/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef API_FUNCTION_VIEW_H_ #define API_FUNCTION_VIEW_H_ #include #include #include "rtc_base/checks.h" // Just like std::function, FunctionView will wrap any callable and hide its // actual type, exposing only its signature. But unlike std::function, // FunctionView doesn't own its callable---it just points to it. Thus, it's a // good choice mainly as a function argument when the callable argument will // not be called again once the function has returned. // // Its constructors are implicit, so that callers won't have to convert lambdas // and other callables to FunctionView explicitly. This is // safe because FunctionView is only a reference to the real callable. // // Example use: // // void SomeFunction(rtc::FunctionView index_transform); // ... // SomeFunction([](int i) { return 2 * i + 1; }); // // Note: FunctionView is tiny (essentially just two pointers) and trivially // copyable, so it's probably cheaper to pass it by value than by const // reference. namespace rtc { template class FunctionView; // Undefined. template class FunctionView final { public: // Constructor for lambdas and other callables; it accepts every type of // argument except those noted in its enable_if call. template < typename F, typename std::enable_if< // Not for function pointers; we have another constructor for that // below. !std::is_function::type>::type>::value && // Not for nullptr; we have another constructor for that below. !std::is_same::type>::value && // Not for FunctionView objects; we have another constructor for that // (the implicitly declared copy constructor). !std::is_same::type>::type>::value>::type* = nullptr> FunctionView(F&& f) : call_(CallVoidPtr::type>) { f_.void_ptr = &f; } // Constructor that accepts function pointers. If the argument is null, the // result is an empty FunctionView. template < typename F, typename std::enable_if::type>::type>::value>::type* = nullptr> FunctionView(F&& f) : call_(f ? CallFunPtr::type> : nullptr) { f_.fun_ptr = reinterpret_cast(f); } // Constructor that accepts nullptr. It creates an empty FunctionView. template ::type>::value>::type* = nullptr> FunctionView(F&& f) : call_(nullptr) {} // Default constructor. Creates an empty FunctionView. FunctionView() : call_(nullptr) {} RetT operator()(ArgT... args) const { RTC_DCHECK(call_); return call_(f_, std::forward(args)...); } // Returns true if we have a function, false if we don't (i.e., we're null). explicit operator bool() const { return !!call_; } private: union VoidUnion { void* void_ptr; void (*fun_ptr)(); }; template static RetT CallVoidPtr(VoidUnion vu, ArgT... args) { return (*static_cast(vu.void_ptr))(std::forward(args)...); } template static RetT CallFunPtr(VoidUnion vu, ArgT... args) { return (reinterpret_cast::type>(vu.fun_ptr))( std::forward(args)...); } // A pointer to the callable thing, with type information erased. It's a // union because we have to use separate types depending on if the callable // thing is a function pointer or something else. VoidUnion f_; // Pointer to a dispatch function that knows the type of the callable thing // that's stored in f_, and how to call it. A FunctionView object is empty // (null) iff call_ is null. RetT (*call_)(VoidUnion, ArgT...); }; } // namespace rtc #endif // API_FUNCTION_VIEW_H_