/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2010 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // CFI reader author: Jim Blandy // Original author: Jim Blandy // Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit, // and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details. // This file is derived from the following files in // toolkit/crashreporter/google-breakpad: // src/common/dwarf/bytereader.cc // src/common/dwarf/dwarf2reader.cc // src/common/dwarf_cfi_to_module.cc #include #include #include #include #include #include #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/Sprintf.h" #include "mozilla/Vector.h" #include "LulCommonExt.h" #include "LulDwarfInt.h" // Set this to 1 for verbose logging #define DEBUG_DWARF 0 namespace lul { using std::pair; using std::string; ByteReader::ByteReader(enum Endianness endian) : offset_reader_(NULL), address_reader_(NULL), endian_(endian), address_size_(0), offset_size_(0), have_section_base_(), have_text_base_(), have_data_base_(), have_function_base_() {} ByteReader::~ByteReader() {} void ByteReader::SetOffsetSize(uint8 size) { offset_size_ = size; MOZ_ASSERT(size == 4 || size == 8); if (size == 4) { this->offset_reader_ = &ByteReader::ReadFourBytes; } else { this->offset_reader_ = &ByteReader::ReadEightBytes; } } void ByteReader::SetAddressSize(uint8 size) { address_size_ = size; MOZ_ASSERT(size == 4 || size == 8); if (size == 4) { this->address_reader_ = &ByteReader::ReadFourBytes; } else { this->address_reader_ = &ByteReader::ReadEightBytes; } } uint64 ByteReader::ReadInitialLength(const char* start, size_t* len) { const uint64 initial_length = ReadFourBytes(start); start += 4; // In DWARF2/3, if the initial length is all 1 bits, then the offset // size is 8 and we need to read the next 8 bytes for the real length. if (initial_length == 0xffffffff) { SetOffsetSize(8); *len = 12; return ReadOffset(start); } else { SetOffsetSize(4); *len = 4; } return initial_length; } bool ByteReader::ValidEncoding(DwarfPointerEncoding encoding) const { if (encoding == DW_EH_PE_omit) return true; if (encoding == DW_EH_PE_aligned) return true; if ((encoding & 0x7) > DW_EH_PE_udata8) return false; if ((encoding & 0x70) > DW_EH_PE_funcrel) return false; return true; } bool ByteReader::UsableEncoding(DwarfPointerEncoding encoding) const { switch (encoding & 0x70) { case DW_EH_PE_absptr: return true; case DW_EH_PE_pcrel: return have_section_base_; case DW_EH_PE_textrel: return have_text_base_; case DW_EH_PE_datarel: return have_data_base_; case DW_EH_PE_funcrel: return have_function_base_; default: return false; } } uint64 ByteReader::ReadEncodedPointer(const char* buffer, DwarfPointerEncoding encoding, size_t* len) const { // UsableEncoding doesn't approve of DW_EH_PE_omit, so we shouldn't // see it here. MOZ_ASSERT(encoding != DW_EH_PE_omit); // The Linux Standards Base 4.0 does not make this clear, but the // GNU tools (gcc/unwind-pe.h; readelf/dwarf.c; gdb/dwarf2-frame.c) // agree that aligned pointers are always absolute, machine-sized, // machine-signed pointers. if (encoding == DW_EH_PE_aligned) { MOZ_ASSERT(have_section_base_); // We don't need to align BUFFER in *our* address space. Rather, we // need to find the next position in our buffer that would be aligned // when the .eh_frame section the buffer contains is loaded into the // program's memory. So align assuming that buffer_base_ gets loaded at // address section_base_, where section_base_ itself may or may not be // aligned. // First, find the offset to START from the closest prior aligned // address. uint64 skew = section_base_ & (AddressSize() - 1); // Now find the offset from that aligned address to buffer. uint64 offset = skew + (buffer - buffer_base_); // Round up to the next boundary. uint64 aligned = (offset + AddressSize() - 1) & -AddressSize(); // Convert back to a pointer. const char* aligned_buffer = buffer_base_ + (aligned - skew); // Finally, store the length and actually fetch the pointer. *len = aligned_buffer - buffer + AddressSize(); return ReadAddress(aligned_buffer); } // Extract the value first, ignoring whether it's a pointer or an // offset relative to some base. uint64 offset; switch (encoding & 0x0f) { case DW_EH_PE_absptr: // DW_EH_PE_absptr is weird, as it is used as a meaningful value for // both the high and low nybble of encoding bytes. When it appears in // the high nybble, it means that the pointer is absolute, not an // offset from some base address. When it appears in the low nybble, // as here, it means that the pointer is stored as a normal // machine-sized and machine-signed address. A low nybble of // DW_EH_PE_absptr does not imply that the pointer is absolute; it is // correct for us to treat the value as an offset from a base address // if the upper nybble is not DW_EH_PE_absptr. offset = ReadAddress(buffer); *len = AddressSize(); break; case DW_EH_PE_uleb128: offset = ReadUnsignedLEB128(buffer, len); break; case DW_EH_PE_udata2: offset = ReadTwoBytes(buffer); *len = 2; break; case DW_EH_PE_udata4: offset = ReadFourBytes(buffer); *len = 4; break; case DW_EH_PE_udata8: offset = ReadEightBytes(buffer); *len = 8; break; case DW_EH_PE_sleb128: offset = ReadSignedLEB128(buffer, len); break; case DW_EH_PE_sdata2: offset = ReadTwoBytes(buffer); // Sign-extend from 16 bits. offset = (offset ^ 0x8000) - 0x8000; *len = 2; break; case DW_EH_PE_sdata4: offset = ReadFourBytes(buffer); // Sign-extend from 32 bits. offset = (offset ^ 0x80000000ULL) - 0x80000000ULL; *len = 4; break; case DW_EH_PE_sdata8: // No need to sign-extend; this is the full width of our type. offset = ReadEightBytes(buffer); *len = 8; break; default: abort(); } // Find the appropriate base address. uint64 base; switch (encoding & 0x70) { case DW_EH_PE_absptr: base = 0; break; case DW_EH_PE_pcrel: MOZ_ASSERT(have_section_base_); base = section_base_ + (buffer - buffer_base_); break; case DW_EH_PE_textrel: MOZ_ASSERT(have_text_base_); base = text_base_; break; case DW_EH_PE_datarel: MOZ_ASSERT(have_data_base_); base = data_base_; break; case DW_EH_PE_funcrel: MOZ_ASSERT(have_function_base_); base = function_base_; break; default: abort(); } uint64 pointer = base + offset; // Remove inappropriate upper bits. if (AddressSize() == 4) pointer = pointer & 0xffffffff; else MOZ_ASSERT(AddressSize() == sizeof(uint64)); return pointer; } // A DWARF rule for recovering the address or value of a register, or // computing the canonical frame address. This is an 8-way sum-of-products // type. Excluding the INVALID variant, there is one subclass of this for // each '*Rule' member function in CallFrameInfo::Handler. // // This could logically be nested within State, but then the qualified names // get horrendous. class CallFrameInfo::Rule final { public: enum Tag { INVALID, Undefined, SameValue, Offset, ValOffset, Register, Expression, ValExpression }; private: // tag_ (below) indicates the form of the expression. There are 7 forms // plus INVALID. All non-INVALID expressions denote a machine-word-sized // value at unwind time. The description below assumes the presence of, at // unwind time: // // * a function R, which takes a Dwarf register number and returns its value // in the callee frame (the one we are unwinding out of). // // * a function EvalDwarfExpr, which evaluates a Dwarf expression. // // Register numbers are encoded using the target ABI's Dwarf // register-numbering conventions. Except where otherwise noted, a register // value may also be the special value CallFrameInfo::Handler::kCFARegister // ("the CFA"). // // The expression forms are represented using tag_, word1_ and word2_. The // forms and denoted values are as follows: // // * INVALID: not a valid expression. // valid fields: (none) // denotes: no value // // * Undefined: denotes no value. This is used for a register whose value // cannot be recovered. // valid fields: (none) // denotes: no value // // * SameValue: the register's value is the same as in the callee. // valid fields: (none) // denotes: R(the register that this Rule is associated with, // not stored here) // // * Offset: the register's value is in memory at word2_ bytes away from // Dwarf register number word1_. word2_ is interpreted as a *signed* // offset. // valid fields: word1_=DwarfReg, word2=Offset // denotes: *(R(word1_) + word2_) // // * ValOffset: same as Offset, without the dereference. // valid fields: word1_=DwarfReg, word2=Offset // denotes: R(word1_) + word2_ // // * Register: the register's value is in some other register, // which may not be the CFA. // valid fields: word1_=DwarfReg // denotes: R(word1_) // // * Expression: the register's value is in memory at a location that can be // computed from the Dwarf expression contained in the word2_ bytes // starting at word1_. Note these locations are into the area of the .so // temporarily mmaped info for debuginfo reading and have no validity once // debuginfo reading has finished. // valid fields: ExprStart=word1_, ExprLen=word2_ // denotes: *(EvalDwarfExpr(word1_, word2_)) // // * ValExpression: same as Expression, without the dereference. // valid fields: ExprStart=word1_, ExprLen=word2_ // denotes: EvalDwarfExpr(word1_, word2_) // // 3 words (or less) for representation. Unused word1_/word2_ fields must // be set to zero. Tag tag_; uintptr_t word1_; uintptr_t word2_; // To ensure that word1_ can hold a pointer to an expression string. static_assert(sizeof(const char*) <= sizeof(word1_)); // To ensure that word2_ can hold any string length or memory offset. static_assert(sizeof(size_t) <= sizeof(word2_)); // This class denotes an 8-way sum-of-product type, and accessing invalid // fields is meaningless. The accessors and constructors below enforce // that. bool isCanonical() const { switch (tag_) { case Tag::INVALID: case Tag::Undefined: case Tag::SameValue: return word1_ == 0 && word2_ == 0; case Tag::Offset: case Tag::ValOffset: return true; case Tag::Register: return word2_ == 0; case Tag::Expression: case Tag::ValExpression: return true; default: MOZ_CRASH(); } } public: Tag tag() const { return tag_; } int dwreg() const { switch (tag_) { case Tag::Offset: case Tag::ValOffset: case Tag::Register: return (int)word1_; default: MOZ_CRASH(); } } intptr_t offset() const { switch (tag_) { case Tag::Offset: case Tag::ValOffset: return (intptr_t)word2_; default: MOZ_CRASH(); } } ImageSlice expr() const { switch (tag_) { case Tag::Expression: case Tag::ValExpression: return ImageSlice((const char*)word1_, (size_t)word2_); default: MOZ_CRASH(); } } // Constructor-y stuff Rule() { tag_ = Tag::INVALID; word1_ = 0; word2_ = 0; } static Rule mkINVALID() { Rule r; // is initialised by Rule() return r; } static Rule mkUndefinedRule() { Rule r; r.tag_ = Tag::Undefined; r.word1_ = 0; r.word2_ = 0; return r; } static Rule mkSameValueRule() { Rule r; r.tag_ = Tag::SameValue; r.word1_ = 0; r.word2_ = 0; return r; } static Rule mkOffsetRule(int dwreg, intptr_t offset) { Rule r; r.tag_ = Tag::Offset; r.word1_ = (uintptr_t)dwreg; r.word2_ = (uintptr_t)offset; return r; } static Rule mkValOffsetRule(int dwreg, intptr_t offset) { Rule r; r.tag_ = Tag::ValOffset; r.word1_ = (uintptr_t)dwreg; r.word2_ = (uintptr_t)offset; return r; } static Rule mkRegisterRule(int dwreg) { Rule r; r.tag_ = Tag::Register; r.word1_ = (uintptr_t)dwreg; r.word2_ = 0; return r; } static Rule mkExpressionRule(ImageSlice expr) { Rule r; r.tag_ = Tag::Expression; r.word1_ = (uintptr_t)expr.start_; r.word2_ = (uintptr_t)expr.length_; return r; } static Rule mkValExpressionRule(ImageSlice expr) { Rule r; r.tag_ = Tag::ValExpression; r.word1_ = (uintptr_t)expr.start_; r.word2_ = (uintptr_t)expr.length_; return r; } // Misc inline bool isVALID() const { return tag_ != Tag::INVALID; } bool operator==(const Rule& rhs) const { MOZ_ASSERT(isVALID() && rhs.isVALID()); MOZ_ASSERT(isCanonical()); MOZ_ASSERT(rhs.isCanonical()); if (tag_ != rhs.tag_) { return false; } switch (tag_) { case Tag::INVALID: MOZ_CRASH(); case Tag::Undefined: case Tag::SameValue: return true; case Tag::Offset: case Tag::ValOffset: return word1_ == rhs.word1_ && word2_ == rhs.word2_; case Tag::Register: return word1_ == rhs.word1_; case Tag::Expression: case Tag::ValExpression: return expr() == rhs.expr(); default: MOZ_CRASH(); } } bool operator!=(const Rule& rhs) const { return !(*this == rhs); } // Tell HANDLER that, at ADDRESS in the program, REG can be // recovered using this rule. If REG is kCFARegister, then this rule // describes how to compute the canonical frame address. Return what the // HANDLER member function returned. bool Handle(Handler* handler, uint64 address, int reg) const { MOZ_ASSERT(isVALID()); MOZ_ASSERT(isCanonical()); switch (tag_) { case Tag::Undefined: return handler->UndefinedRule(address, reg); case Tag::SameValue: return handler->SameValueRule(address, reg); case Tag::Offset: return handler->OffsetRule(address, reg, word1_, word2_); case Tag::ValOffset: return handler->ValOffsetRule(address, reg, word1_, word2_); case Tag::Register: return handler->RegisterRule(address, reg, word1_); case Tag::Expression: return handler->ExpressionRule( address, reg, ImageSlice((const char*)word1_, (size_t)word2_)); case Tag::ValExpression: return handler->ValExpressionRule( address, reg, ImageSlice((const char*)word1_, (size_t)word2_)); default: MOZ_CRASH(); } } void SetBaseRegister(unsigned reg) { MOZ_ASSERT(isVALID()); MOZ_ASSERT(isCanonical()); switch (tag_) { case Tag::ValOffset: word1_ = reg; break; case Tag::Offset: // We don't actually need SetBaseRegister or SetOffset here, since they // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it // doesn't make sense to use OffsetRule for computing the CFA: it // computes the address at which a register is saved, not a value. // (fallthrough) case Tag::Undefined: case Tag::SameValue: case Tag::Register: case Tag::Expression: case Tag::ValExpression: // Do nothing break; default: MOZ_CRASH(); } } void SetOffset(long long offset) { MOZ_ASSERT(isVALID()); MOZ_ASSERT(isCanonical()); switch (tag_) { case Tag::ValOffset: word2_ = offset; break; case Tag::Offset: // Same comment as in SetBaseRegister applies // (fallthrough) case Tag::Undefined: case Tag::SameValue: case Tag::Register: case Tag::Expression: case Tag::ValExpression: // Do nothing break; default: MOZ_CRASH(); } } // For debugging only string show() const { char buf[100]; string s = ""; switch (tag_) { case Tag::INVALID: s = "INVALID"; break; case Tag::Undefined: s = "Undefined"; break; case Tag::SameValue: s = "SameValue"; break; case Tag::Offset: s = "Offset{..}"; break; case Tag::ValOffset: sprintf(buf, "ValOffset{reg=%d offs=%lld}", (int)word1_, (long long int)word2_); s = string(buf); break; case Tag::Register: s = "Register{..}"; break; case Tag::Expression: s = "Expression{..}"; break; case Tag::ValExpression: s = "ValExpression{..}"; break; default: MOZ_CRASH(); } return s; } }; // `RuleMapLowLevel` is a simple class that maps from `int` (register numbers) // to `Rule`. This is implemented as a vector of `` pairs, with a // 12-element inline capacity. From a big-O perspective this is obviously a // terrible way to implement an associative map. This workload is however // quite special in that the maximum number of elements is normally 7 (on // x86_64-linux), and so this implementation is much faster than one based on // std::map with its attendant R-B-tree node allocation and balancing // overheads. // // An iterator that enumerates the mapping in increasing order of the `int` // keys is provided. This ordered iteration facility is required by // CallFrameInfo::RuleMap::HandleTransitionTo, which needs to iterate through // two such maps simultaneously and in-order so as to compare them. // All `Rule`s in the map must satisfy `isVALID()`. That conveniently means // that `Rule::mkINVALID()` can be used to indicate "not found` in `get()`. class CallFrameInfo::RuleMapLowLevel { using Entry = pair; // The inline capacity of 12 is carefully chosen. It would be wise to make // careful measurements of time, instruction count, allocation count and // allocated bytes before changing it. For x86_64-linux, a value of 8 is // marginally better; using 12 increases the total heap bytes allocated by // around 20%. For arm64-linux, a value of 24 is better; using 12 increases // the total blocks allocated by around 20%. But it's a not bad tradeoff // for both targets, and in any case is vastly superior to the previous // scheme of using `std::map`. mozilla::Vector entries_; public: void clear() { entries_.clear(); } RuleMapLowLevel() { clear(); } RuleMapLowLevel& operator=(const RuleMapLowLevel& rhs) { entries_.clear(); for (size_t i = 0; i < rhs.entries_.length(); i++) { bool ok = entries_.append(rhs.entries_[i]); MOZ_RELEASE_ASSERT(ok); } return *this; } void set(int reg, Rule rule) { MOZ_ASSERT(rule.isVALID()); // Find the place where it should go, if any size_t i = 0; size_t nEnt = entries_.length(); while (i < nEnt && entries_[i].first < reg) { i++; } if (i == nEnt) { // No entry exists, and all the existing ones are for lower register // numbers. So just add it at the end. bool ok = entries_.append(Entry(reg, rule)); MOZ_RELEASE_ASSERT(ok); } else { // It needs to live at location `i`, and .. MOZ_ASSERT(i < nEnt); if (entries_[i].first == reg) { // .. there's already an old entry, so just update it. entries_[i].second = rule; } else { // .. there's no previous entry, so shift `i` and all those following // it one place to the right, and put the new entry at `i`. Doing it // manually is measurably cheaper than using `Vector::insert`. MOZ_ASSERT(entries_[i].first > reg); bool ok = entries_.append(Entry(999999, Rule::mkINVALID())); MOZ_RELEASE_ASSERT(ok); for (size_t j = nEnt; j >= i + 1; j--) { entries_[j] = entries_[j - 1]; } entries_[i] = Entry(reg, rule); } } // Check in-order-ness and validity. for (size_t i = 0; i < entries_.length(); i++) { MOZ_ASSERT(entries_[i].second.isVALID()); MOZ_ASSERT_IF(i > 0, entries_[i - 1].first < entries_[i].first); } MOZ_ASSERT(get(reg).isVALID()); } // Find the entry for `reg`, or return `Rule::mkINVALID()` if not found. Rule get(int reg) const { size_t nEnt = entries_.length(); // "early exit" in the case where `entries_[i].first > reg` was tested on // x86_64 and found to be slightly slower than just testing all entries, // presumably because the reduced amount of searching was not offset by // the cost of an extra test per iteration. for (size_t i = 0; i < nEnt; i++) { if (entries_[i].first == reg) { CallFrameInfo::Rule ret = entries_[i].second; MOZ_ASSERT(ret.isVALID()); return ret; } } return CallFrameInfo::Rule::mkINVALID(); } // A very simple in-order iteration facility. class Iter { const RuleMapLowLevel* rmll_; size_t nextIx_; public: explicit Iter(const RuleMapLowLevel* rmll) : rmll_(rmll), nextIx_(0) {} bool avail() const { return nextIx_ < rmll_->entries_.length(); } bool finished() const { return !avail(); } // Move the iterator to the next entry. void step() { MOZ_RELEASE_ASSERT(nextIx_ < rmll_->entries_.length()); nextIx_++; } // Get the value at the current iteration point, but don't advance to the // next entry. pair peek() { MOZ_RELEASE_ASSERT(nextIx_ < rmll_->entries_.length()); return rmll_->entries_[nextIx_]; } }; }; // A map from register numbers to rules. This is a wrapper around // `RuleMapLowLevel`, with added logic for dealing with the "special" CFA // rule, and with `HandleTransitionTo`, which effectively computes the // difference between two `RuleMaps`. class CallFrameInfo::RuleMap { public: RuleMap() : cfa_rule_(Rule::mkINVALID()) {} RuleMap(const RuleMap& rhs) : cfa_rule_(Rule::mkINVALID()) { *this = rhs; } ~RuleMap() { Clear(); } RuleMap& operator=(const RuleMap& rhs); // Set the rule for computing the CFA to RULE. void SetCFARule(Rule rule) { cfa_rule_ = rule; } // Return the current CFA rule. Be careful not to modify it -- it's returned // by value. If you want to modify the CFA rule, use CFARuleRef() instead. // We use these two for DW_CFA_def_cfa_offset and DW_CFA_def_cfa_register, // and for detecting references to the CFA before a rule for it has been // established. Rule CFARule() const { return cfa_rule_; } Rule* CFARuleRef() { return &cfa_rule_; } // Return the rule for REG, or the INVALID rule if there is none. Rule RegisterRule(int reg) const; // Set the rule for computing REG to RULE. void SetRegisterRule(int reg, Rule rule); // Make all the appropriate calls to HANDLER as if we were changing from // this RuleMap to NEW_RULES at ADDRESS. We use this to implement // DW_CFA_restore_state, where lots of rules can change simultaneously. // Return true if all handlers returned true; otherwise, return false. bool HandleTransitionTo(Handler* handler, uint64 address, const RuleMap& new_rules) const; private: // Remove all register rules and clear cfa_rule_. void Clear(); // The rule for computing the canonical frame address. Rule cfa_rule_; // A map from register numbers to postfix expressions to recover // their values. RuleMapLowLevel registers_; }; CallFrameInfo::RuleMap& CallFrameInfo::RuleMap::operator=(const RuleMap& rhs) { Clear(); if (rhs.cfa_rule_.isVALID()) cfa_rule_ = rhs.cfa_rule_; registers_ = rhs.registers_; return *this; } CallFrameInfo::Rule CallFrameInfo::RuleMap::RegisterRule(int reg) const { MOZ_ASSERT(reg != Handler::kCFARegister); return registers_.get(reg); } void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule rule) { MOZ_ASSERT(reg != Handler::kCFARegister); MOZ_ASSERT(rule.isVALID()); registers_.set(reg, rule); } bool CallFrameInfo::RuleMap::HandleTransitionTo( Handler* handler, uint64 address, const RuleMap& new_rules) const { // Transition from cfa_rule_ to new_rules.cfa_rule_. if (cfa_rule_.isVALID() && new_rules.cfa_rule_.isVALID()) { if (cfa_rule_ != new_rules.cfa_rule_ && !new_rules.cfa_rule_.Handle(handler, address, Handler::kCFARegister)) { return false; } } else if (cfa_rule_.isVALID()) { // this RuleMap has a CFA rule but new_rules doesn't. // CallFrameInfo::Handler has no way to handle this --- and shouldn't; // it's garbage input. The instruction interpreter should have // detected this and warned, so take no action here. } else if (new_rules.cfa_rule_.isVALID()) { // This shouldn't be possible: NEW_RULES is some prior state, and // there's no way to remove entries. MOZ_ASSERT(0); } else { // Both CFA rules are empty. No action needed. } // Traverse the two maps in order by register number, and report // whatever differences we find. RuleMapLowLevel::Iter old_it(®isters_); RuleMapLowLevel::Iter new_it(&new_rules.registers_); while (!old_it.finished() && !new_it.finished()) { pair old_pair = old_it.peek(); pair new_pair = new_it.peek(); if (old_pair.first < new_pair.first) { // This RuleMap has an entry for old.first, but NEW_RULES doesn't. // // This isn't really the right thing to do, but since CFI generally // only mentions callee-saves registers, and GCC's convention for // callee-saves registers is that they are unchanged, it's a good // approximation. if (!handler->SameValueRule(address, old_pair.first)) { return false; } old_it.step(); } else if (old_pair.first > new_pair.first) { // NEW_RULES has an entry for new_pair.first, but this RuleMap // doesn't. This shouldn't be possible: NEW_RULES is some prior // state, and there's no way to remove entries. MOZ_ASSERT(0); } else { // Both maps have an entry for this register. Report the new // rule if it is different. if (old_pair.second != new_pair.second && !new_pair.second.Handle(handler, address, new_pair.first)) { return false; } new_it.step(); old_it.step(); } } // Finish off entries from this RuleMap with no counterparts in new_rules. while (!old_it.finished()) { pair old_pair = old_it.peek(); if (!handler->SameValueRule(address, old_pair.first)) return false; old_it.step(); } // Since we only make transitions from a rule set to some previously // saved rule set, and we can only add rules to the map, NEW_RULES // must have fewer rules than *this. MOZ_ASSERT(new_it.finished()); return true; } // Remove all register rules and clear cfa_rule_. void CallFrameInfo::RuleMap::Clear() { cfa_rule_ = Rule::mkINVALID(); registers_.clear(); } // The state of the call frame information interpreter as it processes // instructions from a CIE and FDE. class CallFrameInfo::State { public: // Create a call frame information interpreter state with the given // reporter, reader, handler, and initial call frame info address. State(ByteReader* reader, Handler* handler, Reporter* reporter, uint64 address) : reader_(reader), handler_(handler), reporter_(reporter), address_(address), entry_(NULL), cursor_(NULL), saved_rules_(NULL) {} ~State() { if (saved_rules_) delete saved_rules_; } // Interpret instructions from CIE, save the resulting rule set for // DW_CFA_restore instructions, and return true. On error, report // the problem to reporter_ and return false. bool InterpretCIE(const CIE& cie); // Interpret instructions from FDE, and return true. On error, // report the problem to reporter_ and return false. bool InterpretFDE(const FDE& fde); private: // The operands of a CFI instruction, for ParseOperands. struct Operands { unsigned register_number; // A register number. uint64 offset; // An offset or address. long signed_offset; // A signed offset. ImageSlice expression; // A DWARF expression. }; // Parse CFI instruction operands from STATE's instruction stream as // described by FORMAT. On success, populate OPERANDS with the // results, and return true. On failure, report the problem and // return false. // // Each character of FORMAT should be one of the following: // // 'r' unsigned LEB128 register number (OPERANDS->register_number) // 'o' unsigned LEB128 offset (OPERANDS->offset) // 's' signed LEB128 offset (OPERANDS->signed_offset) // 'a' machine-size address (OPERANDS->offset) // (If the CIE has a 'z' augmentation string, 'a' uses the // encoding specified by the 'R' argument.) // '1' a one-byte offset (OPERANDS->offset) // '2' a two-byte offset (OPERANDS->offset) // '4' a four-byte offset (OPERANDS->offset) // '8' an eight-byte offset (OPERANDS->offset) // 'e' a DW_FORM_block holding a (OPERANDS->expression) // DWARF expression bool ParseOperands(const char* format, Operands* operands); // Interpret one CFI instruction from STATE's instruction stream, update // STATE, report any rule changes to handler_, and return true. On // failure, report the problem and return false. MOZ_ALWAYS_INLINE bool DoInstruction(); // Repeatedly call `DoInstruction`, until either: // * it returns `false`, which indicates some kind of failure, // in which case return `false` from here too, or // * we've run out of instructions (that is, `cursor_ >= entry_->end`), // in which case return `true`. // This is marked as never-inline because it is the only place that // `DoInstruction` is called from, and we want to maximise the chances that // `DoInstruction` is inlined into this routine. MOZ_NEVER_INLINE bool DoInstructions(); // The following Do* member functions are subroutines of DoInstruction, // factoring out the actual work of operations that have several // different encodings. // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and // return true. On failure, report and return false. (Used for // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.) bool DoDefCFA(unsigned base_register, long offset); // Change the offset of the CFA rule to OFFSET, and return true. On // failure, report and return false. (Subroutine for // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.) bool DoDefCFAOffset(long offset); // Specify that REG can be recovered using RULE, and return true. On // failure, report and return false. bool DoRule(unsigned reg, Rule rule); // Specify that REG can be found at OFFSET from the CFA, and return true. // On failure, report and return false. (Subroutine for DW_CFA_offset, // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.) bool DoOffset(unsigned reg, long offset); // Specify that the caller's value for REG is the CFA plus OFFSET, // and return true. On failure, report and return false. (Subroutine // for DW_CFA_val_offset and DW_CFA_val_offset_sf.) bool DoValOffset(unsigned reg, long offset); // Restore REG to the rule established in the CIE, and return true. On // failure, report and return false. (Subroutine for DW_CFA_restore and // DW_CFA_restore_extended.) bool DoRestore(unsigned reg); // Return the section offset of the instruction at cursor. For use // in error messages. uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); } // Report that entry_ is incomplete, and return false. For brevity. bool ReportIncomplete() { reporter_->Incomplete(entry_->offset, entry_->kind); return false; } // For reading multi-byte values with the appropriate endianness. ByteReader* reader_; // The handler to which we should report the data we find. Handler* handler_; // For reporting problems in the info we're parsing. Reporter* reporter_; // The code address to which the next instruction in the stream applies. uint64 address_; // The entry whose instructions we are currently processing. This is // first a CIE, and then an FDE. const Entry* entry_; // The next instruction to process. const char* cursor_; // The current set of rules. RuleMap rules_; // The set of rules established by the CIE, used by DW_CFA_restore // and DW_CFA_restore_extended. We set this after interpreting the // CIE's instructions. RuleMap cie_rules_; // A stack of saved states, for DW_CFA_remember_state and // DW_CFA_restore_state. std::stack* saved_rules_; }; bool CallFrameInfo::State::InterpretCIE(const CIE& cie) { entry_ = &cie; cursor_ = entry_->instructions; if (!DoInstructions()) { return false; } // Note the rules established by the CIE, for use by DW_CFA_restore // and DW_CFA_restore_extended. cie_rules_ = rules_; return true; } bool CallFrameInfo::State::InterpretFDE(const FDE& fde) { entry_ = &fde; cursor_ = entry_->instructions; return DoInstructions(); } bool CallFrameInfo::State::ParseOperands(const char* format, Operands* operands) { size_t len; const char* operand; for (operand = format; *operand; operand++) { size_t bytes_left = entry_->end - cursor_; switch (*operand) { case 'r': operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len); if (len > bytes_left) return ReportIncomplete(); cursor_ += len; break; case 'o': operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len); if (len > bytes_left) return ReportIncomplete(); cursor_ += len; break; case 's': operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len); if (len > bytes_left) return ReportIncomplete(); cursor_ += len; break; case 'a': operands->offset = reader_->ReadEncodedPointer( cursor_, entry_->cie->pointer_encoding, &len); if (len > bytes_left) return ReportIncomplete(); cursor_ += len; break; case '1': if (1 > bytes_left) return ReportIncomplete(); operands->offset = static_cast(*cursor_++); break; case '2': if (2 > bytes_left) return ReportIncomplete(); operands->offset = reader_->ReadTwoBytes(cursor_); cursor_ += 2; break; case '4': if (4 > bytes_left) return ReportIncomplete(); operands->offset = reader_->ReadFourBytes(cursor_); cursor_ += 4; break; case '8': if (8 > bytes_left) return ReportIncomplete(); operands->offset = reader_->ReadEightBytes(cursor_); cursor_ += 8; break; case 'e': { size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len); if (len > bytes_left || expression_length > bytes_left - len) return ReportIncomplete(); cursor_ += len; operands->expression = ImageSlice(cursor_, expression_length); cursor_ += expression_length; break; } default: MOZ_ASSERT(0); } } return true; } MOZ_ALWAYS_INLINE bool CallFrameInfo::State::DoInstruction() { CIE* cie = entry_->cie; Operands ops; // Our entry's kind should have been set by now. MOZ_ASSERT(entry_->kind != kUnknown); // We shouldn't have been invoked unless there were more // instructions to parse. MOZ_ASSERT(cursor_ < entry_->end); unsigned opcode = *cursor_++; if ((opcode & 0xc0) != 0) { switch (opcode & 0xc0) { // Advance the address. case DW_CFA_advance_loc: { size_t code_offset = opcode & 0x3f; address_ += code_offset * cie->code_alignment_factor; break; } // Find a register at an offset from the CFA. case DW_CFA_offset: if (!ParseOperands("o", &ops) || !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor)) return false; break; // Restore the rule established for a register by the CIE. case DW_CFA_restore: if (!DoRestore(opcode & 0x3f)) return false; break; // The 'if' above should have excluded this possibility. default: MOZ_ASSERT(0); } // Return here, so the big switch below won't be indented. return true; } switch (opcode) { // Set the address. case DW_CFA_set_loc: if (!ParseOperands("a", &ops)) return false; address_ = ops.offset; break; // Advance the address. case DW_CFA_advance_loc1: if (!ParseOperands("1", &ops)) return false; address_ += ops.offset * cie->code_alignment_factor; break; // Advance the address. case DW_CFA_advance_loc2: if (!ParseOperands("2", &ops)) return false; address_ += ops.offset * cie->code_alignment_factor; break; // Advance the address. case DW_CFA_advance_loc4: if (!ParseOperands("4", &ops)) return false; address_ += ops.offset * cie->code_alignment_factor; break; // Advance the address. case DW_CFA_MIPS_advance_loc8: if (!ParseOperands("8", &ops)) return false; address_ += ops.offset * cie->code_alignment_factor; break; // Compute the CFA by adding an offset to a register. case DW_CFA_def_cfa: if (!ParseOperands("ro", &ops) || !DoDefCFA(ops.register_number, ops.offset)) return false; break; // Compute the CFA by adding an offset to a register. case DW_CFA_def_cfa_sf: if (!ParseOperands("rs", &ops) || !DoDefCFA(ops.register_number, ops.signed_offset * cie->data_alignment_factor)) return false; break; // Change the base register used to compute the CFA. case DW_CFA_def_cfa_register: { Rule* cfa_rule = rules_.CFARuleRef(); if (!cfa_rule->isVALID()) { reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); return false; } if (!ParseOperands("r", &ops)) return false; cfa_rule->SetBaseRegister(ops.register_number); if (!cfa_rule->Handle(handler_, address_, Handler::kCFARegister)) return false; break; } // Change the offset used to compute the CFA. case DW_CFA_def_cfa_offset: if (!ParseOperands("o", &ops) || !DoDefCFAOffset(ops.offset)) return false; break; // Change the offset used to compute the CFA. case DW_CFA_def_cfa_offset_sf: if (!ParseOperands("s", &ops) || !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor)) return false; break; // Specify an expression whose value is the CFA. case DW_CFA_def_cfa_expression: { if (!ParseOperands("e", &ops)) return false; Rule rule = Rule::mkValExpressionRule(ops.expression); rules_.SetCFARule(rule); if (!rule.Handle(handler_, address_, Handler::kCFARegister)) return false; break; } // The register's value cannot be recovered. case DW_CFA_undefined: { if (!ParseOperands("r", &ops) || !DoRule(ops.register_number, Rule::mkUndefinedRule())) return false; break; } // The register's value is unchanged from its value in the caller. case DW_CFA_same_value: { if (!ParseOperands("r", &ops) || !DoRule(ops.register_number, Rule::mkSameValueRule())) return false; break; } // Find a register at an offset from the CFA. case DW_CFA_offset_extended: if (!ParseOperands("ro", &ops) || !DoOffset(ops.register_number, ops.offset * cie->data_alignment_factor)) return false; break; // The register is saved at an offset from the CFA. case DW_CFA_offset_extended_sf: if (!ParseOperands("rs", &ops) || !DoOffset(ops.register_number, ops.signed_offset * cie->data_alignment_factor)) return false; break; // The register is saved at an offset from the CFA. case DW_CFA_GNU_negative_offset_extended: if (!ParseOperands("ro", &ops) || !DoOffset(ops.register_number, -ops.offset * cie->data_alignment_factor)) return false; break; // The register's value is the sum of the CFA plus an offset. case DW_CFA_val_offset: if (!ParseOperands("ro", &ops) || !DoValOffset(ops.register_number, ops.offset * cie->data_alignment_factor)) return false; break; // The register's value is the sum of the CFA plus an offset. case DW_CFA_val_offset_sf: if (!ParseOperands("rs", &ops) || !DoValOffset(ops.register_number, ops.signed_offset * cie->data_alignment_factor)) return false; break; // The register has been saved in another register. case DW_CFA_register: { if (!ParseOperands("ro", &ops) || !DoRule(ops.register_number, Rule::mkRegisterRule(ops.offset))) return false; break; } // An expression yields the address at which the register is saved. case DW_CFA_expression: { if (!ParseOperands("re", &ops) || !DoRule(ops.register_number, Rule::mkExpressionRule(ops.expression))) return false; break; } // An expression yields the caller's value for the register. case DW_CFA_val_expression: { if (!ParseOperands("re", &ops) || !DoRule(ops.register_number, Rule::mkValExpressionRule(ops.expression))) return false; break; } // Restore the rule established for a register by the CIE. case DW_CFA_restore_extended: if (!ParseOperands("r", &ops) || !DoRestore(ops.register_number)) return false; break; // Save the current set of rules on a stack. case DW_CFA_remember_state: if (!saved_rules_) { saved_rules_ = new std::stack(); } saved_rules_->push(rules_); break; // Pop the current set of rules off the stack. case DW_CFA_restore_state: { if (!saved_rules_ || saved_rules_->empty()) { reporter_->EmptyStateStack(entry_->offset, entry_->kind, CursorOffset()); return false; } const RuleMap& new_rules = saved_rules_->top(); if (rules_.CFARule().isVALID() && !new_rules.CFARule().isVALID()) { reporter_->ClearingCFARule(entry_->offset, entry_->kind, CursorOffset()); return false; } rules_.HandleTransitionTo(handler_, address_, new_rules); rules_ = new_rules; saved_rules_->pop(); break; } // No operation. (Padding instruction.) case DW_CFA_nop: break; // A SPARC register window save: Registers 8 through 15 (%o0-%o7) // are saved in registers 24 through 31 (%i0-%i7), and registers // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets // (0-15 * the register size). The register numbers must be // hard-coded. A GNU extension, and not a pretty one. case DW_CFA_GNU_window_save: { // Save %o0-%o7 in %i0-%i7. for (int i = 8; i < 16; i++) if (!DoRule(i, Rule::mkRegisterRule(i + 16))) return false; // Save %l0-%l7 and %i0-%i7 at the CFA. for (int i = 16; i < 32; i++) // Assume that the byte reader's address size is the same as // the architecture's register size. !@#%*^ hilarious. if (!DoRule(i, Rule::mkOffsetRule(Handler::kCFARegister, (i - 16) * reader_->AddressSize()))) return false; break; } // I'm not sure what this is. GDB doesn't use it for unwinding. case DW_CFA_GNU_args_size: if (!ParseOperands("o", &ops)) return false; break; // An opcode we don't recognize. default: { reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset()); return false; } } return true; } // See declaration above for rationale re the no-inline directive. MOZ_NEVER_INLINE bool CallFrameInfo::State::DoInstructions() { while (cursor_ < entry_->end) { if (!DoInstruction()) { return false; } } return true; } bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) { Rule rule = Rule::mkValOffsetRule(base_register, offset); rules_.SetCFARule(rule); return rule.Handle(handler_, address_, Handler::kCFARegister); } bool CallFrameInfo::State::DoDefCFAOffset(long offset) { Rule* cfa_rule = rules_.CFARuleRef(); if (!cfa_rule->isVALID()) { reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); return false; } cfa_rule->SetOffset(offset); return cfa_rule->Handle(handler_, address_, Handler::kCFARegister); } bool CallFrameInfo::State::DoRule(unsigned reg, Rule rule) { rules_.SetRegisterRule(reg, rule); return rule.Handle(handler_, address_, reg); } bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) { if (!rules_.CFARule().isVALID()) { reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); return false; } Rule rule = Rule::mkOffsetRule(Handler::kCFARegister, offset); return DoRule(reg, rule); } bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) { if (!rules_.CFARule().isVALID()) { reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset()); return false; } return DoRule(reg, Rule::mkValOffsetRule(Handler::kCFARegister, offset)); } bool CallFrameInfo::State::DoRestore(unsigned reg) { // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE. if (entry_->kind == kCIE) { reporter_->RestoreInCIE(entry_->offset, CursorOffset()); return false; } Rule rule = cie_rules_.RegisterRule(reg); if (!rule.isVALID()) { // This isn't really the right thing to do, but since CFI generally // only mentions callee-saves registers, and GCC's convention for // callee-saves registers is that they are unchanged, it's a good // approximation. rule = Rule::mkSameValueRule(); } return DoRule(reg, rule); } bool CallFrameInfo::ReadEntryPrologue(const char* cursor, Entry* entry) { const char* buffer_end = buffer_ + buffer_length_; // Initialize enough of ENTRY for use in error reporting. entry->offset = cursor - buffer_; entry->start = cursor; entry->kind = kUnknown; entry->end = NULL; // Read the initial length. This sets reader_'s offset size. size_t length_size; uint64 length = reader_->ReadInitialLength(cursor, &length_size); if (length_size > size_t(buffer_end - cursor)) return ReportIncomplete(entry); cursor += length_size; // In a .eh_frame section, a length of zero marks the end of the series // of entries. if (length == 0 && eh_frame_) { entry->kind = kTerminator; entry->end = cursor; return true; } // Validate the length. if (length > size_t(buffer_end - cursor)) return ReportIncomplete(entry); // The length is the number of bytes after the initial length field; // we have that position handy at this point, so compute the end // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine, // and the length didn't fit in a size_t, we would have rejected it // above.) entry->end = cursor + length; // Parse the next field: either the offset of a CIE or a CIE id. size_t offset_size = reader_->OffsetSize(); if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry); entry->id = reader_->ReadOffset(cursor); // Don't advance cursor past id field yet; in .eh_frame data we need // the id's position to compute the section offset of an FDE's CIE. // Now we can decide what kind of entry this is. if (eh_frame_) { // In .eh_frame data, an ID of zero marks the entry as a CIE, and // anything else is an offset from the id field of the FDE to the start // of the CIE. if (entry->id == 0) { entry->kind = kCIE; } else { entry->kind = kFDE; // Turn the offset from the id into an offset from the buffer's start. entry->id = (cursor - buffer_) - entry->id; } } else { // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the // offset size for the entry) marks the entry as a CIE, and anything // else is the offset of the CIE from the beginning of the section. if (offset_size == 4) entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE; else { MOZ_ASSERT(offset_size == 8); entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE; } } // Now advance cursor past the id. cursor += offset_size; // The fields specific to this kind of entry start here. entry->fields = cursor; entry->cie = NULL; return true; } bool CallFrameInfo::ReadCIEFields(CIE* cie) { const char* cursor = cie->fields; size_t len; MOZ_ASSERT(cie->kind == kCIE); // Prepare for early exit. cie->version = 0; cie->augmentation.clear(); cie->code_alignment_factor = 0; cie->data_alignment_factor = 0; cie->return_address_register = 0; cie->has_z_augmentation = false; cie->pointer_encoding = DW_EH_PE_absptr; cie->instructions = 0; // Parse the version number. if (cie->end - cursor < 1) return ReportIncomplete(cie); cie->version = reader_->ReadOneByte(cursor); cursor++; // If we don't recognize the version, we can't parse any more fields of the // CIE. For DWARF CFI, we handle versions 1 through 4 (there was never a // version 2 of CFI data). For .eh_frame, we handle versions 1 and 4 as well; // the difference between those versions seems to be the same as for // .debug_frame. if (cie->version < 1 || cie->version > 4) { reporter_->UnrecognizedVersion(cie->offset, cie->version); return false; } const char* augmentation_start = cursor; const void* augmentation_end = memchr(augmentation_start, '\0', cie->end - augmentation_start); if (!augmentation_end) return ReportIncomplete(cie); cursor = static_cast(augmentation_end); cie->augmentation = string(augmentation_start, cursor - augmentation_start); // Skip the terminating '\0'. cursor++; // Is this CFI augmented? if (!cie->augmentation.empty()) { // Is it an augmentation we recognize? if (cie->augmentation[0] == DW_Z_augmentation_start) { // Linux C++ ABI 'z' augmentation, used for exception handling data. cie->has_z_augmentation = true; } else { // Not an augmentation we recognize. Augmentations can have arbitrary // effects on the form of rest of the content, so we have to give up. reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); return false; } } if (cie->version >= 4) { // Check that the address_size and segment_size fields are plausible. if (cie->end - cursor < 2) { return ReportIncomplete(cie); } uint8_t address_size = reader_->ReadOneByte(cursor); cursor++; if (address_size != sizeof(void*)) { // This is not per-se invalid CFI. But we can reasonably expect to // be running on a target of the same word size as the CFI is for, // so we reject this case. reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid address_size"); return false; } uint8_t segment_size = reader_->ReadOneByte(cursor); cursor++; if (segment_size != 0) { // This is also not per-se invalid CFI, but we don't currently handle // the case of non-zero |segment_size|. reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid segment_size"); return false; } // We only continue parsing if |segment_size| is zero. If this routine // is ever changed to allow non-zero |segment_size|, then // ReadFDEFields() below will have to be changed to match, per comments // there. } // Parse the code alignment factor. cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len); if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); cursor += len; // Parse the data alignment factor. cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len); if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); cursor += len; // Parse the return address register. This is a ubyte in version 1, and // a ULEB128 in version 3. if (cie->version == 1) { if (cursor >= cie->end) return ReportIncomplete(cie); cie->return_address_register = uint8(*cursor++); } else { cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len); if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie); cursor += len; } // If we have a 'z' augmentation string, find the augmentation data and // use the augmentation string to parse it. if (cie->has_z_augmentation) { uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len); if (size_t(cie->end - cursor) < len + data_size) return ReportIncomplete(cie); cursor += len; const char* data = cursor; cursor += data_size; const char* data_end = cursor; cie->has_z_lsda = false; cie->has_z_personality = false; cie->has_z_signal_frame = false; // Walk the augmentation string, and extract values from the // augmentation data as the string directs. for (size_t i = 1; i < cie->augmentation.size(); i++) { switch (cie->augmentation[i]) { case DW_Z_has_LSDA: // The CIE's augmentation data holds the language-specific data // area pointer's encoding, and the FDE's augmentation data holds // the pointer itself. cie->has_z_lsda = true; // Fetch the LSDA encoding from the augmentation data. if (data >= data_end) return ReportIncomplete(cie); cie->lsda_encoding = DwarfPointerEncoding(*data++); if (!reader_->ValidEncoding(cie->lsda_encoding)) { reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding); return false; } // Don't check if the encoding is usable here --- we haven't // read the FDE's fields yet, so we're not prepared for // DW_EH_PE_funcrel, although that's a fine encoding for the // LSDA to use, since it appears in the FDE. break; case DW_Z_has_personality_routine: // The CIE's augmentation data holds the personality routine // pointer's encoding, followed by the pointer itself. cie->has_z_personality = true; // Fetch the personality routine pointer's encoding from the // augmentation data. if (data >= data_end) return ReportIncomplete(cie); cie->personality_encoding = DwarfPointerEncoding(*data++); if (!reader_->ValidEncoding(cie->personality_encoding)) { reporter_->InvalidPointerEncoding(cie->offset, cie->personality_encoding); return false; } if (!reader_->UsableEncoding(cie->personality_encoding)) { reporter_->UnusablePointerEncoding(cie->offset, cie->personality_encoding); return false; } // Fetch the personality routine's pointer itself from the data. cie->personality_address = reader_->ReadEncodedPointer( data, cie->personality_encoding, &len); if (len > size_t(data_end - data)) return ReportIncomplete(cie); data += len; break; case DW_Z_has_FDE_address_encoding: // The CIE's augmentation data holds the pointer encoding to use // for addresses in the FDE. if (data >= data_end) return ReportIncomplete(cie); cie->pointer_encoding = DwarfPointerEncoding(*data++); if (!reader_->ValidEncoding(cie->pointer_encoding)) { reporter_->InvalidPointerEncoding(cie->offset, cie->pointer_encoding); return false; } if (!reader_->UsableEncoding(cie->pointer_encoding)) { reporter_->UnusablePointerEncoding(cie->offset, cie->pointer_encoding); return false; } break; case DW_Z_is_signal_trampoline: // Frames using this CIE are signal delivery frames. cie->has_z_signal_frame = true; break; default: // An augmentation we don't recognize. reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation); return false; } } } // The CIE's instructions start here. cie->instructions = cursor; return true; } bool CallFrameInfo::ReadFDEFields(FDE* fde) { const char* cursor = fde->fields; size_t size; // At this point, for Dwarf 4 and above, we are assuming that the // associated CIE has its |segment_size| field equal to zero. This is // checked for in ReadCIEFields() above. If ReadCIEFields() is ever // changed to allow non-zero |segment_size| CIEs then we will have to read // the segment_selector value at this point. fde->address = reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding, &size); if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde); cursor += size; reader_->SetFunctionBase(fde->address); // For the length, we strip off the upper nybble of the encoding used for // the starting address. DwarfPointerEncoding length_encoding = DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f); fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size); if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde); cursor += size; // If the CIE has a 'z' augmentation string, then augmentation data // appears here. if (fde->cie->has_z_augmentation) { uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size); if (size_t(fde->end - cursor) < size + data_size) return ReportIncomplete(fde); cursor += size; // In the abstract, we should walk the augmentation string, and extract // items from the FDE's augmentation data as we encounter augmentation // string characters that specify their presence: the ordering of items // in the augmentation string determines the arrangement of values in // the augmentation data. // // In practice, there's only ever one value in FDE augmentation data // that we support --- the LSDA pointer --- and we have to bail if we // see any unrecognized augmentation string characters. So if there is // anything here at all, we know what it is, and where it starts. if (fde->cie->has_z_lsda) { // Check whether the LSDA's pointer encoding is usable now: only once // we've parsed the FDE's starting address do we call reader_-> // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes // usable. if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) { reporter_->UnusablePointerEncoding(fde->cie->offset, fde->cie->lsda_encoding); return false; } fde->lsda_address = reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size); if (size > data_size) return ReportIncomplete(fde); // Ideally, we would also complain here if there were unconsumed // augmentation data. } cursor += data_size; } // The FDE's instructions start after those. fde->instructions = cursor; return true; } bool CallFrameInfo::Start() { const char* buffer_end = buffer_ + buffer_length_; const char* cursor; bool all_ok = true; const char* entry_end; bool ok; // Traverse all the entries in buffer_, skipping CIEs and offering // FDEs to the handler. for (cursor = buffer_; cursor < buffer_end; cursor = entry_end, all_ok = all_ok && ok) { FDE fde; // Make it easy to skip this entry with 'continue': assume that // things are not okay until we've checked all the data, and // prepare the address of the next entry. ok = false; // Read the entry's prologue. if (!ReadEntryPrologue(cursor, &fde)) { if (!fde.end) { // If we couldn't even figure out this entry's extent, then we // must stop processing entries altogether. all_ok = false; break; } entry_end = fde.end; continue; } // The next iteration picks up after this entry. entry_end = fde.end; // Did we see an .eh_frame terminating mark? if (fde.kind == kTerminator) { // If there appears to be more data left in the section after the // terminating mark, warn the user. But this is just a warning; // we leave all_ok true. if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset); break; } // In this loop, we skip CIEs. We only parse them fully when we // parse an FDE that refers to them. This limits our memory // consumption (beyond the buffer itself) to that needed to // process the largest single entry. if (fde.kind != kFDE) { ok = true; continue; } // Validate the CIE pointer. if (fde.id > buffer_length_) { reporter_->CIEPointerOutOfRange(fde.offset, fde.id); continue; } CIE cie; // Parse this FDE's CIE header. if (!ReadEntryPrologue(buffer_ + fde.id, &cie)) continue; // This had better be an actual CIE. if (cie.kind != kCIE) { reporter_->BadCIEId(fde.offset, fde.id); continue; } if (!ReadCIEFields(&cie)) continue; // We now have the values that govern both the CIE and the FDE. cie.cie = &cie; fde.cie = &cie; // Parse the FDE's header. if (!ReadFDEFields(&fde)) continue; // Call Entry to ask the consumer if they're interested. if (!handler_->Entry(fde.offset, fde.address, fde.size, cie.version, cie.augmentation, cie.return_address_register)) { // The handler isn't interested in this entry. That's not an error. ok = true; continue; } if (cie.has_z_augmentation) { // Report the personality routine address, if we have one. if (cie.has_z_personality) { if (!handler_->PersonalityRoutine( cie.personality_address, IsIndirectEncoding(cie.personality_encoding))) continue; } // Report the language-specific data area address, if we have one. if (cie.has_z_lsda) { if (!handler_->LanguageSpecificDataArea( fde.lsda_address, IsIndirectEncoding(cie.lsda_encoding))) continue; } // If this is a signal-handling frame, report that. if (cie.has_z_signal_frame) { if (!handler_->SignalHandler()) continue; } } // Interpret the CIE's instructions, and then the FDE's instructions. State state(reader_, handler_, reporter_, fde.address); ok = state.InterpretCIE(cie) && state.InterpretFDE(fde); // Tell the ByteReader that the function start address from the // FDE header is no longer valid. reader_->ClearFunctionBase(); // Report the end of the entry. handler_->End(); } return all_ok; } const char* CallFrameInfo::KindName(EntryKind kind) { if (kind == CallFrameInfo::kUnknown) return "entry"; else if (kind == CallFrameInfo::kCIE) return "common information entry"; else if (kind == CallFrameInfo::kFDE) return "frame description entry"; else { MOZ_ASSERT(kind == CallFrameInfo::kTerminator); return ".eh_frame sequence terminator"; } } bool CallFrameInfo::ReportIncomplete(Entry* entry) { reporter_->Incomplete(entry->offset, entry->kind); return false; } void CallFrameInfo::Reporter::Incomplete(uint64 offset, CallFrameInfo::EntryKind kind) { char buf[300]; SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n", filename_.c_str(), CallFrameInfo::KindName(kind), offset, section_.c_str()); log_(buf); } void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI at offset 0x%llx in '%s': saw end-of-data marker" " before end of section contents\n", filename_.c_str(), offset, section_.c_str()); log_(buf); } void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset, uint64 cie_offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI frame description entry at offset 0x%llx in '%s':" " CIE pointer is out of range: 0x%llx\n", filename_.c_str(), offset, section_.c_str(), cie_offset); log_(buf); } void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI frame description entry at offset 0x%llx in '%s':" " CIE pointer does not point to a CIE: 0x%llx\n", filename_.c_str(), offset, section_.c_str(), cie_offset); log_(buf); } void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) { char buf[300]; SprintfLiteral(buf, "%s: CFI frame description entry at offset 0x%llx in '%s':" " CIE specifies unrecognized version: %d\n", filename_.c_str(), offset, section_.c_str(), version); log_(buf); } void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset, const string& aug) { char buf[300]; SprintfLiteral(buf, "%s: CFI frame description entry at offset 0x%llx in '%s':" " CIE specifies unrecognized augmentation: '%s'\n", filename_.c_str(), offset, section_.c_str(), aug.c_str()); log_(buf); } void CallFrameInfo::Reporter::InvalidDwarf4Artefact(uint64 offset, const char* what) { char* what_safe = strndup(what, 100); char buf[300]; SprintfLiteral(buf, "%s: CFI frame description entry at offset 0x%llx in '%s':" " CIE specifies invalid Dwarf4 artefact: %s\n", filename_.c_str(), offset, section_.c_str(), what_safe); log_(buf); free(what_safe); } void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset, uint8 encoding) { char buf[300]; SprintfLiteral(buf, "%s: CFI common information entry at offset 0x%llx in '%s':" " 'z' augmentation specifies invalid pointer encoding: " "0x%02x\n", filename_.c_str(), offset, section_.c_str(), encoding); log_(buf); } void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset, uint8 encoding) { char buf[300]; SprintfLiteral(buf, "%s: CFI common information entry at offset 0x%llx in '%s':" " 'z' augmentation specifies a pointer encoding for which" " we have no base address: 0x%02x\n", filename_.c_str(), offset, section_.c_str(), encoding); log_(buf); } void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI common information entry at offset 0x%llx in '%s':" " the DW_CFA_restore instruction at offset 0x%llx" " cannot be used in a common information entry\n", filename_.c_str(), offset, section_.c_str(), insn_offset); log_(buf); } void CallFrameInfo::Reporter::BadInstruction(uint64 offset, CallFrameInfo::EntryKind kind, uint64 insn_offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in section '%s':" " the instruction at offset 0x%llx is unrecognized\n", filename_.c_str(), CallFrameInfo::KindName(kind), offset, section_.c_str(), insn_offset); log_(buf); } void CallFrameInfo::Reporter::NoCFARule(uint64 offset, CallFrameInfo::EntryKind kind, uint64 insn_offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in section '%s':" " the instruction at offset 0x%llx assumes that a CFA rule " "has been set, but none has been set\n", filename_.c_str(), CallFrameInfo::KindName(kind), offset, section_.c_str(), insn_offset); log_(buf); } void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset, CallFrameInfo::EntryKind kind, uint64 insn_offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in section '%s':" " the DW_CFA_restore_state instruction at offset 0x%llx" " should pop a saved state from the stack, but the stack " "is empty\n", filename_.c_str(), CallFrameInfo::KindName(kind), offset, section_.c_str(), insn_offset); log_(buf); } void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset, CallFrameInfo::EntryKind kind, uint64 insn_offset) { char buf[300]; SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in section '%s':" " the DW_CFA_restore_state instruction at offset 0x%llx" " would clear the CFA rule in effect\n", filename_.c_str(), CallFrameInfo::KindName(kind), offset, section_.c_str(), insn_offset); log_(buf); } unsigned int DwarfCFIToModule::RegisterNames::I386() { /* 8 "$eax", "$ecx", "$edx", "$ebx", "$esp", "$ebp", "$esi", "$edi", 3 "$eip", "$eflags", "$unused1", 8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7", 2 "$unused2", "$unused3", 8 "$xmm0", "$xmm1", "$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7", 8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7", 3 "$fcw", "$fsw", "$mxcsr", 8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused4", "$unused5", 2 "$tr", "$ldtr" */ return 8 + 3 + 8 + 2 + 8 + 8 + 3 + 8 + 2; } unsigned int DwarfCFIToModule::RegisterNames::X86_64() { /* 8 "$rax", "$rdx", "$rcx", "$rbx", "$rsi", "$rdi", "$rbp", "$rsp", 8 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$r15", 1 "$rip", 8 "$xmm0","$xmm1","$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7", 8 "$xmm8","$xmm9","$xmm10","$xmm11","$xmm12","$xmm13","$xmm14","$xmm15", 8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7", 8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7", 1 "$rflags", 8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused1", "$unused2", 4 "$fs.base", "$gs.base", "$unused3", "$unused4", 2 "$tr", "$ldtr", 3 "$mxcsr", "$fcw", "$fsw" */ return 8 + 8 + 1 + 8 + 8 + 8 + 8 + 1 + 8 + 4 + 2 + 3; } // Per ARM IHI 0040A, section 3.1 unsigned int DwarfCFIToModule::RegisterNames::ARM() { /* 8 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 8 "r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc", 8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", 8 "fps", "cpsr", "", "", "", "", "", "", 8 "", "", "", "", "", "", "", "", 8 "", "", "", "", "", "", "", "", 8 "", "", "", "", "", "", "", "", 8 "", "", "", "", "", "", "", "", 8 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", 8 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", 8 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", 8 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", 8 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7" */ return 13 * 8; } // Per ARM IHI 0057A, section 3.1 unsigned int DwarfCFIToModule::RegisterNames::ARM64() { /* 8 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 8 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 8 "x16" "x17", "x18", "x19", "x20", "x21", "x22", "x23", 8 "x24", "x25", "x26", "x27", "x28", "x29", "x30","sp", 8 "", "", "", "", "", "", "", "", 8 "", "", "", "", "", "", "", "", 8 "", "", "", "", "", "", "", "", 8 "", "", "", "", "", "", "", "", 8 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", 8 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", 8 "v16", "v17", "v18", "v19", "v20", "v21", "v22, "v23", 8 "v24", "x25", "x26, "x27", "v28", "v29", "v30", "v31", */ return 12 * 8; } unsigned int DwarfCFIToModule::RegisterNames::MIPS() { /* 8 "$zero", "$at", "$v0", "$v1", "$a0", "$a1", "$a2", "$a3", 8 "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7", 8 "$s0", "$s1", "$s2", "$s3", "$s4", "$s5", "$s6", "$s7", 8 "$t8", "$t9", "$k0", "$k1", "$gp", "$sp", "$fp", "$ra", 9 "$lo", "$hi", "$pc", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", 8 "$f6", "$f7", "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", 7 "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20", 7 "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", 6 "$f28", "$f29", "$f30", "$f31", "$fcsr", "$fir" */ return 8 + 8 + 8 + 8 + 9 + 8 + 7 + 7 + 6; } // See prototype for comments. int32_t parseDwarfExpr(Summariser* summ, const ByteReader* reader, ImageSlice expr, bool debug, bool pushCfaAtStart, bool derefAtEnd) { const char* cursor = expr.start_; const char* end1 = cursor + expr.length_; char buf[100]; if (debug) { SprintfLiteral(buf, "LUL.DW << DwarfExpr, len is %d\n", (int)(end1 - cursor)); summ->Log(buf); } // Add a marker for the start of this expression. In it, indicate // whether or not the CFA should be pushed onto the stack prior to // evaluation. int32_t start_ix = summ->AddPfxInstr(PfxInstr(PX_Start, pushCfaAtStart ? 1 : 0)); MOZ_ASSERT(start_ix >= 0); while (cursor < end1) { uint8 opc = reader->ReadOneByte(cursor); cursor++; const char* nm = nullptr; PfxExprOp pxop = PX_End; switch (opc) { case DW_OP_lit0 ... DW_OP_lit31: { int32_t simm32 = (int32_t)(opc - DW_OP_lit0); if (debug) { SprintfLiteral(buf, "LUL.DW DW_OP_lit%d\n", (int)simm32); summ->Log(buf); } (void)summ->AddPfxInstr(PfxInstr(PX_SImm32, simm32)); break; } case DW_OP_breg0 ... DW_OP_breg31: { size_t len; int64_t n = reader->ReadSignedLEB128(cursor, &len); cursor += len; DW_REG_NUMBER reg = (DW_REG_NUMBER)(opc - DW_OP_breg0); if (debug) { SprintfLiteral(buf, "LUL.DW DW_OP_breg%d %lld\n", (int)reg, (long long int)n); summ->Log(buf); } // PfxInstr only allows a 32 bit signed offset. So we // must fail if the immediate is out of range. if (n < INT32_MIN || INT32_MAX < n) goto fail; (void)summ->AddPfxInstr(PfxInstr(PX_DwReg, reg)); (void)summ->AddPfxInstr(PfxInstr(PX_SImm32, (int32_t)n)); (void)summ->AddPfxInstr(PfxInstr(PX_Add)); break; } case DW_OP_const4s: { uint64_t u64 = reader->ReadFourBytes(cursor); cursor += 4; // u64 is guaranteed by |ReadFourBytes| to be in the // range 0 .. FFFFFFFF inclusive. But to be safe: uint32_t u32 = (uint32_t)(u64 & 0xFFFFFFFF); int32_t s32 = (int32_t)u32; if (debug) { SprintfLiteral(buf, "LUL.DW DW_OP_const4s %d\n", (int)s32); summ->Log(buf); } (void)summ->AddPfxInstr(PfxInstr(PX_SImm32, s32)); break; } case DW_OP_deref: nm = "deref"; pxop = PX_Deref; goto no_operands; case DW_OP_and: nm = "and"; pxop = PX_And; goto no_operands; case DW_OP_plus: nm = "plus"; pxop = PX_Add; goto no_operands; case DW_OP_minus: nm = "minus"; pxop = PX_Sub; goto no_operands; case DW_OP_shl: nm = "shl"; pxop = PX_Shl; goto no_operands; case DW_OP_ge: nm = "ge"; pxop = PX_CmpGES; goto no_operands; no_operands: MOZ_ASSERT(nm && pxop != PX_End); if (debug) { SprintfLiteral(buf, "LUL.DW DW_OP_%s\n", nm); summ->Log(buf); } (void)summ->AddPfxInstr(PfxInstr(pxop)); break; default: if (debug) { SprintfLiteral(buf, "LUL.DW unknown opc %d\n", (int)opc); summ->Log(buf); } goto fail; } // switch (opc) } // while (cursor < end1) MOZ_ASSERT(cursor >= end1); if (cursor > end1) { // We overran the Dwarf expression. Give up. goto fail; } // For DW_CFA_expression, what the expression denotes is the address // of where the previous value is located. The caller of this routine // may therefore request one last dereference before the end marker is // inserted. if (derefAtEnd) { (void)summ->AddPfxInstr(PfxInstr(PX_Deref)); } // Insert an end marker, and declare success. (void)summ->AddPfxInstr(PfxInstr(PX_End)); if (debug) { SprintfLiteral(buf, "LUL.DW conversion of dwarf expression succeeded, " "ix = %d\n", (int)start_ix); summ->Log(buf); summ->Log("LUL.DW >>\n"); } return start_ix; fail: if (debug) { summ->Log("LUL.DW conversion of dwarf expression failed\n"); summ->Log("LUL.DW >>\n"); } return -1; } bool DwarfCFIToModule::Entry(size_t offset, uint64 address, uint64 length, uint8 version, const string& augmentation, unsigned return_address) { if (DEBUG_DWARF) { char buf[100]; SprintfLiteral(buf, "LUL.DW DwarfCFIToModule::Entry 0x%llx,+%lld\n", address, length); summ_->Log(buf); } summ_->Entry(address, length); // If dwarf2reader::CallFrameInfo can handle this version and // augmentation, then we should be okay with that, so there's no // need to check them here. // Get ready to collect entries. return_address_ = return_address; // Breakpad STACK CFI records must provide a .ra rule, but DWARF CFI // may not establish any rule for .ra if the return address column // is an ordinary register, and that register holds the return // address on entry to the function. So establish an initial .ra // rule citing the return address register. if (return_address_ < num_dw_regs_) { summ_->Rule(address, return_address_, NODEREF, return_address, 0); } return true; } const UniqueString* DwarfCFIToModule::RegisterName(int i) { if (i < 0) { MOZ_ASSERT(i == kCFARegister); return usu_->ToUniqueString(".cfa"); } unsigned reg = i; if (reg == return_address_) return usu_->ToUniqueString(".ra"); char buf[30]; SprintfLiteral(buf, "dwarf_reg_%u", reg); return usu_->ToUniqueString(buf); } bool DwarfCFIToModule::UndefinedRule(uint64 address, int reg) { reporter_->UndefinedNotSupported(entry_offset_, RegisterName(reg)); // Treat this as a non-fatal error. return true; } bool DwarfCFIToModule::SameValueRule(uint64 address, int reg) { if (DEBUG_DWARF) { char buf[100]; SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = Same\n", address, reg); summ_->Log(buf); } // reg + 0 summ_->Rule(address, reg, NODEREF, reg, 0); return true; } bool DwarfCFIToModule::OffsetRule(uint64 address, int reg, int base_register, long offset) { if (DEBUG_DWARF) { char buf[100]; SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = *(r%d + %ld)\n", address, reg, base_register, offset); summ_->Log(buf); } // *(base_register + offset) summ_->Rule(address, reg, DEREF, base_register, offset); return true; } bool DwarfCFIToModule::ValOffsetRule(uint64 address, int reg, int base_register, long offset) { if (DEBUG_DWARF) { char buf[100]; SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d + %ld\n", address, reg, base_register, offset); summ_->Log(buf); } // base_register + offset summ_->Rule(address, reg, NODEREF, base_register, offset); return true; } bool DwarfCFIToModule::RegisterRule(uint64 address, int reg, int base_register) { if (DEBUG_DWARF) { char buf[100]; SprintfLiteral(buf, "LUL.DW 0x%llx: old r%d = r%d\n", address, reg, base_register); summ_->Log(buf); } // base_register + 0 summ_->Rule(address, reg, NODEREF, base_register, 0); return true; } bool DwarfCFIToModule::ExpressionRule(uint64 address, int reg, const ImageSlice& expression) { bool debug = !!DEBUG_DWARF; int32_t start_ix = parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/, true /*derefAtEnd*/); if (start_ix >= 0) { summ_->Rule(address, reg, PFXEXPR, 0, start_ix); } else { // Parsing of the Dwarf expression failed. Treat this as a // non-fatal error, hence return |true| even on this path. reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg)); } return true; } bool DwarfCFIToModule::ValExpressionRule(uint64 address, int reg, const ImageSlice& expression) { bool debug = !!DEBUG_DWARF; int32_t start_ix = parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/, false /*!derefAtEnd*/); if (start_ix >= 0) { summ_->Rule(address, reg, PFXEXPR, 0, start_ix); } else { // Parsing of the Dwarf expression failed. Treat this as a // non-fatal error, hence return |true| even on this path. reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg)); } return true; } bool DwarfCFIToModule::End() { // module_->AddStackFrameEntry(entry_); if (DEBUG_DWARF) { summ_->Log("LUL.DW DwarfCFIToModule::End()\n"); } summ_->End(); return true; } void DwarfCFIToModule::Reporter::UndefinedNotSupported( size_t offset, const UniqueString* reg) { char buf[300]; SprintfLiteral(buf, "DwarfCFIToModule::Reporter::UndefinedNotSupported()\n"); log_(buf); // BPLOG(INFO) << file_ << ", section '" << section_ // << "': the call frame entry at offset 0x" // << std::setbase(16) << offset << std::setbase(10) // << " sets the rule for register '" << FromUniqueString(reg) // << "' to 'undefined', but the Breakpad symbol file format cannot " // << " express this"; } // FIXME: move this somewhere sensible static bool is_power_of_2(uint64_t n) { int i, nSetBits = 0; for (i = 0; i < 8 * (int)sizeof(n); i++) { if ((n & ((uint64_t)1) << i) != 0) nSetBits++; } return nSetBits <= 1; } void DwarfCFIToModule::Reporter::ExpressionCouldNotBeSummarised( size_t offset, const UniqueString* reg) { static uint64_t n_complaints = 0; // This isn't threadsafe n_complaints++; if (!is_power_of_2(n_complaints)) return; char buf[300]; SprintfLiteral(buf, "DwarfCFIToModule::Reporter::" "ExpressionCouldNotBeSummarised(shown %llu times)\n", (unsigned long long int)n_complaints); log_(buf); } } // namespace lul