/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ //! Computed types for CSS values that are related to transformations. use super::CSSFloat; use crate::values::animated::transform::{Perspective, Scale3D, Translate3D}; use crate::values::animated::ToAnimatedZero; use crate::values::computed::{Angle, Integer, Length, LengthPercentage, Number, Percentage}; use crate::values::generics::transform as generic; use crate::Zero; use euclid::default::{Transform3D, Vector3D}; pub use crate::values::generics::transform::TransformStyle; /// A single operation in a computed CSS `transform` pub type TransformOperation = generic::GenericTransformOperation; /// A computed CSS `transform` pub type Transform = generic::GenericTransform; /// The computed value of a CSS `` pub type TransformOrigin = generic::GenericTransformOrigin; /// The computed value of the `perspective()` transform function. pub type PerspectiveFunction = generic::PerspectiveFunction; /// A vector to represent the direction vector (rotate axis) for Rotate3D. pub type DirectionVector = Vector3D; impl TransformOrigin { /// Returns the initial computed value for `transform-origin`. #[inline] pub fn initial_value() -> Self { Self::new( LengthPercentage::new_percent(Percentage(0.5)), LengthPercentage::new_percent(Percentage(0.5)), Length::new(0.), ) } } /// computed value of matrix3d() pub type Matrix3D = generic::Matrix3D; /// computed value of matrix() pub type Matrix = generic::Matrix; // we rustfmt_skip here because we want the matrices to look like // matrices instead of being split across lines #[cfg_attr(rustfmt, rustfmt_skip)] impl Matrix3D { /// Get an identity matrix #[inline] pub fn identity() -> Self { Self { m11: 1.0, m12: 0.0, m13: 0.0, m14: 0.0, m21: 0.0, m22: 1.0, m23: 0.0, m24: 0.0, m31: 0.0, m32: 0.0, m33: 1.0, m34: 0.0, m41: 0., m42: 0., m43: 0., m44: 1.0 } } /// Convert to a 2D Matrix #[inline] pub fn into_2d(self) -> Result { if self.m13 == 0. && self.m23 == 0. && self.m31 == 0. && self.m32 == 0. && self.m33 == 1. && self.m34 == 0. && self.m14 == 0. && self.m24 == 0. && self.m43 == 0. && self.m44 == 1. { Ok(Matrix { a: self.m11, c: self.m21, e: self.m41, b: self.m12, d: self.m22, f: self.m42, }) } else { Err(()) } } /// Return true if this has 3D components. #[inline] pub fn is_3d(&self) -> bool { self.m13 != 0.0 || self.m14 != 0.0 || self.m23 != 0.0 || self.m24 != 0.0 || self.m31 != 0.0 || self.m32 != 0.0 || self.m33 != 1.0 || self.m34 != 0.0 || self.m43 != 0.0 || self.m44 != 1.0 } /// Return determinant value. #[inline] pub fn determinant(&self) -> CSSFloat { self.m14 * self.m23 * self.m32 * self.m41 - self.m13 * self.m24 * self.m32 * self.m41 - self.m14 * self.m22 * self.m33 * self.m41 + self.m12 * self.m24 * self.m33 * self.m41 + self.m13 * self.m22 * self.m34 * self.m41 - self.m12 * self.m23 * self.m34 * self.m41 - self.m14 * self.m23 * self.m31 * self.m42 + self.m13 * self.m24 * self.m31 * self.m42 + self.m14 * self.m21 * self.m33 * self.m42 - self.m11 * self.m24 * self.m33 * self.m42 - self.m13 * self.m21 * self.m34 * self.m42 + self.m11 * self.m23 * self.m34 * self.m42 + self.m14 * self.m22 * self.m31 * self.m43 - self.m12 * self.m24 * self.m31 * self.m43 - self.m14 * self.m21 * self.m32 * self.m43 + self.m11 * self.m24 * self.m32 * self.m43 + self.m12 * self.m21 * self.m34 * self.m43 - self.m11 * self.m22 * self.m34 * self.m43 - self.m13 * self.m22 * self.m31 * self.m44 + self.m12 * self.m23 * self.m31 * self.m44 + self.m13 * self.m21 * self.m32 * self.m44 - self.m11 * self.m23 * self.m32 * self.m44 - self.m12 * self.m21 * self.m33 * self.m44 + self.m11 * self.m22 * self.m33 * self.m44 } /// Transpose a matrix. #[inline] pub fn transpose(&self) -> Self { Self { m11: self.m11, m12: self.m21, m13: self.m31, m14: self.m41, m21: self.m12, m22: self.m22, m23: self.m32, m24: self.m42, m31: self.m13, m32: self.m23, m33: self.m33, m34: self.m43, m41: self.m14, m42: self.m24, m43: self.m34, m44: self.m44, } } /// Return inverse matrix. pub fn inverse(&self) -> Result { let mut det = self.determinant(); if det == 0.0 { return Err(()); } det = 1.0 / det; let x = Matrix3D { m11: det * (self.m23 * self.m34 * self.m42 - self.m24 * self.m33 * self.m42 + self.m24 * self.m32 * self.m43 - self.m22 * self.m34 * self.m43 - self.m23 * self.m32 * self.m44 + self.m22 * self.m33 * self.m44), m12: det * (self.m14 * self.m33 * self.m42 - self.m13 * self.m34 * self.m42 - self.m14 * self.m32 * self.m43 + self.m12 * self.m34 * self.m43 + self.m13 * self.m32 * self.m44 - self.m12 * self.m33 * self.m44), m13: det * (self.m13 * self.m24 * self.m42 - self.m14 * self.m23 * self.m42 + self.m14 * self.m22 * self.m43 - self.m12 * self.m24 * self.m43 - self.m13 * self.m22 * self.m44 + self.m12 * self.m23 * self.m44), m14: det * (self.m14 * self.m23 * self.m32 - self.m13 * self.m24 * self.m32 - self.m14 * self.m22 * self.m33 + self.m12 * self.m24 * self.m33 + self.m13 * self.m22 * self.m34 - self.m12 * self.m23 * self.m34), m21: det * (self.m24 * self.m33 * self.m41 - self.m23 * self.m34 * self.m41 - self.m24 * self.m31 * self.m43 + self.m21 * self.m34 * self.m43 + self.m23 * self.m31 * self.m44 - self.m21 * self.m33 * self.m44), m22: det * (self.m13 * self.m34 * self.m41 - self.m14 * self.m33 * self.m41 + self.m14 * self.m31 * self.m43 - self.m11 * self.m34 * self.m43 - self.m13 * self.m31 * self.m44 + self.m11 * self.m33 * self.m44), m23: det * (self.m14 * self.m23 * self.m41 - self.m13 * self.m24 * self.m41 - self.m14 * self.m21 * self.m43 + self.m11 * self.m24 * self.m43 + self.m13 * self.m21 * self.m44 - self.m11 * self.m23 * self.m44), m24: det * (self.m13 * self.m24 * self.m31 - self.m14 * self.m23 * self.m31 + self.m14 * self.m21 * self.m33 - self.m11 * self.m24 * self.m33 - self.m13 * self.m21 * self.m34 + self.m11 * self.m23 * self.m34), m31: det * (self.m22 * self.m34 * self.m41 - self.m24 * self.m32 * self.m41 + self.m24 * self.m31 * self.m42 - self.m21 * self.m34 * self.m42 - self.m22 * self.m31 * self.m44 + self.m21 * self.m32 * self.m44), m32: det * (self.m14 * self.m32 * self.m41 - self.m12 * self.m34 * self.m41 - self.m14 * self.m31 * self.m42 + self.m11 * self.m34 * self.m42 + self.m12 * self.m31 * self.m44 - self.m11 * self.m32 * self.m44), m33: det * (self.m12 * self.m24 * self.m41 - self.m14 * self.m22 * self.m41 + self.m14 * self.m21 * self.m42 - self.m11 * self.m24 * self.m42 - self.m12 * self.m21 * self.m44 + self.m11 * self.m22 * self.m44), m34: det * (self.m14 * self.m22 * self.m31 - self.m12 * self.m24 * self.m31 - self.m14 * self.m21 * self.m32 + self.m11 * self.m24 * self.m32 + self.m12 * self.m21 * self.m34 - self.m11 * self.m22 * self.m34), m41: det * (self.m23 * self.m32 * self.m41 - self.m22 * self.m33 * self.m41 - self.m23 * self.m31 * self.m42 + self.m21 * self.m33 * self.m42 + self.m22 * self.m31 * self.m43 - self.m21 * self.m32 * self.m43), m42: det * (self.m12 * self.m33 * self.m41 - self.m13 * self.m32 * self.m41 + self.m13 * self.m31 * self.m42 - self.m11 * self.m33 * self.m42 - self.m12 * self.m31 * self.m43 + self.m11 * self.m32 * self.m43), m43: det * (self.m13 * self.m22 * self.m41 - self.m12 * self.m23 * self.m41 - self.m13 * self.m21 * self.m42 + self.m11 * self.m23 * self.m42 + self.m12 * self.m21 * self.m43 - self.m11 * self.m22 * self.m43), m44: det * (self.m12 * self.m23 * self.m31 - self.m13 * self.m22 * self.m31 + self.m13 * self.m21 * self.m32 - self.m11 * self.m23 * self.m32 - self.m12 * self.m21 * self.m33 + self.m11 * self.m22 * self.m33), }; Ok(x) } /// Multiply `pin * self`. #[inline] pub fn pre_mul_point4(&self, pin: &[f32; 4]) -> [f32; 4] { [ pin[0] * self.m11 + pin[1] * self.m21 + pin[2] * self.m31 + pin[3] * self.m41, pin[0] * self.m12 + pin[1] * self.m22 + pin[2] * self.m32 + pin[3] * self.m42, pin[0] * self.m13 + pin[1] * self.m23 + pin[2] * self.m33 + pin[3] * self.m43, pin[0] * self.m14 + pin[1] * self.m24 + pin[2] * self.m34 + pin[3] * self.m44, ] } /// Return the multiplication of two 4x4 matrices. #[inline] pub fn multiply(&self, other: &Self) -> Self { Matrix3D { m11: self.m11 * other.m11 + self.m12 * other.m21 + self.m13 * other.m31 + self.m14 * other.m41, m12: self.m11 * other.m12 + self.m12 * other.m22 + self.m13 * other.m32 + self.m14 * other.m42, m13: self.m11 * other.m13 + self.m12 * other.m23 + self.m13 * other.m33 + self.m14 * other.m43, m14: self.m11 * other.m14 + self.m12 * other.m24 + self.m13 * other.m34 + self.m14 * other.m44, m21: self.m21 * other.m11 + self.m22 * other.m21 + self.m23 * other.m31 + self.m24 * other.m41, m22: self.m21 * other.m12 + self.m22 * other.m22 + self.m23 * other.m32 + self.m24 * other.m42, m23: self.m21 * other.m13 + self.m22 * other.m23 + self.m23 * other.m33 + self.m24 * other.m43, m24: self.m21 * other.m14 + self.m22 * other.m24 + self.m23 * other.m34 + self.m24 * other.m44, m31: self.m31 * other.m11 + self.m32 * other.m21 + self.m33 * other.m31 + self.m34 * other.m41, m32: self.m31 * other.m12 + self.m32 * other.m22 + self.m33 * other.m32 + self.m34 * other.m42, m33: self.m31 * other.m13 + self.m32 * other.m23 + self.m33 * other.m33 + self.m34 * other.m43, m34: self.m31 * other.m14 + self.m32 * other.m24 + self.m33 * other.m34 + self.m34 * other.m44, m41: self.m41 * other.m11 + self.m42 * other.m21 + self.m43 * other.m31 + self.m44 * other.m41, m42: self.m41 * other.m12 + self.m42 * other.m22 + self.m43 * other.m32 + self.m44 * other.m42, m43: self.m41 * other.m13 + self.m42 * other.m23 + self.m43 * other.m33 + self.m44 * other.m43, m44: self.m41 * other.m14 + self.m42 * other.m24 + self.m43 * other.m34 + self.m44 * other.m44, } } /// Scale the matrix by a factor. #[inline] pub fn scale_by_factor(&mut self, scaling_factor: CSSFloat) { self.m11 *= scaling_factor; self.m12 *= scaling_factor; self.m13 *= scaling_factor; self.m14 *= scaling_factor; self.m21 *= scaling_factor; self.m22 *= scaling_factor; self.m23 *= scaling_factor; self.m24 *= scaling_factor; self.m31 *= scaling_factor; self.m32 *= scaling_factor; self.m33 *= scaling_factor; self.m34 *= scaling_factor; self.m41 *= scaling_factor; self.m42 *= scaling_factor; self.m43 *= scaling_factor; self.m44 *= scaling_factor; } /// Return the matrix 3x3 part (top-left corner). /// This is used by retrieving the scale and shear factors /// during decomposing a 3d matrix. #[inline] pub fn get_matrix_3x3_part(&self) -> [[f32; 3]; 3] { [ [ self.m11, self.m12, self.m13 ], [ self.m21, self.m22, self.m23 ], [ self.m31, self.m32, self.m33 ], ] } /// Set perspective on the matrix. #[inline] pub fn set_perspective(&mut self, perspective: &Perspective) { self.m14 = perspective.0; self.m24 = perspective.1; self.m34 = perspective.2; self.m44 = perspective.3; } /// Apply translate on the matrix. #[inline] pub fn apply_translate(&mut self, translate: &Translate3D) { self.m41 += translate.0 * self.m11 + translate.1 * self.m21 + translate.2 * self.m31; self.m42 += translate.0 * self.m12 + translate.1 * self.m22 + translate.2 * self.m32; self.m43 += translate.0 * self.m13 + translate.1 * self.m23 + translate.2 * self.m33; self.m44 += translate.0 * self.m14 + translate.1 * self.m24 + translate.2 * self.m34; } /// Apply scale on the matrix. #[inline] pub fn apply_scale(&mut self, scale: &Scale3D) { self.m11 *= scale.0; self.m12 *= scale.0; self.m13 *= scale.0; self.m14 *= scale.0; self.m21 *= scale.1; self.m22 *= scale.1; self.m23 *= scale.1; self.m24 *= scale.1; self.m31 *= scale.2; self.m32 *= scale.2; self.m33 *= scale.2; self.m34 *= scale.2; } } #[cfg_attr(rustfmt, rustfmt_skip)] impl Matrix { #[inline] /// Get an identity matrix pub fn identity() -> Self { Self { a: 1., c: 0., /* 0 0*/ b: 0., d: 1., /* 0 0*/ /* 0 0 1 0 */ e: 0., f: 0., /* 0 1 */ } } } #[cfg_attr(rustfmt, rustfmt_skip)] impl From for Matrix3D { fn from(m: Matrix) -> Self { Self { m11: m.a, m12: m.b, m13: 0.0, m14: 0.0, m21: m.c, m22: m.d, m23: 0.0, m24: 0.0, m31: 0.0, m32: 0.0, m33: 1.0, m34: 0.0, m41: m.e, m42: m.f, m43: 0.0, m44: 1.0 } } } #[cfg_attr(rustfmt, rustfmt_skip)] impl From> for Matrix3D { #[inline] fn from(m: Transform3D) -> Self { Matrix3D { m11: m.m11, m12: m.m12, m13: m.m13, m14: m.m14, m21: m.m21, m22: m.m22, m23: m.m23, m24: m.m24, m31: m.m31, m32: m.m32, m33: m.m33, m34: m.m34, m41: m.m41, m42: m.m42, m43: m.m43, m44: m.m44 } } } impl TransformOperation { /// Convert to a Translate3D. /// /// Must be called on a Translate function pub fn to_translate_3d(&self) -> Self { match *self { generic::TransformOperation::Translate3D(..) => self.clone(), generic::TransformOperation::TranslateX(ref x) => { generic::TransformOperation::Translate3D( x.clone(), LengthPercentage::zero(), Length::zero(), ) }, generic::TransformOperation::Translate(ref x, ref y) => { generic::TransformOperation::Translate3D(x.clone(), y.clone(), Length::zero()) }, generic::TransformOperation::TranslateY(ref y) => { generic::TransformOperation::Translate3D( LengthPercentage::zero(), y.clone(), Length::zero(), ) }, generic::TransformOperation::TranslateZ(ref z) => { generic::TransformOperation::Translate3D( LengthPercentage::zero(), LengthPercentage::zero(), z.clone(), ) }, _ => unreachable!(), } } /// Convert to a Rotate3D. /// /// Must be called on a Rotate function. pub fn to_rotate_3d(&self) -> Self { match *self { generic::TransformOperation::Rotate3D(..) => self.clone(), generic::TransformOperation::RotateZ(ref angle) | generic::TransformOperation::Rotate(ref angle) => { generic::TransformOperation::Rotate3D(0., 0., 1., angle.clone()) }, generic::TransformOperation::RotateX(ref angle) => { generic::TransformOperation::Rotate3D(1., 0., 0., angle.clone()) }, generic::TransformOperation::RotateY(ref angle) => { generic::TransformOperation::Rotate3D(0., 1., 0., angle.clone()) }, _ => unreachable!(), } } /// Convert to a Scale3D. /// /// Must be called on a Scale function pub fn to_scale_3d(&self) -> Self { match *self { generic::TransformOperation::Scale3D(..) => self.clone(), generic::TransformOperation::Scale(x, y) => { generic::TransformOperation::Scale3D(x, y, 1.) }, generic::TransformOperation::ScaleX(x) => { generic::TransformOperation::Scale3D(x, 1., 1.) }, generic::TransformOperation::ScaleY(y) => { generic::TransformOperation::Scale3D(1., y, 1.) }, generic::TransformOperation::ScaleZ(z) => { generic::TransformOperation::Scale3D(1., 1., z) }, _ => unreachable!(), } } } /// Build an equivalent 'identity transform function list' based /// on an existing transform list. /// http://dev.w3.org/csswg/css-transforms/#none-transform-animation impl ToAnimatedZero for TransformOperation { fn to_animated_zero(&self) -> Result { match *self { generic::TransformOperation::Matrix3D(..) => { Ok(generic::TransformOperation::Matrix3D(Matrix3D::identity())) }, generic::TransformOperation::Matrix(..) => { Ok(generic::TransformOperation::Matrix(Matrix::identity())) }, generic::TransformOperation::Skew(sx, sy) => Ok(generic::TransformOperation::Skew( sx.to_animated_zero()?, sy.to_animated_zero()?, )), generic::TransformOperation::SkewX(s) => { Ok(generic::TransformOperation::SkewX(s.to_animated_zero()?)) }, generic::TransformOperation::SkewY(s) => { Ok(generic::TransformOperation::SkewY(s.to_animated_zero()?)) }, generic::TransformOperation::Translate3D(ref tx, ref ty, ref tz) => { Ok(generic::TransformOperation::Translate3D( tx.to_animated_zero()?, ty.to_animated_zero()?, tz.to_animated_zero()?, )) }, generic::TransformOperation::Translate(ref tx, ref ty) => { Ok(generic::TransformOperation::Translate( tx.to_animated_zero()?, ty.to_animated_zero()?, )) }, generic::TransformOperation::TranslateX(ref t) => Ok( generic::TransformOperation::TranslateX(t.to_animated_zero()?), ), generic::TransformOperation::TranslateY(ref t) => Ok( generic::TransformOperation::TranslateY(t.to_animated_zero()?), ), generic::TransformOperation::TranslateZ(ref t) => Ok( generic::TransformOperation::TranslateZ(t.to_animated_zero()?), ), generic::TransformOperation::Scale3D(..) => { Ok(generic::TransformOperation::Scale3D(1.0, 1.0, 1.0)) }, generic::TransformOperation::Scale(_, _) => { Ok(generic::TransformOperation::Scale(1.0, 1.0)) }, generic::TransformOperation::ScaleX(..) => Ok(generic::TransformOperation::ScaleX(1.0)), generic::TransformOperation::ScaleY(..) => Ok(generic::TransformOperation::ScaleY(1.0)), generic::TransformOperation::ScaleZ(..) => Ok(generic::TransformOperation::ScaleZ(1.0)), generic::TransformOperation::Rotate3D(x, y, z, a) => { let (x, y, z, _) = generic::get_normalized_vector_and_angle(x, y, z, a); Ok(generic::TransformOperation::Rotate3D( x, y, z, Angle::zero(), )) }, generic::TransformOperation::RotateX(_) => { Ok(generic::TransformOperation::RotateX(Angle::zero())) }, generic::TransformOperation::RotateY(_) => { Ok(generic::TransformOperation::RotateY(Angle::zero())) }, generic::TransformOperation::RotateZ(_) => { Ok(generic::TransformOperation::RotateZ(Angle::zero())) }, generic::TransformOperation::Rotate(_) => { Ok(generic::TransformOperation::Rotate(Angle::zero())) }, generic::TransformOperation::Perspective(_) => Ok( generic::TransformOperation::Perspective(generic::PerspectiveFunction::None), ), generic::TransformOperation::AccumulateMatrix { .. } | generic::TransformOperation::InterpolateMatrix { .. } => { // AccumulateMatrix/InterpolateMatrix: We do interpolation on // AccumulateMatrix/InterpolateMatrix by reading it as a ComputedMatrix // (with layout information), and then do matrix interpolation. // // Therefore, we use an identity matrix to represent the identity transform list. // http://dev.w3.org/csswg/css-transforms/#identity-transform-function Ok(generic::TransformOperation::Matrix3D(Matrix3D::identity())) }, } } } impl ToAnimatedZero for Transform { #[inline] fn to_animated_zero(&self) -> Result { Ok(generic::Transform( self.0 .iter() .map(|op| op.to_animated_zero()) .collect::, _>>()?, )) } } /// A computed CSS `rotate` pub type Rotate = generic::GenericRotate; /// A computed CSS `translate` pub type Translate = generic::GenericTranslate; /// A computed CSS `scale` pub type Scale = generic::GenericScale;