants kRgb24JPEGConstants = {{29, 150, 77, 0}, 128, 0}; static const struct RgbConstants kRawJPEGConstants = {{77, 150, 29, 0}, 128, 0}; // RGB to BT.601 coefficients // B * 0.1016 coefficient = 25 // G * 0.5078 coefficient = 129 // R * 0.2578 coefficient = 66 // Add 16.5 = 0x1080 static const struct RgbConstants kRgb24I601Constants = {{25, 129, 66, 0}, 0x1080, 0}; static const struct RgbConstants kRawI601Constants = {{66, 129, 25, 0}, 0x1080, 0}; // ARGB expects first 3 values to contain RGB and 4th value is ignored. void ARGBToYMatrixRow_NEON(const uint8_t* src_argb, uint8_t* dst_y, int width, const struct RgbConstants* rgbconstants) { asm volatile( "ldr d0, [%3] \n" // load rgbconstants "dup v6.16b, v0.b[0] \n" "dup v7.16b, v0.b[1] \n" "dup v16.16b, v0.b[2] \n" "dup v17.8h, v0.h[2] \n" "1: \n" "ld4 {v2.16b,v3.16b,v4.16b,v5.16b}, [%0], #64 \n" // load 16 // pixels. "subs %w2, %w2, #16 \n" // 16 processed per loop. "umull v0.8h, v2.8b, v6.8b \n" // B "umull2 v1.8h, v2.16b, v6.16b \n" "prfm pldl1keep, [%0, 448] \n" "umlal v0.8h, v3.8b, v7.8b \n" // G "umlal2 v1.8h, v3.16b, v7.16b \n" "umlal v0.8h, v4.8b, v16.8b \n" // R "umlal2 v1.8h, v4.16b, v16.16b \n" "addhn v0.8b, v0.8h, v17.8h \n" // 16 bit to 8 bit Y "addhn v1.8b, v1.8h, v17.8h \n" "st1 {v0.8b, v1.8b}, [%1], #16 \n" // store 16 pixels Y. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : "r"(rgbconstants) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17"); } void ARGBToYRow_NEON(const uint8_t* src_argb, uint8_t* dst_y, int width) { ARGBToYMatrixRow_NEON(src_argb, dst_y, width, &kRgb24I601Constants); } void ARGBToYJRow_NEON(const uint8_t* src_argb, uint8_t* dst_yj, int width) { ARGBToYMatrixRow_NEON(src_argb, dst_yj, width, &kRgb24JPEGConstants); } void ABGRToYRow_NEON(const uint8_t* src_abgr, uint8_t* dst_y, int width) { ARGBToYMatrixRow_NEON(src_abgr, dst_y, width, &kRawI601Constants); } void ABGRToYJRow_NEON(const uint8_t* src_abgr, uint8_t* dst_yj, int width) { ARGBToYMatrixRow_NEON(src_abgr, dst_yj, width, &kRawJPEGConstants); } // RGBA expects first value to be A and ignored, then 3 values to contain RGB. // Same code as ARGB, except the LD4 void RGBAToYMatrixRow_NEON(const uint8_t* src_rgba, uint8_t* dst_y, int width, const struct RgbConstants* rgbconstants) { asm volatile( "ldr d0, [%3] \n" // load rgbconstants "dup v6.16b, v0.b[0] \n" "dup v7.16b, v0.b[1] \n" "dup v16.16b, v0.b[2] \n" "dup v17.8h, v0.h[2] \n" "1: \n" "ld4 {v1.16b,v2.16b,v3.16b,v4.16b}, [%0], #64 \n" // load 16 // pixels. "subs %w2, %w2, #16 \n" // 16 processed per loop. "umull v0.8h, v2.8b, v6.8b \n" // B "umull2 v1.8h, v2.16b, v6.16b \n" "prfm pldl1keep, [%0, 448] \n" "umlal v0.8h, v3.8b, v7.8b \n" // G "umlal2 v1.8h, v3.16b, v7.16b \n" "umlal v0.8h, v4.8b, v16.8b \n" // R "umlal2 v1.8h, v4.16b, v16.16b \n" "addhn v0.8b, v0.8h, v17.8h \n" // 16 bit to 8 bit Y "addhn v1.8b, v1.8h, v17.8h \n" "st1 {v0.8b, v1.8b}, [%1], #16 \n" // store 16 pixels Y. "b.gt 1b \n" : "+r"(src_rgba), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : "r"(rgbconstants) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17"); } void RGBAToYRow_NEON(const uint8_t* src_rgba, uint8_t* dst_y, int width) { RGBAToYMatrixRow_NEON(src_rgba, dst_y, width, &kRgb24I601Constants); } void RGBAToYJRow_NEON(const uint8_t* src_rgba, uint8_t* dst_yj, int width) { RGBAToYMatrixRow_NEON(src_rgba, dst_yj, width, &kRgb24JPEGConstants); } void BGRAToYRow_NEON(const uint8_t* src_bgra, uint8_t* dst_y, int width) { RGBAToYMatrixRow_NEON(src_bgra, dst_y, width, &kRawI601Constants); } void RGBToYMatrixRow_NEON(const uint8_t* src_rgb, uint8_t* dst_y, int width, const struct RgbConstants* rgbconstants) { asm volatile( "ldr d0, [%3] \n" // load rgbconstants "dup v5.16b, v0.b[0] \n" "dup v6.16b, v0.b[1] \n" "dup v7.16b, v0.b[2] \n" "dup v16.8h, v0.h[2] \n" "1: \n" "ld3 {v2.16b,v3.16b,v4.16b}, [%0], #48 \n" // load 16 pixels. "subs %w2, %w2, #16 \n" // 16 processed per loop. "umull v0.8h, v2.8b, v5.8b \n" // B "umull2 v1.8h, v2.16b, v5.16b \n" "prfm pldl1keep, [%0, 448] \n" "umlal v0.8h, v3.8b, v6.8b \n" // G "umlal2 v1.8h, v3.16b, v6.16b \n" "umlal v0.8h, v4.8b, v7.8b \n" // R "umlal2 v1.8h, v4.16b, v7.16b \n" "addhn v0.8b, v0.8h, v16.8h \n" // 16 bit to 8 bit Y "addhn v1.8b, v1.8h, v16.8h \n" "st1 {v0.8b, v1.8b}, [%1], #16 \n" // store 16 pixels Y. "b.gt 1b \n" : "+r"(src_rgb), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : "r"(rgbconstants) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16"); } void RGB24ToYJRow_NEON(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) { RGBToYMatrixRow_NEON(src_rgb24, dst_yj, width, &kRgb24JPEGConstants); } void RAWToYJRow_NEON(const uint8_t* src_raw, uint8_t* dst_yj, int width) { RGBToYMatrixRow_NEON(src_raw, dst_yj, width, &kRawJPEGConstants); } void RGB24ToYRow_NEON(const uint8_t* src_rgb24, uint8_t* dst_y, int width) { RGBToYMatrixRow_NEON(src_rgb24, dst_y, width, &kRgb24I601Constants); } void RAWToYRow_NEON(const uint8_t* src_raw, uint8_t* dst_y, int width) { RGBToYMatrixRow_NEON(src_raw, dst_y, width, &kRawI601Constants); } // Bilinear filter 16x2 -> 16x1 void InterpolateRow_NEON(uint8_t* dst_ptr, const uint8_t* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; const uint8_t* src_ptr1 = src_ptr + src_stride; asm volatile( "cmp %w4, #0 \n" "b.eq 100f \n" "cmp %w4, #128 \n" "b.eq 50f \n" "dup v5.16b, %w4 \n" "dup v4.16b, %w5 \n" // General purpose row blend. "1: \n" "ld1 {v0.16b}, [%1], #16 \n" "ld1 {v1.16b}, [%2], #16 \n" "subs %w3, %w3, #16 \n" "umull v2.8h, v0.8b, v4.8b \n" "prfm pldl1keep, [%1, 448] \n" "umull2 v3.8h, v0.16b, v4.16b \n" "prfm pldl1keep, [%2, 448] \n" "umlal v2.8h, v1.8b, v5.8b \n" "umlal2 v3.8h, v1.16b, v5.16b \n" "rshrn v0.8b, v2.8h, #8 \n" "rshrn2 v0.16b, v3.8h, #8 \n" "st1 {v0.16b}, [%0], #16 \n" "b.gt 1b \n" "b 99f \n" // Blend 50 / 50. "50: \n" "ld1 {v0.16b}, [%1], #16 \n" "ld1 {v1.16b}, [%2], #16 \n" "subs %w3, %w3, #16 \n" "prfm pldl1keep, [%1, 448] \n" "urhadd v0.16b, v0.16b, v1.16b \n" "prfm pldl1keep, [%2, 448] \n" "st1 {v0.16b}, [%0], #16 \n" "b.gt 50b \n" "b 99f \n" // Blend 100 / 0 - Copy row unchanged. "100: \n" "ld1 {v0.16b}, [%1], #16 \n" "subs %w3, %w3, #16 \n" "prfm pldl1keep, [%1, 448] \n" "st1 {v0.16b}, [%0], #16 \n" "b.gt 100b \n" "99: \n" : "+r"(dst_ptr), // %0 "+r"(src_ptr), // %1 "+r"(src_ptr1), // %2 "+r"(dst_width), // %3 "+r"(y1_fraction), // %4 "+r"(y0_fraction) // %5 : : "cc", "memory", "v0", "v1", "v3", "v4", "v5"); } // Bilinear filter 8x2 -> 8x1 void InterpolateRow_16_NEON(uint16_t* dst_ptr, const uint16_t* src_ptr, ptrdiff_t src_stride, int dst_width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; const uint16_t* src_ptr1 = src_ptr + src_stride; asm volatile( "cmp %w4, #0 \n" "b.eq 100f \n" "cmp %w4, #128 \n" "b.eq 50f \n" "dup v5.8h, %w4 \n" "dup v4.8h, %w5 \n" // General purpose row blend. "1: \n" "ld1 {v0.8h}, [%1], #16 \n" "ld1 {v1.8h}, [%2], #16 \n" "subs %w3, %w3, #8 \n" "umull v2.4s, v0.4h, v4.4h \n" "prfm pldl1keep, [%1, 448] \n" "umull2 v3.4s, v0.8h, v4.8h \n" "prfm pldl1keep, [%2, 448] \n" "umlal v2.4s, v1.4h, v5.4h \n" "umlal2 v3.4s, v1.8h, v5.8h \n" "rshrn v0.4h, v2.4s, #8 \n" "rshrn2 v0.8h, v3.4s, #8 \n" "st1 {v0.8h}, [%0], #16 \n" "b.gt 1b \n" "b 99f \n" // Blend 50 / 50. "50: \n" "ld1 {v0.8h}, [%1], #16 \n" "ld1 {v1.8h}, [%2], #16 \n" "subs %w3, %w3, #8 \n" "prfm pldl1keep, [%1, 448] \n" "urhadd v0.8h, v0.8h, v1.8h \n" "prfm pldl1keep, [%2, 448] \n" "st1 {v0.8h}, [%0], #16 \n" "b.gt 50b \n" "b 99f \n" // Blend 100 / 0 - Copy row unchanged. "100: \n" "ld1 {v0.8h}, [%1], #16 \n" "subs %w3, %w3, #8 \n" "prfm pldl1keep, [%1, 448] \n" "st1 {v0.8h}, [%0], #16 \n" "b.gt 100b \n" "99: \n" : "+r"(dst_ptr), // %0 "+r"(src_ptr), // %1 "+r"(src_ptr1), // %2 "+r"(dst_width) // %3 : "r"(y1_fraction), // %4 "r"(y0_fraction) // %5 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5"); } // Bilinear filter 8x2 -> 8x1 // Use scale to convert lsb formats to msb, depending how many bits there are: // 32768 = 9 bits // 16384 = 10 bits // 4096 = 12 bits // 256 = 16 bits void InterpolateRow_16To8_NEON(uint8_t* dst_ptr, const uint16_t* src_ptr, ptrdiff_t src_stride, int scale, int dst_width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; const uint16_t* src_ptr1 = src_ptr + src_stride; int shift = 15 - __builtin_clz((int32_t)scale); // Negative shl is shr asm volatile( "dup v6.8h, %w6 \n" "cmp %w4, #0 \n" "b.eq 100f \n" "cmp %w4, #128 \n" "b.eq 50f \n" "dup v5.8h, %w4 \n" "dup v4.8h, %w5 \n" // General purpose row blend. "1: \n" "ld1 {v0.8h}, [%1], #16 \n" "ld1 {v1.8h}, [%2], #16 \n" "subs %w3, %w3, #8 \n" "umull v2.4s, v0.4h, v4.4h \n" "prfm pldl1keep, [%1, 448] \n" "umull2 v3.4s, v0.8h, v4.8h \n" "prfm pldl1keep, [%2, 448] \n" "umlal v2.4s, v1.4h, v5.4h \n" "umlal2 v3.4s, v1.8h, v5.8h \n" "rshrn v0.4h, v2.4s, #8 \n" "rshrn2 v0.8h, v3.4s, #8 \n" "ushl v0.8h, v0.8h, v6.8h \n" "uqxtn v0.8b, v0.8h \n" "st1 {v0.8b}, [%0], #8 \n" "b.gt 1b \n" "b 99f \n" // Blend 50 / 50. "50: \n" "ld1 {v0.8h}, [%1], #16 \n" "ld1 {v1.8h}, [%2], #16 \n" "subs %w3, %w3, #8 \n" "prfm pldl1keep, [%1, 448] \n" "urhadd v0.8h, v0.8h, v1.8h \n" "prfm pldl1keep, [%2, 448] \n" "ushl v0.8h, v0.8h, v6.8h \n" "uqxtn v0.8b, v0.8h \n" "st1 {v0.8b}, [%0], #8 \n" "b.gt 50b \n" "b 99f \n" // Blend 100 / 0 - Copy row unchanged. "100: \n" "ldr q0, [%1], #16 \n" "ushl v0.8h, v0.8h, v2.8h \n" // shr = v2 is negative "prfm pldl1keep, [%1, 448] \n" "uqxtn v0.8b, v0.8h \n" "subs %w3, %w3, #8 \n" // 8 src pixels per loop "str d0, [%0], #8 \n" // store 8 pixels "b.gt 100b \n" "99: \n" : "+r"(dst_ptr), // %0 "+r"(src_ptr), // %1 "+r"(src_ptr1), // %2 "+r"(dst_width) // %3 : "r"(y1_fraction), // %4 "r"(y0_fraction), // %5 "r"(shift) // %6 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6"); } // dr * (256 - sa) / 256 + sr = dr - dr * sa / 256 + sr void ARGBBlendRow_NEON(const uint8_t* src_argb, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { asm volatile( "subs %w3, %w3, #8 \n" "b.lt 89f \n" // Blend 8 pixels. "8: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB0 "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 ARGB1 "subs %w3, %w3, #8 \n" // 8 processed per loop. "umull v16.8h, v4.8b, v3.8b \n" // db * a "prfm pldl1keep, [%0, 448] \n" "umull v17.8h, v5.8b, v3.8b \n" // dg * a "prfm pldl1keep, [%1, 448] \n" "umull v18.8h, v6.8b, v3.8b \n" // dr * a "uqrshrn v16.8b, v16.8h, #8 \n" // db >>= 8 "uqrshrn v17.8b, v17.8h, #8 \n" // dg >>= 8 "uqrshrn v18.8b, v18.8h, #8 \n" // dr >>= 8 "uqsub v4.8b, v4.8b, v16.8b \n" // db - (db * a / 256) "uqsub v5.8b, v5.8b, v17.8b \n" // dg - (dg * a / 256) "uqsub v6.8b, v6.8b, v18.8b \n" // dr - (dr * a / 256) "uqadd v0.8b, v0.8b, v4.8b \n" // + sb "uqadd v1.8b, v1.8b, v5.8b \n" // + sg "uqadd v2.8b, v2.8b, v6.8b \n" // + sr "movi v3.8b, #255 \n" // a = 255 "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB // pixels "b.ge 8b \n" "89: \n" "adds %w3, %w3, #8-1 \n" "b.lt 99f \n" // Blend 1 pixels. "1: \n" "ld4 {v0.b,v1.b,v2.b,v3.b}[0], [%0], #4 \n" // load 1 pixel // ARGB0. "ld4 {v4.b,v5.b,v6.b,v7.b}[0], [%1], #4 \n" // load 1 pixel // ARGB1. "subs %w3, %w3, #1 \n" // 1 processed per loop. "umull v16.8h, v4.8b, v3.8b \n" // db * a "prfm pldl1keep, [%0, 448] \n" "umull v17.8h, v5.8b, v3.8b \n" // dg * a "prfm pldl1keep, [%1, 448] \n" "umull v18.8h, v6.8b, v3.8b \n" // dr * a "uqrshrn v16.8b, v16.8h, #8 \n" // db >>= 8 "uqrshrn v17.8b, v17.8h, #8 \n" // dg >>= 8 "uqrshrn v18.8b, v18.8h, #8 \n" // dr >>= 8 "uqsub v4.8b, v4.8b, v16.8b \n" // db - (db * a / 256) "uqsub v5.8b, v5.8b, v17.8b \n" // dg - (dg * a / 256) "uqsub v6.8b, v6.8b, v18.8b \n" // dr - (dr * a / 256) "uqadd v0.8b, v0.8b, v4.8b \n" // + sb "uqadd v1.8b, v1.8b, v5.8b \n" // + sg "uqadd v2.8b, v2.8b, v6.8b \n" // + sr "movi v3.8b, #255 \n" // a = 255 "st4 {v0.b,v1.b,v2.b,v3.b}[0], [%2], #4 \n" // store 1 pixel. "b.ge 1b \n" "99: \n" : "+r"(src_argb), // %0 "+r"(src_argb1), // %1 "+r"(dst_argb), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", "v18"); } // Attenuate 8 pixels at a time. void ARGBAttenuateRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, int width) { asm volatile( // Attenuate 8 pixels. "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB "subs %w2, %w2, #8 \n" // 8 processed per loop. "umull v4.8h, v0.8b, v3.8b \n" // b * a "prfm pldl1keep, [%0, 448] \n" "umull v5.8h, v1.8b, v3.8b \n" // g * a "umull v6.8h, v2.8b, v3.8b \n" // r * a "uqrshrn v0.8b, v4.8h, #8 \n" // b >>= 8 "uqrshrn v1.8b, v5.8h, #8 \n" // g >>= 8 "uqrshrn v2.8b, v6.8h, #8 \n" // r >>= 8 "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6"); } // Quantize 8 ARGB pixels (32 bytes). // dst = (dst * scale >> 16) * interval_size + interval_offset; void ARGBQuantizeRow_NEON(uint8_t* dst_argb, int scale, int interval_size, int interval_offset, int width) { asm volatile( "dup v4.8h, %w2 \n" "ushr v4.8h, v4.8h, #1 \n" // scale >>= 1 "dup v5.8h, %w3 \n" // interval multiply. "dup v6.8h, %w4 \n" // interval add // 8 pixel loop. "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0] \n" // load 8 ARGB. "subs %w1, %w1, #8 \n" // 8 processed per loop. "uxtl v0.8h, v0.8b \n" // b (0 .. 255) "prfm pldl1keep, [%0, 448] \n" "uxtl v1.8h, v1.8b \n" "uxtl v2.8h, v2.8b \n" "sqdmulh v0.8h, v0.8h, v4.8h \n" // b * scale "sqdmulh v1.8h, v1.8h, v4.8h \n" // g "sqdmulh v2.8h, v2.8h, v4.8h \n" // r "mul v0.8h, v0.8h, v5.8h \n" // b * interval_size "mul v1.8h, v1.8h, v5.8h \n" // g "mul v2.8h, v2.8h, v5.8h \n" // r "add v0.8h, v0.8h, v6.8h \n" // b + interval_offset "add v1.8h, v1.8h, v6.8h \n" // g "add v2.8h, v2.8h, v6.8h \n" // r "uqxtn v0.8b, v0.8h \n" "uqxtn v1.8b, v1.8h \n" "uqxtn v2.8b, v2.8h \n" "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(dst_argb), // %0 "+r"(width) // %1 : "r"(scale), // %2 "r"(interval_size), // %3 "r"(interval_offset) // %4 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6"); } // Shade 8 pixels at a time by specified value. // NOTE vqrdmulh.s16 q10, q10, d0[0] must use a scaler register from 0 to 8. // Rounding in vqrdmulh does +1 to high if high bit of low s16 is set. void ARGBShadeRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, int width, uint32_t value) { asm volatile( "dup v0.4s, %w3 \n" // duplicate scale value. "zip1 v0.8b, v0.8b, v0.8b \n" // v0.8b aarrggbb. "ushr v0.8h, v0.8h, #1 \n" // scale / 2. // 8 pixel loop. "1: \n" "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%0], #32 \n" // load 8 ARGB "subs %w2, %w2, #8 \n" // 8 processed per loop. "uxtl v4.8h, v4.8b \n" // b (0 .. 255) "prfm pldl1keep, [%0, 448] \n" "uxtl v5.8h, v5.8b \n" "uxtl v6.8h, v6.8b \n" "uxtl v7.8h, v7.8b \n" "sqrdmulh v4.8h, v4.8h, v0.h[0] \n" // b * scale * 2 "sqrdmulh v5.8h, v5.8h, v0.h[1] \n" // g "sqrdmulh v6.8h, v6.8h, v0.h[2] \n" // r "sqrdmulh v7.8h, v7.8h, v0.h[3] \n" // a "uqxtn v4.8b, v4.8h \n" "uqxtn v5.8b, v5.8h \n" "uqxtn v6.8b, v6.8h \n" "uqxtn v7.8b, v7.8h \n" "st4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : "r"(value) // %3 : "cc", "memory", "v0", "v4", "v5", "v6", "v7"); } // Convert 8 ARGB pixels (64 bytes) to 8 Gray ARGB pixels // Similar to ARGBToYJ but stores ARGB. // C code is (29 * b + 150 * g + 77 * r + 128) >> 8; void ARGBGrayRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, int width) { asm volatile( "movi v24.8b, #29 \n" // B * 0.1140 coefficient "movi v25.8b, #150 \n" // G * 0.5870 coefficient "movi v26.8b, #77 \n" // R * 0.2990 coefficient "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB "subs %w2, %w2, #8 \n" // 8 processed per loop. "umull v4.8h, v0.8b, v24.8b \n" // B "prfm pldl1keep, [%0, 448] \n" "umlal v4.8h, v1.8b, v25.8b \n" // G "umlal v4.8h, v2.8b, v26.8b \n" // R "uqrshrn v0.8b, v4.8h, #8 \n" // 16 bit to 8 bit B "orr v1.8b, v0.8b, v0.8b \n" // G "orr v2.8b, v0.8b, v0.8b \n" // R "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 pixels. "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v24", "v25", "v26"); } // Convert 8 ARGB pixels (32 bytes) to 8 Sepia ARGB pixels. // b = (r * 35 + g * 68 + b * 17) >> 7 // g = (r * 45 + g * 88 + b * 22) >> 7 // r = (r * 50 + g * 98 + b * 24) >> 7 void ARGBSepiaRow_NEON(uint8_t* dst_argb, int width) { asm volatile( "movi v20.8b, #17 \n" // BB coefficient "movi v21.8b, #68 \n" // BG coefficient "movi v22.8b, #35 \n" // BR coefficient "movi v24.8b, #22 \n" // GB coefficient "movi v25.8b, #88 \n" // GG coefficient "movi v26.8b, #45 \n" // GR coefficient "movi v28.8b, #24 \n" // BB coefficient "movi v29.8b, #98 \n" // BG coefficient "movi v30.8b, #50 \n" // BR coefficient "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0] \n" // load 8 ARGB pixels. "subs %w1, %w1, #8 \n" // 8 processed per loop. "umull v4.8h, v0.8b, v20.8b \n" // B to Sepia B "prfm pldl1keep, [%0, 448] \n" "umlal v4.8h, v1.8b, v21.8b \n" // G "umlal v4.8h, v2.8b, v22.8b \n" // R "umull v5.8h, v0.8b, v24.8b \n" // B to Sepia G "umlal v5.8h, v1.8b, v25.8b \n" // G "umlal v5.8h, v2.8b, v26.8b \n" // R "umull v6.8h, v0.8b, v28.8b \n" // B to Sepia R "umlal v6.8h, v1.8b, v29.8b \n" // G "umlal v6.8h, v2.8b, v30.8b \n" // R "uqshrn v0.8b, v4.8h, #7 \n" // 16 bit to 8 bit B "uqshrn v1.8b, v5.8h, #7 \n" // 16 bit to 8 bit G "uqshrn v2.8b, v6.8h, #7 \n" // 16 bit to 8 bit R "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // store 8 pixels. "b.gt 1b \n" : "+r"(dst_argb), // %0 "+r"(width) // %1 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "v21", "v22", "v24", "v25", "v26", "v28", "v29", "v30"); } // Tranform 8 ARGB pixels (32 bytes) with color matrix. // TODO(fbarchard): Was same as Sepia except matrix is provided. This function // needs to saturate. Consider doing a non-saturating version. void ARGBColorMatrixRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, const int8_t* matrix_argb, int width) { asm volatile( "ld1 {v2.16b}, [%3] \n" // load 3 ARGB vectors. "sxtl v0.8h, v2.8b \n" // B,G coefficients s16. "sxtl2 v1.8h, v2.16b \n" // R,A coefficients s16. "1: \n" "ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8 ARGB "subs %w2, %w2, #8 \n" // 8 processed per loop. "uxtl v16.8h, v16.8b \n" // b (0 .. 255) 16 bit "prfm pldl1keep, [%0, 448] \n" "uxtl v17.8h, v17.8b \n" // g "uxtl v18.8h, v18.8b \n" // r "uxtl v19.8h, v19.8b \n" // a "mul v22.8h, v16.8h, v0.h[0] \n" // B = B * Matrix B "mul v23.8h, v16.8h, v0.h[4] \n" // G = B * Matrix G "mul v24.8h, v16.8h, v1.h[0] \n" // R = B * Matrix R "mul v25.8h, v16.8h, v1.h[4] \n" // A = B * Matrix A "mul v4.8h, v17.8h, v0.h[1] \n" // B += G * Matrix B "mul v5.8h, v17.8h, v0.h[5] \n" // G += G * Matrix G "mul v6.8h, v17.8h, v1.h[1] \n" // R += G * Matrix R "mul v7.8h, v17.8h, v1.h[5] \n" // A += G * Matrix A "sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B "sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G "sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R "sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A "mul v4.8h, v18.8h, v0.h[2] \n" // B += R * Matrix B "mul v5.8h, v18.8h, v0.h[6] \n" // G += R * Matrix G "mul v6.8h, v18.8h, v1.h[2] \n" // R += R * Matrix R "mul v7.8h, v18.8h, v1.h[6] \n" // A += R * Matrix A "sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B "sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G "sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R "sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A "mul v4.8h, v19.8h, v0.h[3] \n" // B += A * Matrix B "mul v5.8h, v19.8h, v0.h[7] \n" // G += A * Matrix G "mul v6.8h, v19.8h, v1.h[3] \n" // R += A * Matrix R "mul v7.8h, v19.8h, v1.h[7] \n" // A += A * Matrix A "sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B "sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G "sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R "sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A "sqshrun v16.8b, v22.8h, #6 \n" // 16 bit to 8 bit B "sqshrun v17.8b, v23.8h, #6 \n" // 16 bit to 8 bit G "sqshrun v18.8b, v24.8h, #6 \n" // 16 bit to 8 bit R "sqshrun v19.8b, v25.8h, #6 \n" // 16 bit to 8 bit A "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%1], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(dst_argb), // %1 "+r"(width) // %2 : "r"(matrix_argb) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", "v18", "v19", "v22", "v23", "v24", "v25"); } // TODO(fbarchard): fix vqshrun in ARGBMultiplyRow_NEON and reenable. // Multiply 2 rows of ARGB pixels together, 8 pixels at a time. void ARGBMultiplyRow_NEON(const uint8_t* src_argb, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { asm volatile( // 8 pixel loop. "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more "subs %w3, %w3, #8 \n" // 8 processed per loop. "umull v0.8h, v0.8b, v4.8b \n" // multiply B "prfm pldl1keep, [%0, 448] \n" "umull v1.8h, v1.8b, v5.8b \n" // multiply G "prfm pldl1keep, [%1, 448] \n" "umull v2.8h, v2.8b, v6.8b \n" // multiply R "umull v3.8h, v3.8b, v7.8b \n" // multiply A "rshrn v0.8b, v0.8h, #8 \n" // 16 bit to 8 bit B "rshrn v1.8b, v1.8h, #8 \n" // 16 bit to 8 bit G "rshrn v2.8b, v2.8h, #8 \n" // 16 bit to 8 bit R "rshrn v3.8b, v3.8h, #8 \n" // 16 bit to 8 bit A "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(src_argb1), // %1 "+r"(dst_argb), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } // Add 2 rows of ARGB pixels together, 8 pixels at a time. void ARGBAddRow_NEON(const uint8_t* src_argb, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { asm volatile( // 8 pixel loop. "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more "subs %w3, %w3, #8 \n" // 8 processed per loop. "uqadd v0.8b, v0.8b, v4.8b \n" "prfm pldl1keep, [%0, 448] \n" "uqadd v1.8b, v1.8b, v5.8b \n" "prfm pldl1keep, [%1, 448] \n" "uqadd v2.8b, v2.8b, v6.8b \n" "uqadd v3.8b, v3.8b, v7.8b \n" "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(src_argb1), // %1 "+r"(dst_argb), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } // Subtract 2 rows of ARGB pixels, 8 pixels at a time. void ARGBSubtractRow_NEON(const uint8_t* src_argb, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { asm volatile( // 8 pixel loop. "1: \n" "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more "subs %w3, %w3, #8 \n" // 8 processed per loop. "uqsub v0.8b, v0.8b, v4.8b \n" "prfm pldl1keep, [%0, 448] \n" "uqsub v1.8b, v1.8b, v5.8b \n" "prfm pldl1keep, [%1, 448] \n" "uqsub v2.8b, v2.8b, v6.8b \n" "uqsub v3.8b, v3.8b, v7.8b \n" "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_argb), // %0 "+r"(src_argb1), // %1 "+r"(dst_argb), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } // Adds Sobel X and Sobel Y and stores Sobel into ARGB. // A = 255 // R = Sobel // G = Sobel // B = Sobel void SobelRow_NEON(const uint8_t* src_sobelx, const uint8_t* src_sobely, uint8_t* dst_argb, int width) { asm volatile( "movi v3.8b, #255 \n" // alpha // 8 pixel loop. "1: \n" "ld1 {v0.8b}, [%0], #8 \n" // load 8 sobelx. "ld1 {v1.8b}, [%1], #8 \n" // load 8 sobely. "subs %w3, %w3, #8 \n" // 8 processed per loop. "uqadd v0.8b, v0.8b, v1.8b \n" // add "prfm pldl1keep, [%0, 448] \n" "orr v1.8b, v0.8b, v0.8b \n" "prfm pldl1keep, [%1, 448] \n" "orr v2.8b, v0.8b, v0.8b \n" "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_sobelx), // %0 "+r"(src_sobely), // %1 "+r"(dst_argb), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3"); } // Adds Sobel X and Sobel Y and stores Sobel into plane. void SobelToPlaneRow_NEON(const uint8_t* src_sobelx, const uint8_t* src_sobely, uint8_t* dst_y, int width) { asm volatile( // 16 pixel loop. "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 16 sobelx. "ld1 {v1.16b}, [%1], #16 \n" // load 16 sobely. "subs %w3, %w3, #16 \n" // 16 processed per loop. "prfm pldl1keep, [%0, 448] \n" "uqadd v0.16b, v0.16b, v1.16b \n" // add "prfm pldl1keep, [%1, 448] \n" "st1 {v0.16b}, [%2], #16 \n" // store 16 pixels. "b.gt 1b \n" : "+r"(src_sobelx), // %0 "+r"(src_sobely), // %1 "+r"(dst_y), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1"); } // Mixes Sobel X, Sobel Y and Sobel into ARGB. // A = 255 // R = Sobel X // G = Sobel // B = Sobel Y void SobelXYRow_NEON(const uint8_t* src_sobelx, const uint8_t* src_sobely, uint8_t* dst_argb, int width) { asm volatile( "movi v3.8b, #255 \n" // alpha // 8 pixel loop. "1: \n" "ld1 {v2.8b}, [%0], #8 \n" // load 8 sobelx. "ld1 {v0.8b}, [%1], #8 \n" // load 8 sobely. "subs %w3, %w3, #8 \n" // 8 processed per loop. "prfm pldl1keep, [%0, 448] \n" "uqadd v1.8b, v0.8b, v2.8b \n" // add "prfm pldl1keep, [%1, 448] \n" "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB "b.gt 1b \n" : "+r"(src_sobelx), // %0 "+r"(src_sobely), // %1 "+r"(dst_argb), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3"); } // SobelX as a matrix is // -1 0 1 // -2 0 2 // -1 0 1 void SobelXRow_NEON(const uint8_t* src_y0, const uint8_t* src_y1, const uint8_t* src_y2, uint8_t* dst_sobelx, int width) { asm volatile( "1: \n" "ld1 {v0.8b}, [%0],%5 \n" // top "ld1 {v1.8b}, [%0],%6 \n" "usubl v0.8h, v0.8b, v1.8b \n" "prfm pldl1keep, [%0, 448] \n" "ld1 {v2.8b}, [%1],%5 \n" // center * 2 "ld1 {v3.8b}, [%1],%6 \n" "usubl v1.8h, v2.8b, v3.8b \n" "prfm pldl1keep, [%1, 448] \n" "add v0.8h, v0.8h, v1.8h \n" "add v0.8h, v0.8h, v1.8h \n" "ld1 {v2.8b}, [%2],%5 \n" // bottom "ld1 {v3.8b}, [%2],%6 \n" "subs %w4, %w4, #8 \n" // 8 pixels "prfm pldl1keep, [%2, 448] \n" "usubl v1.8h, v2.8b, v3.8b \n" "add v0.8h, v0.8h, v1.8h \n" "abs v0.8h, v0.8h \n" "uqxtn v0.8b, v0.8h \n" "st1 {v0.8b}, [%3], #8 \n" // store 8 sobelx "b.gt 1b \n" : "+r"(src_y0), // %0 "+r"(src_y1), // %1 "+r"(src_y2), // %2 "+r"(dst_sobelx), // %3 "+r"(width) // %4 : "r"(2LL), // %5 "r"(6LL) // %6 : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } // SobelY as a matrix is // -1 -2 -1 // 0 0 0 // 1 2 1 void SobelYRow_NEON(const uint8_t* src_y0, const uint8_t* src_y1, uint8_t* dst_sobely, int width) { asm volatile( "1: \n" "ld1 {v0.8b}, [%0],%4 \n" // left "ld1 {v1.8b}, [%1],%4 \n" "usubl v0.8h, v0.8b, v1.8b \n" "ld1 {v2.8b}, [%0],%4 \n" // center * 2 "ld1 {v3.8b}, [%1],%4 \n" "usubl v1.8h, v2.8b, v3.8b \n" "add v0.8h, v0.8h, v1.8h \n" "add v0.8h, v0.8h, v1.8h \n" "ld1 {v2.8b}, [%0],%5 \n" // right "ld1 {v3.8b}, [%1],%5 \n" "subs %w3, %w3, #8 \n" // 8 pixels "usubl v1.8h, v2.8b, v3.8b \n" "prfm pldl1keep, [%0, 448] \n" "add v0.8h, v0.8h, v1.8h \n" "prfm pldl1keep, [%1, 448] \n" "abs v0.8h, v0.8h \n" "uqxtn v0.8b, v0.8h \n" "st1 {v0.8b}, [%2], #8 \n" // store 8 sobely "b.gt 1b \n" : "+r"(src_y0), // %0 "+r"(src_y1), // %1 "+r"(dst_sobely), // %2 "+r"(width) // %3 : "r"(1LL), // %4 "r"(6LL) // %5 : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List ); } // Caveat - rounds float to half float whereas scaling version truncates. void HalfFloat1Row_NEON(const uint16_t* src, uint16_t* dst, float /*unused*/, int width) { asm volatile( "1: \n" "ld1 {v1.16b}, [%0], #16 \n" // load 8 shorts "subs %w2, %w2, #8 \n" // 8 pixels per loop "uxtl v2.4s, v1.4h \n" // 8 int's "prfm pldl1keep, [%0, 448] \n" "uxtl2 v3.4s, v1.8h \n" "scvtf v2.4s, v2.4s \n" // 8 floats "scvtf v3.4s, v3.4s \n" "fcvtn v1.4h, v2.4s \n" // 8 half floats "fcvtn2 v1.8h, v3.4s \n" "st1 {v1.16b}, [%1], #16 \n" // store 8 shorts "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : : "cc", "memory", "v1", "v2", "v3"); } void HalfFloatRow_NEON(const uint16_t* src, uint16_t* dst, float scale, int width) { asm volatile( "1: \n" "ld1 {v1.16b}, [%0], #16 \n" // load 8 shorts "subs %w2, %w2, #8 \n" // 8 pixels per loop "uxtl v2.4s, v1.4h \n" // 8 int's "prfm pldl1keep, [%0, 448] \n" "uxtl2 v3.4s, v1.8h \n" "scvtf v2.4s, v2.4s \n" // 8 floats "scvtf v3.4s, v3.4s \n" "fmul v2.4s, v2.4s, %3.s[0] \n" // adjust exponent "fmul v3.4s, v3.4s, %3.s[0] \n" "uqshrn v1.4h, v2.4s, #13 \n" // isolate halffloat "uqshrn2 v1.8h, v3.4s, #13 \n" "st1 {v1.16b}, [%1], #16 \n" // store 8 shorts "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "w"(scale * 1.9259299444e-34f) // %3 : "cc", "memory", "v1", "v2", "v3"); } void ByteToFloatRow_NEON(const uint8_t* src, float* dst, float scale, int width) { asm volatile( "1: \n" "ld1 {v1.8b}, [%0], #8 \n" // load 8 bytes "subs %w2, %w2, #8 \n" // 8 pixels per loop "uxtl v1.8h, v1.8b \n" // 8 shorts "prfm pldl1keep, [%0, 448] \n" "uxtl v2.4s, v1.4h \n" // 8 ints "uxtl2 v3.4s, v1.8h \n" "scvtf v2.4s, v2.4s \n" // 8 floats "scvtf v3.4s, v3.4s \n" "fmul v2.4s, v2.4s, %3.s[0] \n" // scale "fmul v3.4s, v3.4s, %3.s[0] \n" "st1 {v2.16b, v3.16b}, [%1], #32 \n" // store 8 floats "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "w"(scale) // %3 : "cc", "memory", "v1", "v2", "v3"); } float ScaleMaxSamples_NEON(const float* src, float* dst, float scale, int width) { float fmax; asm volatile( "movi v5.4s, #0 \n" // max "movi v6.4s, #0 \n" "1: \n" "ld1 {v1.4s, v2.4s}, [%0], #32 \n" // load 8 samples "subs %w2, %w2, #8 \n" // 8 processed per loop "fmul v3.4s, v1.4s, %4.s[0] \n" // scale "prfm pldl1keep, [%0, 448] \n" "fmul v4.4s, v2.4s, %4.s[0] \n" // scale "fmax v5.4s, v5.4s, v1.4s \n" // max "fmax v6.4s, v6.4s, v2.4s \n" "st1 {v3.4s, v4.4s}, [%1], #32 \n" // store 8 samples "b.gt 1b \n" "fmax v5.4s, v5.4s, v6.4s \n" // max "fmaxv %s3, v5.4s \n" // signed max acculator : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width), // %2 "=w"(fmax) // %3 : "w"(scale) // %4 : "cc", "memory", "v1", "v2", "v3", "v4", "v5", "v6"); return fmax; } float ScaleSumSamples_NEON(const float* src, float* dst, float scale, int width) { float fsum; asm volatile( "movi v5.4s, #0 \n" // max "movi v6.4s, #0 \n" // max "1: \n" "ld1 {v1.4s, v2.4s}, [%0], #32 \n" // load 8 samples "subs %w2, %w2, #8 \n" // 8 processed per loop "fmul v3.4s, v1.4s, %4.s[0] \n" // scale "prfm pldl1keep, [%0, 448] \n" "fmul v4.4s, v2.4s, %4.s[0] \n" "fmla v5.4s, v1.4s, v1.4s \n" // sum of squares "fmla v6.4s, v2.4s, v2.4s \n" "st1 {v3.4s, v4.4s}, [%1], #32 \n" // store 8 samples "b.gt 1b \n" "faddp v5.4s, v5.4s, v6.4s \n" "faddp v5.4s, v5.4s, v5.4s \n" "faddp %3.4s, v5.4s, v5.4s \n" // sum : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width), // %2 "=w"(fsum) // %3 : "w"(scale) // %4 : "cc", "memory", "v1", "v2", "v3", "v4", "v5", "v6"); return fsum; } void ScaleSamples_NEON(const float* src, float* dst, float scale, int width) { asm volatile( "1: \n" "ld1 {v1.4s, v2.4s}, [%0], #32 \n" // load 8 samples "prfm pldl1keep, [%0, 448] \n" "subs %w2, %w2, #8 \n" // 8 processed per loop "fmul v1.4s, v1.4s, %3.s[0] \n" // scale "fmul v2.4s, v2.4s, %3.s[0] \n" // scale "st1 {v1.4s, v2.4s}, [%1], #32 \n" // store 8 samples "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "w"(scale) // %3 : "cc", "memory", "v1", "v2"); } // filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row. void GaussCol_NEON(const uint16_t* src0, const uint16_t* src1, const uint16_t* src2, const uint16_t* src3, const uint16_t* src4, uint32_t* dst, int width) { asm volatile( "movi v6.8h, #4 \n" // constant 4 "movi v7.8h, #6 \n" // constant 6 "1: \n" "ld1 {v1.8h}, [%0], #16 \n" // load 8 samples, 5 rows "ld1 {v2.8h}, [%4], #16 \n" "uaddl v0.4s, v1.4h, v2.4h \n" // * 1 "prfm pldl1keep, [%0, 448] \n" "uaddl2 v1.4s, v1.8h, v2.8h \n" // * 1 "ld1 {v2.8h}, [%1], #16 \n" "umlal v0.4s, v2.4h, v6.4h \n" // * 4 "prfm pldl1keep, [%1, 448] \n" "umlal2 v1.4s, v2.8h, v6.8h \n" // * 4 "ld1 {v2.8h}, [%2], #16 \n" "umlal v0.4s, v2.4h, v7.4h \n" // * 6 "prfm pldl1keep, [%2, 448] \n" "umlal2 v1.4s, v2.8h, v7.8h \n" // * 6 "ld1 {v2.8h}, [%3], #16 \n" "umlal v0.4s, v2.4h, v6.4h \n" // * 4 "prfm pldl1keep, [%3, 448] \n" "umlal2 v1.4s, v2.8h, v6.8h \n" // * 4 "subs %w6, %w6, #8 \n" // 8 processed per loop "st1 {v0.4s,v1.4s}, [%5], #32 \n" // store 8 samples "prfm pldl1keep, [%4, 448] \n" "b.gt 1b \n" : "+r"(src0), // %0 "+r"(src1), // %1 "+r"(src2), // %2 "+r"(src3), // %3 "+r"(src4), // %4 "+r"(dst), // %5 "+r"(width) // %6 : : "cc", "memory", "v0", "v1", "v2", "v6", "v7"); } // filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row. void GaussRow_NEON(const uint32_t* src, uint16_t* dst, int width) { const uint32_t* src1 = src + 1; const uint32_t* src2 = src + 2; const uint32_t* src3 = src + 3; asm volatile( "movi v6.4s, #4 \n" // constant 4 "movi v7.4s, #6 \n" // constant 6 "1: \n" "ld1 {v0.4s,v1.4s,v2.4s}, [%0], %6 \n" // load 12 source samples "add v0.4s, v0.4s, v1.4s \n" // * 1 "add v1.4s, v1.4s, v2.4s \n" // * 1 "ld1 {v2.4s,v3.4s}, [%2], #32 \n" "mla v0.4s, v2.4s, v7.4s \n" // * 6 "mla v1.4s, v3.4s, v7.4s \n" // * 6 "ld1 {v2.4s,v3.4s}, [%1], #32 \n" "ld1 {v4.4s,v5.4s}, [%3], #32 \n" "add v2.4s, v2.4s, v4.4s \n" // add rows for * 4 "add v3.4s, v3.4s, v5.4s \n" "prfm pldl1keep, [%0, 448] \n" "mla v0.4s, v2.4s, v6.4s \n" // * 4 "mla v1.4s, v3.4s, v6.4s \n" // * 4 "subs %w5, %w5, #8 \n" // 8 processed per loop "uqrshrn v0.4h, v0.4s, #8 \n" // round and pack "uqrshrn2 v0.8h, v1.4s, #8 \n" "st1 {v0.8h}, [%4], #16 \n" // store 8 samples "b.gt 1b \n" : "+r"(src), // %0 "+r"(src1), // %1 "+r"(src2), // %2 "+r"(src3), // %3 "+r"(dst), // %4 "+r"(width) // %5 : "r"(32LL) // %6 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } static const vecf32 kGaussCoefficients = {4.0f, 6.0f, 1.0f / 256.0f, 0.0f}; // filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row. void GaussCol_F32_NEON(const float* src0, const float* src1, const float* src2, const float* src3, const float* src4, float* dst, int width) { asm volatile( "ld2r {v6.4s, v7.4s}, [%7] \n" // constants 4 and 6 "1: \n" "ld1 {v0.4s, v1.4s}, [%0], #32 \n" // load 8 samples, 5 rows "ld1 {v2.4s, v3.4s}, [%1], #32 \n" "fmla v0.4s, v2.4s, v6.4s \n" // * 4 "ld1 {v4.4s, v5.4s}, [%2], #32 \n" "fmla v1.4s, v3.4s, v6.4s \n" "prfm pldl1keep, [%0, 448] \n" "fmla v0.4s, v4.4s, v7.4s \n" // * 6 "ld1 {v2.4s, v3.4s}, [%3], #32 \n" "fmla v1.4s, v5.4s, v7.4s \n" "prfm pldl1keep, [%1, 448] \n" "fmla v0.4s, v2.4s, v6.4s \n" // * 4 "ld1 {v4.4s, v5.4s}, [%4], #32 \n" "fmla v1.4s, v3.4s, v6.4s \n" "prfm pldl1keep, [%2, 448] \n" "fadd v0.4s, v0.4s, v4.4s \n" // * 1 "prfm pldl1keep, [%3, 448] \n" "fadd v1.4s, v1.4s, v5.4s \n" "prfm pldl1keep, [%4, 448] \n" "subs %w6, %w6, #8 \n" // 8 processed per loop "st1 {v0.4s, v1.4s}, [%5], #32 \n" // store 8 samples "b.gt 1b \n" : "+r"(src0), // %0 "+r"(src1), // %1 "+r"(src2), // %2 "+r"(src3), // %3 "+r"(src4), // %4 "+r"(dst), // %5 "+r"(width) // %6 : "r"(&kGaussCoefficients) // %7 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } // filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row. void GaussRow_F32_NEON(const float* src, float* dst, int width) { asm volatile( "ld3r {v6.4s, v7.4s, v8.4s}, [%3] \n" // constants 4, 6, 1/256 "1: \n" "ld1 {v0.4s, v1.4s, v2.4s}, [%0], %4 \n" // load 12 samples, 5 // rows "fadd v0.4s, v0.4s, v1.4s \n" // * 1 "ld1 {v4.4s, v5.4s}, [%0], %5 \n" "fadd v1.4s, v1.4s, v2.4s \n" "fmla v0.4s, v4.4s, v7.4s \n" // * 6 "ld1 {v2.4s, v3.4s}, [%0], %4 \n" "fmla v1.4s, v5.4s, v7.4s \n" "ld1 {v4.4s, v5.4s}, [%0], %6 \n" "fadd v2.4s, v2.4s, v4.4s \n" "fadd v3.4s, v3.4s, v5.4s \n" "fmla v0.4s, v2.4s, v6.4s \n" // * 4 "fmla v1.4s, v3.4s, v6.4s \n" "prfm pldl1keep, [%0, 448] \n" "fmul v0.4s, v0.4s, v8.4s \n" // / 256 "fmul v1.4s, v1.4s, v8.4s \n" "subs %w2, %w2, #8 \n" // 8 processed per loop "st1 {v0.4s, v1.4s}, [%1], #32 \n" // store 8 samples "b.gt 1b \n" : "+r"(src), // %0 "+r"(dst), // %1 "+r"(width) // %2 : "r"(&kGaussCoefficients), // %3 "r"(8LL), // %4 "r"(-4LL), // %5 "r"(20LL) // %6 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8"); } #if LIBYUV_USE_ST3 // Convert biplanar NV21 to packed YUV24 void NV21ToYUV24Row_NEON(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* dst_yuv24, int width) { asm volatile( "1: \n" "ld1 {v2.16b}, [%0], #16 \n" // load 16 Y values "ld2 {v0.8b, v1.8b}, [%1], #16 \n" // load 8 VU values "zip1 v0.16b, v0.16b, v0.16b \n" // replicate V values "prfm pldl1keep, [%0, 448] \n" "zip1 v1.16b, v1.16b, v1.16b \n" // replicate U values "prfm pldl1keep, [%1, 448] \n" "subs %w3, %w3, #16 \n" // 16 pixels per loop "st3 {v0.16b,v1.16b,v2.16b}, [%2], #48 \n" // store 16 YUV pixels "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(src_vu), // %1 "+r"(dst_yuv24), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2"); } #else static const uvec8 kYUV24Shuffle[3] = { {16, 17, 0, 16, 17, 1, 18, 19, 2, 18, 19, 3, 20, 21, 4, 20}, {21, 5, 22, 23, 6, 22, 23, 7, 24, 25, 8, 24, 25, 9, 26, 27}, {10, 26, 27, 11, 28, 29, 12, 28, 29, 13, 30, 31, 14, 30, 31, 15}}; // Convert biplanar NV21 to packed YUV24 // NV21 has VU in memory for chroma. // YUV24 is VUY in memory void NV21ToYUV24Row_NEON(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* dst_yuv24, int width) { asm volatile( "ld1 {v5.16b,v6.16b,v7.16b}, [%4] \n" // 3 shuffler constants "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 16 Y values "ld1 {v1.16b}, [%1], #16 \n" // load 8 VU values "tbl v2.16b, {v0.16b,v1.16b}, v5.16b \n" // weave into YUV24 "prfm pldl1keep, [%0, 448] \n" "tbl v3.16b, {v0.16b,v1.16b}, v6.16b \n" "prfm pldl1keep, [%1, 448] \n" "tbl v4.16b, {v0.16b,v1.16b}, v7.16b \n" "subs %w3, %w3, #16 \n" // 16 pixels per loop "st1 {v2.16b,v3.16b,v4.16b}, [%2], #48 \n" // store 16 YUV pixels "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(src_vu), // %1 "+r"(dst_yuv24), // %2 "+r"(width) // %3 : "r"(&kYUV24Shuffle[0]) // %4 : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } #endif // LIBYUV_USE_ST3 // Note ST2 8b version is faster than zip+ST1 // AYUV is VUYA in memory. UV for NV12 is UV order in memory. void AYUVToUVRow_NEON(const uint8_t* src_ayuv, int src_stride_ayuv, uint8_t* dst_uv, int width) { const uint8_t* src_ayuv_1 = src_ayuv + src_stride_ayuv; asm volatile( "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ayuv "uaddlp v0.8h, v0.16b \n" // V 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // U 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16 "uadalp v0.8h, v4.16b \n" // V 16 bytes -> 8 shorts. "uadalp v1.8h, v5.16b \n" // U 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uqrshrn v3.8b, v0.8h, #2 \n" // 2x2 average "uqrshrn v2.8b, v1.8h, #2 \n" "subs %w3, %w3, #16 \n" // 16 processed per loop. "st2 {v2.8b,v3.8b}, [%2], #16 \n" // store 8 pixels UV. "b.gt 1b \n" : "+r"(src_ayuv), // %0 "+r"(src_ayuv_1), // %1 "+r"(dst_uv), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } void AYUVToVURow_NEON(const uint8_t* src_ayuv, int src_stride_ayuv, uint8_t* dst_vu, int width) { const uint8_t* src_ayuv_1 = src_ayuv + src_stride_ayuv; asm volatile( "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ayuv "uaddlp v0.8h, v0.16b \n" // V 16 bytes -> 8 shorts. "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" // U 16 bytes -> 8 shorts. "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16 "uadalp v0.8h, v4.16b \n" // V 16 bytes -> 8 shorts. "uadalp v1.8h, v5.16b \n" // U 16 bytes -> 8 shorts. "prfm pldl1keep, [%1, 448] \n" "uqrshrn v0.8b, v0.8h, #2 \n" // 2x2 average "uqrshrn v1.8b, v1.8h, #2 \n" "subs %w3, %w3, #16 \n" // 16 processed per loop. "st2 {v0.8b,v1.8b}, [%2], #16 \n" // store 8 pixels VU. "b.gt 1b \n" : "+r"(src_ayuv), // %0 "+r"(src_ayuv_1), // %1 "+r"(dst_vu), // %2 "+r"(width) // %3 : : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"); } // Copy row of AYUV Y's into Y void AYUVToYRow_NEON(const uint8_t* src_ayuv, uint8_t* dst_y, int width) { asm volatile( "1: \n" "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 "subs %w2, %w2, #16 \n" // 16 pixels per loop "prfm pldl1keep, [%0, 448] \n" "st1 {v2.16b}, [%1], #16 \n" // store 16 Y pixels "b.gt 1b \n" : "+r"(src_ayuv), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : : "cc", "memory", "v0", "v1", "v2", "v3"); } // Shuffle table for swapping UV bytes. static const uvec8 kShuffleSwapUV = {1u, 0u, 3u, 2u, 5u, 4u, 7u, 6u, 9u, 8u, 11u, 10u, 13u, 12u, 15u, 14u}; // Convert UV plane of NV12 to VU of NV21. void SwapUVRow_NEON(const uint8_t* src_uv, uint8_t* dst_vu, int width) { asm volatile( "ld1 {v2.16b}, [%3] \n" // shuffler "1: \n" "ld1 {v0.16b}, [%0], 16 \n" // load 16 UV values "ld1 {v1.16b}, [%0], 16 \n" "subs %w2, %w2, #16 \n" // 16 pixels per loop "tbl v0.16b, {v0.16b}, v2.16b \n" "prfm pldl1keep, [%0, 448] \n" "tbl v1.16b, {v1.16b}, v2.16b \n" "stp q0, q1, [%1], 32 \n" // store 16 VU pixels "b.gt 1b \n" : "+r"(src_uv), // %0 "+r"(dst_vu), // %1 "+r"(width) // %2 : "r"(&kShuffleSwapUV) // %3 : "cc", "memory", "v0", "v1", "v2"); } void HalfMergeUVRow_NEON(const uint8_t* src_u, int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_uv, int width) { const uint8_t* src_u_1 = src_u + src_stride_u; const uint8_t* src_v_1 = src_v + src_stride_v; asm volatile( "1: \n" "ld1 {v0.16b}, [%0], #16 \n" // load 16 U values "ld1 {v1.16b}, [%2], #16 \n" // load 16 V values "ld1 {v2.16b}, [%1], #16 \n" "ld1 {v3.16b}, [%3], #16 \n" "uaddlp v0.8h, v0.16b \n" // half size "prfm pldl1keep, [%0, 448] \n" "uaddlp v1.8h, v1.16b \n" "prfm pldl1keep, [%2, 448] \n" "uadalp v0.8h, v2.16b \n" "prfm pldl1keep, [%1, 448] \n" "uadalp v1.8h, v3.16b \n" "prfm pldl1keep, [%3, 448] \n" "uqrshrn v0.8b, v0.8h, #2 \n" "uqrshrn v1.8b, v1.8h, #2 \n" "subs %w5, %w5, #16 \n" // 16 src pixels per loop "st2 {v0.8b, v1.8b}, [%4], #16 \n" // store 8 UV pixels "b.gt 1b \n" : "+r"(src_u), // %0 "+r"(src_u_1), // %1 "+r"(src_v), // %2 "+r"(src_v_1), // %3 "+r"(dst_uv), // %4 "+r"(width) // %5 : : "cc", "memory", "v0", "v1", "v2", "v3"); } void SplitUVRow_16_NEON(const uint16_t* src_uv, uint16_t* dst_u, uint16_t* dst_v, int depth, int width) { int shift = depth - 16; // Negative for right shift. asm volatile( "dup v2.8h, %w4 \n" "1: \n" "ld2 {v0.8h, v1.8h}, [%0], #32 \n" // load 8 UV "subs %w3, %w3, #8 \n" // 8 src pixels per loop "ushl v0.8h, v0.8h, v2.8h \n" "prfm pldl1keep, [%0, 448] \n" "ushl v1.8h, v1.8h, v2.8h \n" "st1 {v0.8h}, [%1], #16 \n" // store 8 U pixels "st1 {v1.8h}, [%2], #16 \n" // store 8 V pixels "b.gt 1b \n" : "+r"(src_uv), // %0 "+r"(dst_u), // %1 "+r"(dst_v), // %2 "+r"(width) // %3 : "r"(shift) // %4 : "cc", "memory", "v0", "v1", "v2"); } void MultiplyRow_16_NEON(const uint16_t* src_y, uint16_t* dst_y, int scale, int width) { asm volatile( "dup v2.8h, %w3 \n" "1: \n" "ldp q0, q1, [%0], #32 \n" "mul v0.8h, v0.8h, v2.8h \n" "prfm pldl1keep, [%0, 448] \n" "mul v1.8h, v1.8h, v2.8h \n" "stp q0, q1, [%1], #32 \n" // store 16 pixels "subs %w2, %w2, #16 \n" // 16 src pixels per loop "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : "r"(scale) // %3 : "cc", "memory", "v0", "v1", "v2"); } void DivideRow_16_NEON(const uint16_t* src_y, uint16_t* dst_y, int scale, int width) { asm volatile( "dup v4.8h, %w3 \n" "1: \n" "ldp q2, q3, [%0], #32 \n" "umull v0.4s, v2.4h, v4.4h \n" "umull2 v1.4s, v2.8h, v4.8h \n" "umull v2.4s, v3.4h, v4.4h \n" "umull2 v3.4s, v3.8h, v4.8h \n" "prfm pldl1keep, [%0, 448] \n" "shrn v0.4h, v0.4s, #16 \n" "shrn2 v0.8h, v1.4s, #16 \n" "shrn v1.4h, v2.4s, #16 \n" "shrn2 v1.8h, v3.4s, #16 \n" "stp q0, q1, [%1], #32 \n" // store 16 pixels "subs %w2, %w2, #16 \n" // 16 src pixels per loop "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : "r"(scale) // %3 : "cc", "memory", "v0", "v1", "v2", "v3", "v4"); } // Use scale to convert lsb formats to msb, depending how many bits there are: // 32768 = 9 bits = shr 1 // 16384 = 10 bits = shr 2 // 4096 = 12 bits = shr 4 // 256 = 16 bits = shr 8 void Convert16To8Row_NEON(const uint16_t* src_y, uint8_t* dst_y, int scale, int width) { int shift = 15 - __builtin_clz((int32_t)scale); // Negative shl is shr asm volatile( "dup v2.8h, %w3 \n" "1: \n" "ldp q0, q1, [%0], #32 \n" "ushl v0.8h, v0.8h, v2.8h \n" // shr = v2 is negative "ushl v1.8h, v1.8h, v2.8h \n" "prfm pldl1keep, [%0, 448] \n" "uqxtn v0.8b, v0.8h \n" "uqxtn2 v0.16b, v1.8h \n" "subs %w2, %w2, #16 \n" // 16 src pixels per loop "str q0, [%1], #16 \n" // store 16 pixels "b.gt 1b \n" : "+r"(src_y), // %0 "+r"(dst_y), // %1 "+r"(width) // %2 : "r"(shift) // %3 : "cc", "memory", "v0", "v1", "v2"); } #endif // !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif