/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* ** PR Atomic operations */ #include "pratom.h" #include "primpl.h" #include /* * The following is a fallback implementation that emulates * atomic operations for platforms without atomic operations. * If a platform has atomic operations, it should define the * macro _PR_HAVE_ATOMIC_OPS, and the following will not be * compiled in. */ #if !defined(_PR_HAVE_ATOMIC_OPS) #if defined(_PR_PTHREADS) /* * PR_AtomicDecrement() is used in NSPR's thread-specific data * destructor. Because thread-specific data destructors may be * invoked after a PR_Cleanup() call, we need an implementation * of the atomic routines that doesn't need NSPR to be initialized. */ /* * We use a set of locks for all the emulated atomic operations. * By hashing on the address of the integer to be locked the * contention between multiple threads should be lessened. * * The number of atomic locks can be set by the environment variable * NSPR_ATOMIC_HASH_LOCKS */ /* * lock counts should be a power of 2 */ #define DEFAULT_ATOMIC_LOCKS 16 /* should be in sync with the number of initializers below */ #define MAX_ATOMIC_LOCKS (4 * 1024) static pthread_mutex_t static_atomic_locks[DEFAULT_ATOMIC_LOCKS] = { PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER }; #ifdef DEBUG static PRInt32 static_hash_lock_counts[DEFAULT_ATOMIC_LOCKS]; static PRInt32 *hash_lock_counts = static_hash_lock_counts; #endif static PRUint32 num_atomic_locks = DEFAULT_ATOMIC_LOCKS; static pthread_mutex_t *atomic_locks = static_atomic_locks; static PRUint32 atomic_hash_mask = DEFAULT_ATOMIC_LOCKS - 1; #define _PR_HASH_FOR_LOCK(ptr) \ ((PRUint32) (((PRUptrdiff) (ptr) >> 2) ^ \ ((PRUptrdiff) (ptr) >> 8)) & \ atomic_hash_mask) void _PR_MD_INIT_ATOMIC() { char *eval; int index; PR_ASSERT(PR_FloorLog2(MAX_ATOMIC_LOCKS) == PR_CeilingLog2(MAX_ATOMIC_LOCKS)); PR_ASSERT(PR_FloorLog2(DEFAULT_ATOMIC_LOCKS) == PR_CeilingLog2(DEFAULT_ATOMIC_LOCKS)); if (((eval = getenv("NSPR_ATOMIC_HASH_LOCKS")) != NULL) && ((num_atomic_locks = atoi(eval)) != DEFAULT_ATOMIC_LOCKS)) { if (num_atomic_locks > MAX_ATOMIC_LOCKS) { num_atomic_locks = MAX_ATOMIC_LOCKS; } else if (num_atomic_locks < 1) { num_atomic_locks = 1; } else { num_atomic_locks = PR_FloorLog2(num_atomic_locks); num_atomic_locks = 1L << num_atomic_locks; } atomic_locks = (pthread_mutex_t *) PR_Malloc(sizeof(pthread_mutex_t) * num_atomic_locks); if (atomic_locks) { for (index = 0; index < num_atomic_locks; index++) { if (pthread_mutex_init(&atomic_locks[index], NULL)) { PR_DELETE(atomic_locks); atomic_locks = NULL; break; } } } #ifdef DEBUG if (atomic_locks) { hash_lock_counts = PR_CALLOC(num_atomic_locks * sizeof(PRInt32)); if (hash_lock_counts == NULL) { PR_DELETE(atomic_locks); atomic_locks = NULL; } } #endif if (atomic_locks == NULL) { /* * Use statically allocated locks */ atomic_locks = static_atomic_locks; num_atomic_locks = DEFAULT_ATOMIC_LOCKS; #ifdef DEBUG hash_lock_counts = static_hash_lock_counts; #endif } atomic_hash_mask = num_atomic_locks - 1; } PR_ASSERT(PR_FloorLog2(num_atomic_locks) == PR_CeilingLog2(num_atomic_locks)); } PRInt32 _PR_MD_ATOMIC_INCREMENT(PRInt32 *val) { PRInt32 rv; PRInt32 idx = _PR_HASH_FOR_LOCK(val); pthread_mutex_lock(&atomic_locks[idx]); rv = ++(*val); #ifdef DEBUG hash_lock_counts[idx]++; #endif pthread_mutex_unlock(&atomic_locks[idx]); return rv; } PRInt32 _PR_MD_ATOMIC_ADD(PRInt32 *ptr, PRInt32 val) { PRInt32 rv; PRInt32 idx = _PR_HASH_FOR_LOCK(ptr); pthread_mutex_lock(&atomic_locks[idx]); rv = ((*ptr) += val); #ifdef DEBUG hash_lock_counts[idx]++; #endif pthread_mutex_unlock(&atomic_locks[idx]); return rv; } PRInt32 _PR_MD_ATOMIC_DECREMENT(PRInt32 *val) { PRInt32 rv; PRInt32 idx = _PR_HASH_FOR_LOCK(val); pthread_mutex_lock(&atomic_locks[idx]); rv = --(*val); #ifdef DEBUG hash_lock_counts[idx]++; #endif pthread_mutex_unlock(&atomic_locks[idx]); return rv; } PRInt32 _PR_MD_ATOMIC_SET(PRInt32 *val, PRInt32 newval) { PRInt32 rv; PRInt32 idx = _PR_HASH_FOR_LOCK(val); pthread_mutex_lock(&atomic_locks[idx]); rv = *val; *val = newval; #ifdef DEBUG hash_lock_counts[idx]++; #endif pthread_mutex_unlock(&atomic_locks[idx]); return rv; } #else /* _PR_PTHREADS */ /* * We use a single lock for all the emulated atomic operations. * The lock contention should be acceptable. */ static PRLock *atomic_lock = NULL; void _PR_MD_INIT_ATOMIC(void) { if (atomic_lock == NULL) { atomic_lock = PR_NewLock(); } } PRInt32 _PR_MD_ATOMIC_INCREMENT(PRInt32 *val) { PRInt32 rv; if (!_pr_initialized) { _PR_ImplicitInitialization(); } PR_Lock(atomic_lock); rv = ++(*val); PR_Unlock(atomic_lock); return rv; } PRInt32 _PR_MD_ATOMIC_ADD(PRInt32 *ptr, PRInt32 val) { PRInt32 rv; if (!_pr_initialized) { _PR_ImplicitInitialization(); } PR_Lock(atomic_lock); rv = ((*ptr) += val); PR_Unlock(atomic_lock); return rv; } PRInt32 _PR_MD_ATOMIC_DECREMENT(PRInt32 *val) { PRInt32 rv; if (!_pr_initialized) { _PR_ImplicitInitialization(); } PR_Lock(atomic_lock); rv = --(*val); PR_Unlock(atomic_lock); return rv; } PRInt32 _PR_MD_ATOMIC_SET(PRInt32 *val, PRInt32 newval) { PRInt32 rv; if (!_pr_initialized) { _PR_ImplicitInitialization(); } PR_Lock(atomic_lock); rv = *val; *val = newval; PR_Unlock(atomic_lock); return rv; } #endif /* _PR_PTHREADS */ #endif /* !_PR_HAVE_ATOMIC_OPS */ void _PR_InitAtomic(void) { _PR_MD_INIT_ATOMIC(); } PR_IMPLEMENT(PRInt32) PR_AtomicIncrement(PRInt32 *val) { return _PR_MD_ATOMIC_INCREMENT(val); } PR_IMPLEMENT(PRInt32) PR_AtomicDecrement(PRInt32 *val) { return _PR_MD_ATOMIC_DECREMENT(val); } PR_IMPLEMENT(PRInt32) PR_AtomicSet(PRInt32 *val, PRInt32 newval) { return _PR_MD_ATOMIC_SET(val, newval); } PR_IMPLEMENT(PRInt32) PR_AtomicAdd(PRInt32 *ptr, PRInt32 val) { return _PR_MD_ATOMIC_ADD(ptr, val); } /* * For platforms, which don't support the CAS (compare-and-swap) instruction * (or an equivalent), the stack operations are implemented by use of PRLock */ PR_IMPLEMENT(PRStack *) PR_CreateStack(const char *stack_name) { PRStack *stack; if (!_pr_initialized) { _PR_ImplicitInitialization(); } if ((stack = PR_NEW(PRStack)) == NULL) { return NULL; } if (stack_name) { stack->prstk_name = (char *) PR_Malloc(strlen(stack_name) + 1); if (stack->prstk_name == NULL) { PR_DELETE(stack); return NULL; } strcpy(stack->prstk_name, stack_name); } else { stack->prstk_name = NULL; } #ifndef _PR_HAVE_ATOMIC_CAS stack->prstk_lock = PR_NewLock(); if (stack->prstk_lock == NULL) { PR_Free(stack->prstk_name); PR_DELETE(stack); return NULL; } #endif /* !_PR_HAVE_ATOMIC_CAS */ stack->prstk_head.prstk_elem_next = NULL; return stack; } PR_IMPLEMENT(PRStatus) PR_DestroyStack(PRStack *stack) { if (stack->prstk_head.prstk_elem_next != NULL) { PR_SetError(PR_INVALID_STATE_ERROR, 0); return PR_FAILURE; } if (stack->prstk_name) { PR_Free(stack->prstk_name); } #ifndef _PR_HAVE_ATOMIC_CAS PR_DestroyLock(stack->prstk_lock); #endif /* !_PR_HAVE_ATOMIC_CAS */ PR_DELETE(stack); return PR_SUCCESS; } #ifndef _PR_HAVE_ATOMIC_CAS PR_IMPLEMENT(void) PR_StackPush(PRStack *stack, PRStackElem *stack_elem) { PR_Lock(stack->prstk_lock); stack_elem->prstk_elem_next = stack->prstk_head.prstk_elem_next; stack->prstk_head.prstk_elem_next = stack_elem; PR_Unlock(stack->prstk_lock); return; } PR_IMPLEMENT(PRStackElem *) PR_StackPop(PRStack *stack) { PRStackElem *element; PR_Lock(stack->prstk_lock); element = stack->prstk_head.prstk_elem_next; if (element != NULL) { stack->prstk_head.prstk_elem_next = element->prstk_elem_next; element->prstk_elem_next = NULL; /* debugging aid */ } PR_Unlock(stack->prstk_lock); return element; } #endif /* !_PR_HAVE_ATOMIC_CAS */