// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // XYB -> linear sRGB helper function. #if defined(LIB_JXL_DEC_XYB_INL_H_) == defined(HWY_TARGET_TOGGLE) #ifdef LIB_JXL_DEC_XYB_INL_H_ #undef LIB_JXL_DEC_XYB_INL_H_ #else #define LIB_JXL_DEC_XYB_INL_H_ #endif #include #include "lib/jxl/dec_xyb.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { namespace { // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Add; using hwy::HWY_NAMESPACE::Broadcast; using hwy::HWY_NAMESPACE::Mul; using hwy::HWY_NAMESPACE::MulAdd; using hwy::HWY_NAMESPACE::Sub; // Inverts the pixel-wise RGB->XYB conversion in OpsinDynamicsImage() (including // the gamma mixing and simple gamma). Avoids clamping to [0, 1] - out of (sRGB) // gamut values may be in-gamut after transforming to a wider space. // "inverse_matrix" points to 9 broadcasted vectors, which are the 3x3 entries // of the (row-major) opsin absorbance matrix inverse. Pre-multiplying its // entries by c is equivalent to multiplying linear_* by c afterwards. template HWY_INLINE HWY_MAYBE_UNUSED void XybToRgb(D d, const V opsin_x, const V opsin_y, const V opsin_b, const OpsinParams& opsin_params, V* const HWY_RESTRICT linear_r, V* const HWY_RESTRICT linear_g, V* const HWY_RESTRICT linear_b) { #if HWY_TARGET == HWY_SCALAR const auto neg_bias_r = Set(d, opsin_params.opsin_biases[0]); const auto neg_bias_g = Set(d, opsin_params.opsin_biases[1]); const auto neg_bias_b = Set(d, opsin_params.opsin_biases[2]); #else const auto neg_bias_rgb = LoadDup128(d, opsin_params.opsin_biases); const auto neg_bias_r = Broadcast<0>(neg_bias_rgb); const auto neg_bias_g = Broadcast<1>(neg_bias_rgb); const auto neg_bias_b = Broadcast<2>(neg_bias_rgb); #endif // Color space: XYB -> RGB auto gamma_r = Add(opsin_y, opsin_x); auto gamma_g = Sub(opsin_y, opsin_x); auto gamma_b = opsin_b; gamma_r = Sub(gamma_r, Set(d, opsin_params.opsin_biases_cbrt[0])); gamma_g = Sub(gamma_g, Set(d, opsin_params.opsin_biases_cbrt[1])); gamma_b = Sub(gamma_b, Set(d, opsin_params.opsin_biases_cbrt[2])); // Undo gamma compression: linear = gamma^3 for efficiency. const auto gamma_r2 = Mul(gamma_r, gamma_r); const auto gamma_g2 = Mul(gamma_g, gamma_g); const auto gamma_b2 = Mul(gamma_b, gamma_b); const auto mixed_r = MulAdd(gamma_r2, gamma_r, neg_bias_r); const auto mixed_g = MulAdd(gamma_g2, gamma_g, neg_bias_g); const auto mixed_b = MulAdd(gamma_b2, gamma_b, neg_bias_b); const float* HWY_RESTRICT inverse_matrix = opsin_params.inverse_opsin_matrix; // Unmix (multiply by 3x3 inverse_matrix) // TODO(eustas): ref would be more readable than pointer *linear_r = Mul(LoadDup128(d, &inverse_matrix[0 * 4]), mixed_r); *linear_g = Mul(LoadDup128(d, &inverse_matrix[3 * 4]), mixed_r); *linear_b = Mul(LoadDup128(d, &inverse_matrix[6 * 4]), mixed_r); *linear_r = MulAdd(LoadDup128(d, &inverse_matrix[1 * 4]), mixed_g, *linear_r); *linear_g = MulAdd(LoadDup128(d, &inverse_matrix[4 * 4]), mixed_g, *linear_g); *linear_b = MulAdd(LoadDup128(d, &inverse_matrix[7 * 4]), mixed_g, *linear_b); *linear_r = MulAdd(LoadDup128(d, &inverse_matrix[2 * 4]), mixed_b, *linear_r); *linear_g = MulAdd(LoadDup128(d, &inverse_matrix[5 * 4]), mixed_b, *linear_g); *linear_b = MulAdd(LoadDup128(d, &inverse_matrix[8 * 4]), mixed_b, *linear_b); } static inline HWY_MAYBE_UNUSED bool HasFastXYBTosRGB8() { #if HWY_TARGET == HWY_NEON return true; #else return false; #endif } static inline HWY_MAYBE_UNUSED void FastXYBTosRGB8(const float* input[4], uint8_t* output, bool is_rgba, size_t xsize) { // This function is very NEON-specific. As such, it uses intrinsics directly. #if HWY_TARGET == HWY_NEON // WARNING: doing fixed point arithmetic correctly is very complicated. // Changes to this function should be thoroughly tested. // Note that the input is assumed to have 13 bits of mantissa, and the output // will have 14 bits. auto srgb_tf = [&](int16x8_t v16) { int16x8_t clz = vclzq_s16(v16); // Convert to [0.25, 0.5) range. int16x8_t v025_05_16 = vqshlq_s16(v16, vqsubq_s16(clz, vdupq_n_s16(2))); // third degree polynomial approximation between 0.25 and 0.5 // of 1.055/2^(7/2.4) * x^(1/2.4) / 32. // poly ~ ((0.95x-1.75)*x+1.72)*x+0.29 // We actually compute ~ ((0.47x-0.87)*x+0.86)*(2x)+0.29 as 1.75 and 1.72 // overflow our fixed point representation. int16x8_t twov = vqaddq_s16(v025_05_16, v025_05_16); // 0.47 * x int16x8_t step1 = vqrdmulhq_n_s16(v025_05_16, 15706); // - 0.87 int16x8_t step2 = vsubq_s16(step1, vdupq_n_s16(28546)); // * x int16x8_t step3 = vqrdmulhq_s16(step2, v025_05_16); // + 0.86 int16x8_t step4 = vaddq_s16(step3, vdupq_n_s16(28302)); // * 2x int16x8_t step5 = vqrdmulhq_s16(step4, twov); // + 0.29 int16x8_t mul16 = vaddq_s16(step5, vdupq_n_s16(9485)); int16x8_t exp16 = vsubq_s16(vdupq_n_s16(11), clz); // Compute 2**(1/2.4*exp16)/32. Values of exp16 that would overflow are // capped to 1. // Generated with the following Python script: // a = [] // b = [] // // for i in range(0, 16): // v = 2**(5/12.*i) // v /= 16 // v *= 256 * 128 // v = int(v) // a.append(v // 256) // b.append(v % 256) // // print(", ".join("0x%02x" % x for x in a)) // // print(", ".join("0x%02x" % x for x in b)) HWY_ALIGN constexpr uint8_t k2to512powersm1div32_high[16] = { 0x08, 0x0a, 0x0e, 0x13, 0x19, 0x21, 0x2d, 0x3c, 0x50, 0x6b, 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, }; HWY_ALIGN constexpr uint8_t k2to512powersm1div32_low[16] = { 0x00, 0xad, 0x41, 0x06, 0x65, 0xe7, 0x41, 0x68, 0xa2, 0xa2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; // Using the highway implementation here since vqtbl1q is aarch64-only. using hwy::HWY_NAMESPACE::Vec128; uint8x16_t pow_low = TableLookupBytes( Vec128(vld1q_u8(k2to512powersm1div32_low)), Vec128(vreinterpretq_u8_s16(exp16))) .raw; uint8x16_t pow_high = TableLookupBytes( Vec128(vld1q_u8(k2to512powersm1div32_high)), Vec128(vreinterpretq_u8_s16(exp16))) .raw; int16x8_t pow16 = vreinterpretq_s16_u16(vsliq_n_u16( vreinterpretq_u16_u8(pow_low), vreinterpretq_u16_u8(pow_high), 8)); // approximation of v * 12.92, divided by 2 // Note that our input is using 13 mantissa bits instead of 15. int16x8_t v16_linear = vrshrq_n_s16(vmulq_n_s16(v16, 826), 5); // 1.055*pow(v, 1/2.4) - 0.055, divided by 2 auto v16_pow = vsubq_s16(vqrdmulhq_s16(mul16, pow16), vdupq_n_s16(901)); // > 0.0031308f (note that v16 has 13 mantissa bits) return vbslq_s16(vcgeq_s16(v16, vdupq_n_s16(26)), v16_pow, v16_linear); }; const float* JXL_RESTRICT row_in_x = input[0]; const float* JXL_RESTRICT row_in_y = input[1]; const float* JXL_RESTRICT row_in_b = input[2]; const float* JXL_RESTRICT row_in_a = input[3]; for (size_t x = 0; x < xsize; x += 8) { // Normal ranges for xyb for in-gamut sRGB colors: // x: -0.015386 0.028100 // y: 0.000000 0.845308 // b: 0.000000 0.845308 // We actually want x * 8 to have some extra precision. // TODO(veluca): consider different approaches here, like vld1q_f32_x2. float32x4_t opsin_x_left = vld1q_f32(row_in_x + x); int16x4_t opsin_x16_times8_left = vqmovn_s32(vcvtq_n_s32_f32(opsin_x_left, 18)); float32x4_t opsin_x_right = vld1q_f32(row_in_x + x + (x + 4 < xsize ? 4 : 0)); int16x4_t opsin_x16_times8_right = vqmovn_s32(vcvtq_n_s32_f32(opsin_x_right, 18)); int16x8_t opsin_x16_times8 = vcombine_s16(opsin_x16_times8_left, opsin_x16_times8_right); float32x4_t opsin_y_left = vld1q_f32(row_in_y + x); int16x4_t opsin_y16_left = vqmovn_s32(vcvtq_n_s32_f32(opsin_y_left, 15)); float32x4_t opsin_y_right = vld1q_f32(row_in_y + x + (x + 4 < xsize ? 4 : 0)); int16x4_t opsin_y16_right = vqmovn_s32(vcvtq_n_s32_f32(opsin_y_right, 15)); int16x8_t opsin_y16 = vcombine_s16(opsin_y16_left, opsin_y16_right); float32x4_t opsin_b_left = vld1q_f32(row_in_b + x); int16x4_t opsin_b16_left = vqmovn_s32(vcvtq_n_s32_f32(opsin_b_left, 15)); float32x4_t opsin_b_right = vld1q_f32(row_in_b + x + (x + 4 < xsize ? 4 : 0)); int16x4_t opsin_b16_right = vqmovn_s32(vcvtq_n_s32_f32(opsin_b_right, 15)); int16x8_t opsin_b16 = vcombine_s16(opsin_b16_left, opsin_b16_right); int16x8_t neg_bias16 = vdupq_n_s16(-124); // -0.0037930732552754493 int16x8_t neg_bias_cbrt16 = vdupq_n_s16(-5110); // -0.155954201 int16x8_t neg_bias_half16 = vdupq_n_s16(-62); // Color space: XYB -> RGB // Compute ((y+x-bias_cbrt)^3-(y-x-bias_cbrt)^3)/2, // ((y+x-bias_cbrt)^3+(y-x-bias_cbrt)^3)/2+bias, (b-bias_cbrt)^3+bias. // Note that ignoring x2 in the formulas below (as x << y) results in // errors of at least 3 in the final sRGB values. int16x8_t opsin_yp16 = vqsubq_s16(opsin_y16, neg_bias_cbrt16); int16x8_t ysq16 = vqrdmulhq_s16(opsin_yp16, opsin_yp16); int16x8_t twentyfourx16 = vmulq_n_s16(opsin_x16_times8, 3); int16x8_t twentyfourxy16 = vqrdmulhq_s16(opsin_yp16, twentyfourx16); int16x8_t threexsq16 = vrshrq_n_s16(vqrdmulhq_s16(opsin_x16_times8, twentyfourx16), 6); // We can ignore x^3 here. Note that this is multiplied by 8. int16x8_t mixed_rmg16 = vqrdmulhq_s16(twentyfourxy16, opsin_yp16); int16x8_t mixed_rpg_sos_half = vhaddq_s16(ysq16, threexsq16); int16x8_t mixed_rpg16 = vhaddq_s16( vqrdmulhq_s16(opsin_yp16, mixed_rpg_sos_half), neg_bias_half16); int16x8_t gamma_b16 = vqsubq_s16(opsin_b16, neg_bias_cbrt16); int16x8_t gamma_bsq16 = vqrdmulhq_s16(gamma_b16, gamma_b16); int16x8_t gamma_bcb16 = vqrdmulhq_s16(gamma_bsq16, gamma_b16); int16x8_t mixed_b16 = vqaddq_s16(gamma_bcb16, neg_bias16); // mixed_rpg and mixed_b are in 0-1 range. // mixed_rmg has a smaller range (-0.035 to 0.035 for valid sRGB). Note // that at this point it is already multiplied by 8. // We multiply all the mixed values by 1/4 (i.e. shift them to 13-bit // fixed point) to ensure intermediate quantities are in range. Note that // r-g is not shifted, and was x8 before here; this corresponds to a x32 // overall multiplicative factor and ensures that all the matrix constants // are in 0-1 range. // Similarly, mixed_rpg16 is already multiplied by 1/4 because of the two // vhadd + using neg_bias_half. mixed_b16 = vshrq_n_s16(mixed_b16, 2); // Unmix (multiply by 3x3 inverse_matrix) // For increased precision, we use a matrix for converting from // ((mixed_r - mixed_g)/2, (mixed_r + mixed_g)/2, mixed_b) to rgb. This // avoids cancellation effects when computing (y+x)^3-(y-x)^3. // We compute mixed_rpg - mixed_b because the (1+c)*mixed_rpg - c * // mixed_b pattern is repeated frequently in the code below. This allows // us to save a multiply per channel, and removes the presence of // some constants above 1. Moreover, mixed_rmg - mixed_b is in (-1, 1) // range, so the subtraction is safe. // All the magic-looking constants here are derived by computing the // inverse opsin matrix for the transformation modified as described // above. // Precomputation common to multiple color values. int16x8_t mixed_rpgmb16 = vqsubq_s16(mixed_rpg16, mixed_b16); int16x8_t mixed_rpgmb_times_016 = vqrdmulhq_n_s16(mixed_rpgmb16, 5394); int16x8_t mixed_rg16 = vqaddq_s16(mixed_rpgmb_times_016, mixed_rpg16); // R int16x8_t linear_r16 = vqaddq_s16(mixed_rg16, vqrdmulhq_n_s16(mixed_rmg16, 21400)); // G int16x8_t linear_g16 = vqaddq_s16(mixed_rg16, vqrdmulhq_n_s16(mixed_rmg16, -7857)); // B int16x8_t linear_b16 = vqrdmulhq_n_s16(mixed_rpgmb16, -30996); linear_b16 = vqaddq_s16(linear_b16, mixed_b16); linear_b16 = vqaddq_s16(linear_b16, vqrdmulhq_n_s16(mixed_rmg16, -6525)); // Apply SRGB transfer function. int16x8_t r = srgb_tf(linear_r16); int16x8_t g = srgb_tf(linear_g16); int16x8_t b = srgb_tf(linear_b16); uint8x8_t r8 = vqmovun_s16(vrshrq_n_s16(vsubq_s16(r, vshrq_n_s16(r, 8)), 6)); uint8x8_t g8 = vqmovun_s16(vrshrq_n_s16(vsubq_s16(g, vshrq_n_s16(g, 8)), 6)); uint8x8_t b8 = vqmovun_s16(vrshrq_n_s16(vsubq_s16(b, vshrq_n_s16(b, 8)), 6)); size_t n = xsize - x; if (is_rgba) { float32x4_t a_f32_left = row_in_a ? vld1q_f32(row_in_a + x) : vdupq_n_f32(1.0f); float32x4_t a_f32_right = row_in_a ? vld1q_f32(row_in_a + x + (x + 4 < xsize ? 4 : 0)) : vdupq_n_f32(1.0f); int16x4_t a16_left = vqmovn_s32(vcvtq_n_s32_f32(a_f32_left, 8)); int16x4_t a16_right = vqmovn_s32(vcvtq_n_s32_f32(a_f32_right, 8)); uint8x8_t a8 = vqmovun_s16(vcombine_s16(a16_left, a16_right)); uint8_t* buf = output + 4 * x; uint8x8x4_t data = {r8, g8, b8, a8}; if (n >= 8) { vst4_u8(buf, data); } else { uint8_t tmp[8 * 4]; vst4_u8(tmp, data); memcpy(buf, tmp, n * 4); } } else { uint8_t* buf = output + 3 * x; uint8x8x3_t data = {r8, g8, b8}; if (n >= 8) { vst3_u8(buf, data); } else { uint8_t tmp[8 * 3]; vst3_u8(tmp, data); memcpy(buf, tmp, n * 3); } } } #else (void)input; (void)output; (void)is_rgba; (void)xsize; JXL_ABORT("Unreachable"); #endif } } // namespace // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #endif // LIB_JXL_DEC_XYB_INL_H_