/* * Copyright 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_send_stream_impl.h" #include #include #include #include #include #include "absl/algorithm/container.h" #include "api/crypto/crypto_options.h" #include "api/rtp_parameters.h" #include "api/scoped_refptr.h" #include "api/sequence_checker.h" #include "api/task_queue/pending_task_safety_flag.h" #include "api/task_queue/task_queue_base.h" #include "api/video_codecs/video_codec.h" #include "call/rtp_transport_controller_send_interface.h" #include "call/video_send_stream.h" #include "modules/pacing/pacing_controller.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/alr_experiment.h" #include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/experiments/min_video_bitrate_experiment.h" #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace internal { namespace { // Max positive size difference to treat allocations as "similar". static constexpr int kMaxVbaSizeDifferencePercent = 10; // Max time we will throttle similar video bitrate allocations. static constexpr int64_t kMaxVbaThrottleTimeMs = 500; constexpr TimeDelta kEncoderTimeOut = TimeDelta::Seconds(2); constexpr double kVideoHysteresis = 1.2; constexpr double kScreenshareHysteresis = 1.35; // When send-side BWE is used a stricter 1.1x pacing factor is used, rather than // the 2.5x which is used with receive-side BWE. Provides a more careful // bandwidth rampup with less risk of overshoots causing adverse effects like // packet loss. Not used for receive side BWE, since there we lack the probing // feature and so may result in too slow initial rampup. static constexpr double kStrictPacingMultiplier = 1.1; bool TransportSeqNumExtensionConfigured(const VideoSendStream::Config& config) { const std::vector& extensions = config.rtp.extensions; return absl::c_any_of(extensions, [](const RtpExtension& ext) { return ext.uri == RtpExtension::kTransportSequenceNumberUri; }); } // Calculate max padding bitrate for a multi layer codec. int CalculateMaxPadBitrateBps(const std::vector& streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps, bool pad_to_min_bitrate, bool alr_probing) { int pad_up_to_bitrate_bps = 0; RTC_DCHECK(!is_svc || streams.size() <= 1) << "Only one stream is allowed in " "SVC mode."; // Filter out only the active streams; std::vector active_streams; for (const VideoStream& stream : streams) { if (stream.active) active_streams.emplace_back(stream); } if (active_streams.size() > 1 || (!active_streams.empty() && is_svc)) { // Simulcast or SVC is used. // if SVC is used, stream bitrates should already encode svc bitrates: // min_bitrate = min bitrate of a lowest svc layer. // target_bitrate = sum of target bitrates of lower layers + min bitrate // of the last one (as used in the calculations below). // max_bitrate = sum of all active layers' max_bitrate. if (alr_probing) { // With alr probing, just pad to the min bitrate of the lowest stream, // probing will handle the rest of the rampup. pad_up_to_bitrate_bps = active_streams[0].min_bitrate_bps; } else { // Without alr probing, pad up to start bitrate of the // highest active stream. const double hysteresis_factor = content_type == VideoEncoderConfig::ContentType::kScreen ? kScreenshareHysteresis : kVideoHysteresis; if (is_svc) { // For SVC, since there is only one "stream", the padding bitrate // needed to enable the top spatial layer is stored in the // `target_bitrate_bps` field. // TODO(sprang): This behavior needs to die. pad_up_to_bitrate_bps = static_cast( hysteresis_factor * active_streams[0].target_bitrate_bps + 0.5); } else { const size_t top_active_stream_idx = active_streams.size() - 1; pad_up_to_bitrate_bps = std::min( static_cast( hysteresis_factor * active_streams[top_active_stream_idx].min_bitrate_bps + 0.5), active_streams[top_active_stream_idx].target_bitrate_bps); // Add target_bitrate_bps of the lower active streams. for (size_t i = 0; i < top_active_stream_idx; ++i) { pad_up_to_bitrate_bps += active_streams[i].target_bitrate_bps; } } } } else if (!active_streams.empty() && pad_to_min_bitrate) { pad_up_to_bitrate_bps = active_streams[0].min_bitrate_bps; } pad_up_to_bitrate_bps = std::max(pad_up_to_bitrate_bps, min_transmit_bitrate_bps); return pad_up_to_bitrate_bps; } absl::optional GetAlrSettings( VideoEncoderConfig::ContentType content_type) { if (content_type == VideoEncoderConfig::ContentType::kScreen) { return AlrExperimentSettings::CreateFromFieldTrial( AlrExperimentSettings::kScreenshareProbingBweExperimentName); } return AlrExperimentSettings::CreateFromFieldTrial( AlrExperimentSettings::kStrictPacingAndProbingExperimentName); } bool SameStreamsEnabled(const VideoBitrateAllocation& lhs, const VideoBitrateAllocation& rhs) { for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (lhs.HasBitrate(si, ti) != rhs.HasBitrate(si, ti)) { return false; } } } return true; } // Returns an optional that has value iff TransportSeqNumExtensionConfigured // is `true` for the given video send stream config. absl::optional GetConfiguredPacingFactor( const VideoSendStream::Config& config, VideoEncoderConfig::ContentType content_type, const PacingConfig& default_pacing_config) { if (!TransportSeqNumExtensionConfigured(config)) return absl::nullopt; absl::optional alr_settings = GetAlrSettings(content_type); if (alr_settings) return alr_settings->pacing_factor; RateControlSettings rate_control_settings = RateControlSettings::ParseFromFieldTrials(); return rate_control_settings.GetPacingFactor().value_or( default_pacing_config.pacing_factor); } uint32_t GetInitialEncoderMaxBitrate(int initial_encoder_max_bitrate) { if (initial_encoder_max_bitrate > 0) return rtc::dchecked_cast(initial_encoder_max_bitrate); // TODO(srte): Make sure max bitrate is not set to negative values. We don't // have any way to handle unset values in downstream code, such as the // bitrate allocator. Previously -1 was implicitly casted to UINT32_MAX, a // behaviour that is not safe. Converting to 10 Mbps should be safe for // reasonable use cases as it allows adding the max of multiple streams // without wrappping around. const int kFallbackMaxBitrateBps = 10000000; RTC_DLOG(LS_ERROR) << "ERROR: Initial encoder max bitrate = " << initial_encoder_max_bitrate << " which is <= 0!"; RTC_DLOG(LS_INFO) << "Using default encoder max bitrate = 10 Mbps"; return kFallbackMaxBitrateBps; } } // namespace PacingConfig::PacingConfig(const FieldTrialsView& field_trials) : pacing_factor("factor", kStrictPacingMultiplier), max_pacing_delay("max_delay", PacingController::kMaxExpectedQueueLength) { ParseFieldTrial({&pacing_factor, &max_pacing_delay}, field_trials.Lookup("WebRTC-Video-Pacing")); } PacingConfig::PacingConfig(const PacingConfig&) = default; PacingConfig::~PacingConfig() = default; VideoSendStreamImpl::VideoSendStreamImpl( Clock* clock, SendStatisticsProxy* stats_proxy, RtpTransportControllerSendInterface* transport, BitrateAllocatorInterface* bitrate_allocator, VideoStreamEncoderInterface* video_stream_encoder, const VideoSendStream::Config* config, int initial_encoder_max_bitrate, double initial_encoder_bitrate_priority, VideoEncoderConfig::ContentType content_type, RtpVideoSenderInterface* rtp_video_sender, const FieldTrialsView& field_trials) : clock_(clock), has_alr_probing_(config->periodic_alr_bandwidth_probing || GetAlrSettings(content_type)), pacing_config_(PacingConfig(field_trials)), stats_proxy_(stats_proxy), config_(config), rtp_transport_queue_(transport->GetWorkerQueue()), timed_out_(false), transport_(transport), bitrate_allocator_(bitrate_allocator), disable_padding_(true), max_padding_bitrate_(0), encoder_min_bitrate_bps_(0), encoder_max_bitrate_bps_( GetInitialEncoderMaxBitrate(initial_encoder_max_bitrate)), encoder_target_rate_bps_(0), encoder_bitrate_priority_(initial_encoder_bitrate_priority), video_stream_encoder_(video_stream_encoder), bandwidth_observer_(transport->GetBandwidthObserver()), rtp_video_sender_(rtp_video_sender), configured_pacing_factor_( GetConfiguredPacingFactor(*config_, content_type, pacing_config_)) { RTC_DCHECK_GE(config_->rtp.payload_type, 0); RTC_DCHECK_LE(config_->rtp.payload_type, 127); RTC_DCHECK(!config_->rtp.ssrcs.empty()); RTC_DCHECK(transport_); RTC_DCHECK_NE(initial_encoder_max_bitrate, 0); RTC_LOG(LS_INFO) << "VideoSendStreamImpl: " << config_->ToString(); RTC_CHECK(AlrExperimentSettings::MaxOneFieldTrialEnabled()); // Only request rotation at the source when we positively know that the remote // side doesn't support the rotation extension. This allows us to prepare the // encoder in the expectation that rotation is supported - which is the common // case. bool rotation_applied = absl::c_none_of( config_->rtp.extensions, [](const RtpExtension& extension) { return extension.uri == RtpExtension::kVideoRotationUri; }); video_stream_encoder_->SetSink(this, rotation_applied); absl::optional enable_alr_bw_probing; // If send-side BWE is enabled, check if we should apply updated probing and // pacing settings. if (configured_pacing_factor_) { absl::optional alr_settings = GetAlrSettings(content_type); int queue_time_limit_ms; if (alr_settings) { enable_alr_bw_probing = true; queue_time_limit_ms = alr_settings->max_paced_queue_time; } else { RateControlSettings rate_control_settings = RateControlSettings::ParseFromFieldTrials(); enable_alr_bw_probing = rate_control_settings.UseAlrProbing(); queue_time_limit_ms = pacing_config_.max_pacing_delay.Get().ms(); } transport->SetQueueTimeLimit(queue_time_limit_ms); } if (config_->periodic_alr_bandwidth_probing) { enable_alr_bw_probing = config_->periodic_alr_bandwidth_probing; } if (enable_alr_bw_probing) { transport->EnablePeriodicAlrProbing(*enable_alr_bw_probing); } rtp_transport_queue_->RunOrPost(SafeTask(transport_queue_safety_, [this] { if (configured_pacing_factor_) transport_->SetPacingFactor(*configured_pacing_factor_); video_stream_encoder_->SetStartBitrate( bitrate_allocator_->GetStartBitrate(this)); })); } VideoSendStreamImpl::~VideoSendStreamImpl() { RTC_DCHECK_RUN_ON(&thread_checker_); RTC_LOG(LS_INFO) << "~VideoSendStreamImpl: " << config_->ToString(); // TODO(webrtc:14502): Change `transport_queue_safety_` to be of type // ScopedTaskSafety if experiment WebRTC-SendPacketsOnWorkerThread succeed. if (rtp_transport_queue_->IsCurrent()) { transport_queue_safety_->SetNotAlive(); } } void VideoSendStreamImpl::DeliverRtcp(const uint8_t* packet, size_t length) { // Runs on a worker thread. rtp_video_sender_->DeliverRtcp(packet, length); } void VideoSendStreamImpl::StartPerRtpStream( const std::vector active_layers) { RTC_DCHECK_RUN_ON(rtp_transport_queue_); bool previously_active = rtp_video_sender_->IsActive(); rtp_video_sender_->SetActiveModules(active_layers); if (!rtp_video_sender_->IsActive() && previously_active) { StopVideoSendStream(); } else if (rtp_video_sender_->IsActive() && !previously_active) { StartupVideoSendStream(); } } void VideoSendStreamImpl::StartupVideoSendStream() { RTC_DCHECK_RUN_ON(rtp_transport_queue_); transport_queue_safety_->SetAlive(); bitrate_allocator_->AddObserver(this, GetAllocationConfig()); // Start monitoring encoder activity. { RTC_DCHECK(!check_encoder_activity_task_.Running()); activity_ = false; timed_out_ = false; check_encoder_activity_task_ = RepeatingTaskHandle::DelayedStart( rtp_transport_queue_->TaskQueueForDelayedTasks(), kEncoderTimeOut, [this] { RTC_DCHECK_RUN_ON(rtp_transport_queue_); if (!activity_) { if (!timed_out_) { SignalEncoderTimedOut(); } timed_out_ = true; disable_padding_ = true; } else if (timed_out_) { SignalEncoderActive(); timed_out_ = false; } activity_ = false; return kEncoderTimeOut; }); } video_stream_encoder_->SendKeyFrame(); } void VideoSendStreamImpl::Stop() { RTC_DCHECK_RUN_ON(rtp_transport_queue_); RTC_LOG(LS_INFO) << "VideoSendStreamImpl::Stop"; if (!rtp_video_sender_->IsActive()) return; RTC_DCHECK(transport_queue_safety_->alive()); TRACE_EVENT_INSTANT0("webrtc", "VideoSendStream::Stop"); rtp_video_sender_->Stop(); StopVideoSendStream(); } void VideoSendStreamImpl::StopVideoSendStream() { RTC_DCHECK_RUN_ON(rtp_transport_queue_); bitrate_allocator_->RemoveObserver(this); check_encoder_activity_task_.Stop(); video_stream_encoder_->OnBitrateUpdated(DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 0, 0); stats_proxy_->OnSetEncoderTargetRate(0); transport_queue_safety_->SetNotAlive(); } void VideoSendStreamImpl::SignalEncoderTimedOut() { RTC_DCHECK_RUN_ON(rtp_transport_queue_); // If the encoder has not produced anything the last kEncoderTimeOut and it // is supposed to, deregister as BitrateAllocatorObserver. This can happen // if a camera stops producing frames. if (encoder_target_rate_bps_ > 0) { RTC_LOG(LS_INFO) << "SignalEncoderTimedOut, Encoder timed out."; bitrate_allocator_->RemoveObserver(this); } } void VideoSendStreamImpl::OnBitrateAllocationUpdated( const VideoBitrateAllocation& allocation) { // OnBitrateAllocationUpdated is invoked from the encoder task queue or // the rtp_transport_queue_. auto task = [=] { RTC_DCHECK_RUN_ON(rtp_transport_queue_); if (encoder_target_rate_bps_ == 0) { return; } int64_t now_ms = clock_->TimeInMilliseconds(); if (video_bitrate_allocation_context_) { // If new allocation is within kMaxVbaSizeDifferencePercent larger // than the previously sent allocation and the same streams are still // enabled, it is considered "similar". We do not want send similar // allocations more once per kMaxVbaThrottleTimeMs. const VideoBitrateAllocation& last = video_bitrate_allocation_context_->last_sent_allocation; const bool is_similar = allocation.get_sum_bps() >= last.get_sum_bps() && allocation.get_sum_bps() < (last.get_sum_bps() * (100 + kMaxVbaSizeDifferencePercent)) / 100 && SameStreamsEnabled(allocation, last); if (is_similar && (now_ms - video_bitrate_allocation_context_->last_send_time_ms) < kMaxVbaThrottleTimeMs) { // This allocation is too similar, cache it and return. video_bitrate_allocation_context_->throttled_allocation = allocation; return; } } else { video_bitrate_allocation_context_.emplace(); } video_bitrate_allocation_context_->last_sent_allocation = allocation; video_bitrate_allocation_context_->throttled_allocation.reset(); video_bitrate_allocation_context_->last_send_time_ms = now_ms; // Send bitrate allocation metadata only if encoder is not paused. rtp_video_sender_->OnBitrateAllocationUpdated(allocation); }; if (!rtp_transport_queue_->IsCurrent()) { rtp_transport_queue_->TaskQueueForPost()->PostTask( SafeTask(transport_queue_safety_, std::move(task))); } else { task(); } } void VideoSendStreamImpl::OnVideoLayersAllocationUpdated( VideoLayersAllocation allocation) { // OnVideoLayersAllocationUpdated is handled on the encoder task queue in // order to not race with OnEncodedImage callbacks. rtp_video_sender_->OnVideoLayersAllocationUpdated(allocation); } void VideoSendStreamImpl::SignalEncoderActive() { RTC_DCHECK_RUN_ON(rtp_transport_queue_); if (rtp_video_sender_->IsActive()) { RTC_LOG(LS_INFO) << "SignalEncoderActive, Encoder is active."; bitrate_allocator_->AddObserver(this, GetAllocationConfig()); } } MediaStreamAllocationConfig VideoSendStreamImpl::GetAllocationConfig() const { return MediaStreamAllocationConfig{ static_cast(encoder_min_bitrate_bps_), encoder_max_bitrate_bps_, static_cast(disable_padding_ ? 0 : max_padding_bitrate_), /* priority_bitrate */ 0, !config_->suspend_below_min_bitrate, encoder_bitrate_priority_}; } void VideoSendStreamImpl::OnEncoderConfigurationChanged( std::vector streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps) { // Currently called on the encoder TQ RTC_DCHECK(!rtp_transport_queue_->IsCurrent()); auto closure = [this, streams = std::move(streams), is_svc, content_type, min_transmit_bitrate_bps]() mutable { RTC_DCHECK_GE(config_->rtp.ssrcs.size(), streams.size()); TRACE_EVENT0("webrtc", "VideoSendStream::OnEncoderConfigurationChanged"); RTC_DCHECK_RUN_ON(rtp_transport_queue_); const VideoCodecType codec_type = PayloadStringToCodecType(config_->rtp.payload_name); const absl::optional experimental_min_bitrate = GetExperimentalMinVideoBitrate(codec_type); encoder_min_bitrate_bps_ = experimental_min_bitrate ? experimental_min_bitrate->bps() : std::max(streams[0].min_bitrate_bps, kDefaultMinVideoBitrateBps); encoder_max_bitrate_bps_ = 0; double stream_bitrate_priority_sum = 0; for (const auto& stream : streams) { // We don't want to allocate more bitrate than needed to inactive streams. encoder_max_bitrate_bps_ += stream.active ? stream.max_bitrate_bps : 0; if (stream.bitrate_priority) { RTC_DCHECK_GT(*stream.bitrate_priority, 0); stream_bitrate_priority_sum += *stream.bitrate_priority; } } RTC_DCHECK_GT(stream_bitrate_priority_sum, 0); encoder_bitrate_priority_ = stream_bitrate_priority_sum; encoder_max_bitrate_bps_ = std::max(static_cast(encoder_min_bitrate_bps_), encoder_max_bitrate_bps_); // TODO(bugs.webrtc.org/10266): Query the VideoBitrateAllocator instead. max_padding_bitrate_ = CalculateMaxPadBitrateBps( streams, is_svc, content_type, min_transmit_bitrate_bps, config_->suspend_below_min_bitrate, has_alr_probing_); // Clear stats for disabled layers. for (size_t i = streams.size(); i < config_->rtp.ssrcs.size(); ++i) { stats_proxy_->OnInactiveSsrc(config_->rtp.ssrcs[i]); } const size_t num_temporal_layers = streams.back().num_temporal_layers.value_or(1); rtp_video_sender_->SetEncodingData(streams[0].width, streams[0].height, num_temporal_layers); if (rtp_video_sender_->IsActive()) { // The send stream is started already. Update the allocator with new // bitrate limits. bitrate_allocator_->AddObserver(this, GetAllocationConfig()); } }; rtp_transport_queue_->TaskQueueForPost()->PostTask( SafeTask(transport_queue_safety_, std::move(closure))); } EncodedImageCallback::Result VideoSendStreamImpl::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info) { // Encoded is called on whatever thread the real encoder implementation run // on. In the case of hardware encoders, there might be several encoders // running in parallel on different threads. // Indicate that there still is activity going on. activity_ = true; RTC_DCHECK(!rtp_transport_queue_->IsCurrent()); auto task_to_run_on_worker = [this]() { RTC_DCHECK_RUN_ON(rtp_transport_queue_); if (disable_padding_) { disable_padding_ = false; // To ensure that padding bitrate is propagated to the bitrate allocator. SignalEncoderActive(); } // Check if there's a throttled VideoBitrateAllocation that we should try // sending. auto& context = video_bitrate_allocation_context_; if (context && context->throttled_allocation) { OnBitrateAllocationUpdated(*context->throttled_allocation); } }; rtp_transport_queue_->TaskQueueForPost()->PostTask( SafeTask(transport_queue_safety_, std::move(task_to_run_on_worker))); return rtp_video_sender_->OnEncodedImage(encoded_image, codec_specific_info); } void VideoSendStreamImpl::OnDroppedFrame( EncodedImageCallback::DropReason reason) { activity_ = true; } std::map VideoSendStreamImpl::GetRtpStates() const { return rtp_video_sender_->GetRtpStates(); } std::map VideoSendStreamImpl::GetRtpPayloadStates() const { return rtp_video_sender_->GetRtpPayloadStates(); } uint32_t VideoSendStreamImpl::OnBitrateUpdated(BitrateAllocationUpdate update) { RTC_DCHECK_RUN_ON(rtp_transport_queue_); RTC_DCHECK(rtp_video_sender_->IsActive()) << "VideoSendStream::Start has not been called."; // When the BWE algorithm doesn't pass a stable estimate, we'll use the // unstable one instead. if (update.stable_target_bitrate.IsZero()) { update.stable_target_bitrate = update.target_bitrate; } rtp_video_sender_->OnBitrateUpdated(update, stats_proxy_->GetSendFrameRate()); encoder_target_rate_bps_ = rtp_video_sender_->GetPayloadBitrateBps(); const uint32_t protection_bitrate_bps = rtp_video_sender_->GetProtectionBitrateBps(); DataRate link_allocation = DataRate::Zero(); if (encoder_target_rate_bps_ > protection_bitrate_bps) { link_allocation = DataRate::BitsPerSec(encoder_target_rate_bps_ - protection_bitrate_bps); } DataRate overhead = update.target_bitrate - DataRate::BitsPerSec(encoder_target_rate_bps_); DataRate encoder_stable_target_rate = update.stable_target_bitrate; if (encoder_stable_target_rate > overhead) { encoder_stable_target_rate = encoder_stable_target_rate - overhead; } else { encoder_stable_target_rate = DataRate::BitsPerSec(encoder_target_rate_bps_); } encoder_target_rate_bps_ = std::min(encoder_max_bitrate_bps_, encoder_target_rate_bps_); encoder_stable_target_rate = std::min(DataRate::BitsPerSec(encoder_max_bitrate_bps_), encoder_stable_target_rate); DataRate encoder_target_rate = DataRate::BitsPerSec(encoder_target_rate_bps_); link_allocation = std::max(encoder_target_rate, link_allocation); video_stream_encoder_->OnBitrateUpdated( encoder_target_rate, encoder_stable_target_rate, link_allocation, rtc::dchecked_cast(update.packet_loss_ratio * 256), update.round_trip_time.ms(), update.cwnd_reduce_ratio); stats_proxy_->OnSetEncoderTargetRate(encoder_target_rate_bps_); return protection_bitrate_bps; } } // namespace internal } // namespace webrtc