summaryrefslogtreecommitdiffstats
path: root/comm/third_party/botan/src/lib/math/bigint/bigint.h
blob: 33e79d0122ce96e32157898226d98608cc6d0f38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
/*
* BigInt
* (C) 1999-2008,2012,2018 Jack Lloyd
*     2007 FlexSecure
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#ifndef BOTAN_BIGINT_H_
#define BOTAN_BIGINT_H_

#include <botan/types.h>
#include <botan/secmem.h>
#include <botan/exceptn.h>
#include <iosfwd>

namespace Botan {

class RandomNumberGenerator;

/**
* Arbitrary precision integer
*/
class BOTAN_PUBLIC_API(2,0) BigInt final
   {
   public:
     /**
     * Base enumerator for encoding and decoding
     */
     enum Base { Decimal = 10, Hexadecimal = 16, Binary = 256 };

     /**
     * Sign symbol definitions for positive and negative numbers
     */
     enum Sign { Negative = 0, Positive = 1 };

     /**
     * DivideByZero Exception
     *
     * In a future release this exception will be removed and its usage
     * replaced by Invalid_Argument
     */
     class BOTAN_PUBLIC_API(2,0) DivideByZero final : public Invalid_Argument
        {
        public:
           DivideByZero() : Invalid_Argument("BigInt divide by zero") {}
        };

     /**
     * Create empty BigInt
     */
     BigInt() = default;

     /**
     * Create BigInt from 64 bit integer
     * @param n initial value of this BigInt
     */
     BigInt(uint64_t n);

     /**
     * Copy Constructor
     * @param other the BigInt to copy
     */
     BigInt(const BigInt& other) = default;

     /**
     * Create BigInt from a string. If the string starts with 0x the
     * rest of the string will be interpreted as hexadecimal digits.
     * Otherwise, it will be interpreted as a decimal number.
     *
     * @param str the string to parse for an integer value
     */
     explicit BigInt(const std::string& str);

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the byte array holding the value
     * @param length size of buf
     */
     BigInt(const uint8_t buf[], size_t length);

     /**
     * Create a BigInt from an integer in a byte array
     * @param vec the byte vector holding the value
     */
     template<typename Alloc>
     explicit BigInt(const std::vector<uint8_t, Alloc>& vec) : BigInt(vec.data(), vec.size()) {}

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the byte array holding the value
     * @param length size of buf
     * @param base is the number base of the integer in buf
     */
     BigInt(const uint8_t buf[], size_t length, Base base);

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the byte array holding the value
     * @param length size of buf
     * @param max_bits if the resulting integer is more than max_bits,
     *        it will be shifted so it is at most max_bits in length.
     */
     BigInt(const uint8_t buf[], size_t length, size_t max_bits);

     /**
     * Create a BigInt from an array of words
     * @param words the words
     * @param length number of words
     */
     BigInt(const word words[], size_t length);

     /**
     * \brief Create a random BigInt of the specified size
     *
     * @param rng random number generator
     * @param bits size in bits
     * @param set_high_bit if true, the highest bit is always set
     *
     * @see randomize
     */
     BigInt(RandomNumberGenerator& rng, size_t bits, bool set_high_bit = true);

     /**
     * Create BigInt of specified size, all zeros
     * @param sign the sign
     * @param n size of the internal register in words
     */
     BigInt(Sign sign, size_t n);

     /**
     * Move constructor
     */
     BigInt(BigInt&& other)
        {
        this->swap(other);
        }

     ~BigInt() { const_time_unpoison(); }

     /**
     * Move assignment
     */
     BigInt& operator=(BigInt&& other)
        {
        if(this != &other)
           this->swap(other);

        return (*this);
        }

     /**
     * Copy assignment
     */
     BigInt& operator=(const BigInt&) = default;

     /**
     * Swap this value with another
     * @param other BigInt to swap values with
     */
     void swap(BigInt& other)
        {
        m_data.swap(other.m_data);
        std::swap(m_signedness, other.m_signedness);
        }

     void swap_reg(secure_vector<word>& reg)
        {
        m_data.swap(reg);
        // sign left unchanged
        }

     /**
     * += operator
     * @param y the BigInt to add to this
     */
     BigInt& operator+=(const BigInt& y)
        {
        return add(y.data(), y.sig_words(), y.sign());
        }

     /**
     * += operator
     * @param y the word to add to this
     */
     BigInt& operator+=(word y)
        {
        return add(&y, 1, Positive);
        }

     /**
     * -= operator
     * @param y the BigInt to subtract from this
     */
     BigInt& operator-=(const BigInt& y)
        {
        return sub(y.data(), y.sig_words(), y.sign());
        }

     /**
     * -= operator
     * @param y the word to subtract from this
     */
     BigInt& operator-=(word y)
        {
        return sub(&y, 1, Positive);
        }

     /**
     * *= operator
     * @param y the BigInt to multiply with this
     */
     BigInt& operator*=(const BigInt& y);

     /**
     * *= operator
     * @param y the word to multiply with this
     */
     BigInt& operator*=(word y);

     /**
     * /= operator
     * @param y the BigInt to divide this by
     */
     BigInt& operator/=(const BigInt& y);

     /**
     * Modulo operator
     * @param y the modulus to reduce this by
     */
     BigInt& operator%=(const BigInt& y);

     /**
     * Modulo operator
     * @param y the modulus (word) to reduce this by
     */
     word    operator%=(word y);

     /**
     * Left shift operator
     * @param shift the number of bits to shift this left by
     */
     BigInt& operator<<=(size_t shift);

     /**
     * Right shift operator
     * @param shift the number of bits to shift this right by
     */
     BigInt& operator>>=(size_t shift);

     /**
     * Increment operator
     */
     BigInt& operator++() { return (*this += 1); }

     /**
     * Decrement operator
     */
     BigInt& operator--() { return (*this -= 1); }

     /**
     * Postfix increment operator
     */
     BigInt  operator++(int) { BigInt x = (*this); ++(*this); return x; }

     /**
     * Postfix decrement operator
     */
     BigInt  operator--(int) { BigInt x = (*this); --(*this); return x; }

     /**
     * Unary negation operator
     * @return negative this
     */
     BigInt operator-() const;

     /**
     * ! operator
     * @return true iff this is zero, otherwise false
     */
     bool operator !() const { return (!is_nonzero()); }

     static BigInt add2(const BigInt& x, const word y[], size_t y_words, Sign y_sign);

     BigInt& add(const word y[], size_t y_words, Sign sign);

     BigInt& sub(const word y[], size_t y_words, Sign sign)
        {
        return add(y, y_words, sign == Positive ? Negative : Positive);
        }

     /**
     * Multiply this with y
     * @param y the BigInt to multiply with this
     * @param ws a temp workspace
     */
     BigInt& mul(const BigInt& y, secure_vector<word>& ws);

     /**
     * Square value of *this
     * @param ws a temp workspace
     */
     BigInt& square(secure_vector<word>& ws);

     /**
     * Set *this to y - *this
     * @param y the BigInt to subtract from as a sequence of words
     * @param y_words length of y in words
     * @param ws a temp workspace
     */
     BigInt& rev_sub(const word y[], size_t y_words, secure_vector<word>& ws);

     /**
     * Set *this to (*this + y) % mod
     * This function assumes *this is >= 0 && < mod
     * @param y the BigInt to add - assumed y >= 0 and y < mod
     * @param mod the positive modulus
     * @param ws a temp workspace
     */
     BigInt& mod_add(const BigInt& y, const BigInt& mod, secure_vector<word>& ws);

     /**
     * Set *this to (*this - y) % mod
     * This function assumes *this is >= 0 && < mod
     * @param y the BigInt to subtract - assumed y >= 0 and y < mod
     * @param mod the positive modulus
     * @param ws a temp workspace
     */
     BigInt& mod_sub(const BigInt& y, const BigInt& mod, secure_vector<word>& ws);

     /**
     * Set *this to (*this * y) % mod
     * This function assumes *this is >= 0 && < mod
     * y should be small, less than 16
     * @param y the small integer to multiply by
     * @param mod the positive modulus
     * @param ws a temp workspace
     */
     BigInt& mod_mul(uint8_t y, const BigInt& mod, secure_vector<word>& ws);

     /**
     * Return *this % mod
     *
     * Assumes that *this is (if anything) only slightly larger than
     * mod and performs repeated subtractions. It should not be used if
     * *this is much larger than mod, instead use modulo operator.
     */
     size_t reduce_below(const BigInt& mod, secure_vector<word> &ws);

     /**
     * Return *this % mod
     *
     * Assumes that *this is (if anything) only slightly larger than mod and
     * performs repeated subtractions. It should not be used if *this is much
     * larger than mod, instead use modulo operator.
     *
     * Performs exactly bound subtractions, so if *this is >= bound*mod then the
     * result will not be fully reduced. If bound is zero, nothing happens.
     */
     void ct_reduce_below(const BigInt& mod, secure_vector<word> &ws, size_t bound);

     /**
     * Zeroize the BigInt. The size of the underlying register is not
     * modified.
     */
     void clear() { m_data.set_to_zero(); m_signedness = Positive; }

     /**
     * Compare this to another BigInt
     * @param n the BigInt value to compare with
     * @param check_signs include sign in comparison?
     * @result if (this<n) return -1, if (this>n) return 1, if both
     * values are identical return 0 [like Perl's <=> operator]
     */
     int32_t cmp(const BigInt& n, bool check_signs = true) const;

     /**
     * Compare this to another BigInt
     * @param n the BigInt value to compare with
     * @result true if this == n or false otherwise
     */
     bool is_equal(const BigInt& n) const;

     /**
     * Compare this to another BigInt
     * @param n the BigInt value to compare with
     * @result true if this < n or false otherwise
     */
     bool is_less_than(const BigInt& n) const;

     /**
     * Compare this to an integer
     * @param n the value to compare with
     * @result if (this<n) return -1, if (this>n) return 1, if both
     * values are identical return 0 [like Perl's <=> operator]
     */
     int32_t cmp_word(word n) const;

     /**
     * Test if the integer has an even value
     * @result true if the integer is even, false otherwise
     */
     bool is_even() const { return (get_bit(0) == 0); }

     /**
     * Test if the integer has an odd value
     * @result true if the integer is odd, false otherwise
     */
     bool is_odd()  const { return (get_bit(0) == 1); }

     /**
     * Test if the integer is not zero
     * @result true if the integer is non-zero, false otherwise
     */
     bool is_nonzero() const { return (!is_zero()); }

     /**
     * Test if the integer is zero
     * @result true if the integer is zero, false otherwise
     */
     bool is_zero() const
        {
        return (sig_words() == 0);
        }

     /**
     * Set bit at specified position
     * @param n bit position to set
     */
     void set_bit(size_t n)
        {
        conditionally_set_bit(n, true);
        }

     /**
     * Conditionally set bit at specified position. Note if set_it is
     * false, nothing happens, and if the bit is already set, it
     * remains set.
     *
     * @param n bit position to set
     * @param set_it if the bit should be set
     */
     void conditionally_set_bit(size_t n, bool set_it);

     /**
     * Clear bit at specified position
     * @param n bit position to clear
     */
     void clear_bit(size_t n);

     /**
     * Clear all but the lowest n bits
     * @param n amount of bits to keep
     */
     void mask_bits(size_t n)
        {
        m_data.mask_bits(n);
        }

     /**
     * Return bit value at specified position
     * @param n the bit offset to test
     * @result true, if the bit at position n is set, false otherwise
     */
     bool get_bit(size_t n) const
        {
        return ((word_at(n / BOTAN_MP_WORD_BITS) >> (n % BOTAN_MP_WORD_BITS)) & 1);
        }

     /**
     * Return (a maximum of) 32 bits of the complete value
     * @param offset the offset to start extracting
     * @param length amount of bits to extract (starting at offset)
     * @result the integer extracted from the register starting at
     * offset with specified length
     */
     uint32_t get_substring(size_t offset, size_t length) const;

     /**
     * Convert this value into a uint32_t, if it is in the range
     * [0 ... 2**32-1], or otherwise throw an exception.
     * @result the value as a uint32_t if conversion is possible
     */
     uint32_t to_u32bit() const;

     /**
     * Convert this value to a decimal string.
     * Warning: decimal conversions are relatively slow
     */
     std::string to_dec_string() const;

     /**
     * Convert this value to a hexadecimal string.
     */
     std::string to_hex_string() const;

     /**
     * @param n the offset to get a byte from
     * @result byte at offset n
     */
     uint8_t byte_at(size_t n) const;

     /**
     * Return the word at a specified position of the internal register
     * @param n position in the register
     * @return value at position n
     */
     word word_at(size_t n) const
        {
        return m_data.get_word_at(n);
        }

     void set_word_at(size_t i, word w)
        {
        m_data.set_word_at(i, w);
        }

     void set_words(const word w[], size_t len)
        {
        m_data.set_words(w, len);
        }

     /**
     * Tests if the sign of the integer is negative
     * @result true, iff the integer has a negative sign
     */
     bool is_negative() const { return (sign() == Negative); }

     /**
     * Tests if the sign of the integer is positive
     * @result true, iff the integer has a positive sign
     */
     bool is_positive() const { return (sign() == Positive); }

     /**
     * Return the sign of the integer
     * @result the sign of the integer
     */
     Sign sign() const { return (m_signedness); }

     /**
     * @result the opposite sign of the represented integer value
     */
     Sign reverse_sign() const
        {
        if(sign() == Positive)
           return Negative;
        return Positive;
        }

     /**
     * Flip the sign of this BigInt
     */
     void flip_sign()
        {
        set_sign(reverse_sign());
        }

     /**
     * Set sign of the integer
     * @param sign new Sign to set
     */
     void set_sign(Sign sign)
        {
        if(sign == Negative && is_zero())
           sign = Positive;

        m_signedness = sign;
        }

     /**
     * @result absolute (positive) value of this
     */
     BigInt abs() const;

     /**
     * Give size of internal register
     * @result size of internal register in words
     */
     size_t size() const { return m_data.size(); }

     /**
     * Return how many words we need to hold this value
     * @result significant words of the represented integer value
     */
     size_t sig_words() const
        {
        return m_data.sig_words();
        }

     /**
     * Give byte length of the integer
     * @result byte length of the represented integer value
     */
     size_t bytes() const;

     /**
     * Get the bit length of the integer
     * @result bit length of the represented integer value
     */
     size_t bits() const;

     /**
     * Get the number of high bits unset in the top (allocated) word
     * of this integer. Returns BOTAN_MP_WORD_BITS only iff *this is
     * zero. Ignores sign.
     */
     size_t top_bits_free() const;

     /**
     * Return a mutable pointer to the register
     * @result a pointer to the start of the internal register
     */
     word* mutable_data() { return m_data.mutable_data(); }

     /**
     * Return a const pointer to the register
     * @result a pointer to the start of the internal register
     */
     const word* data() const { return m_data.const_data(); }

     /**
     * Don't use this function in application code
     */
     secure_vector<word>& get_word_vector() { return m_data.mutable_vector(); }

     /**
     * Don't use this function in application code
     */
     const secure_vector<word>& get_word_vector() const { return m_data.const_vector(); }

     /**
     * Increase internal register buffer to at least n words
     * @param n new size of register
     */
     void grow_to(size_t n) const { m_data.grow_to(n); }

     /**
     * Resize the vector to the minimum word size to hold the integer, or
     * min_size words, whichever is larger
     */
     void BOTAN_DEPRECATED("Use resize if required") shrink_to_fit(size_t min_size = 0)
        {
        m_data.shrink_to_fit(min_size);
        }

     void resize(size_t s) { m_data.resize(s); }

     /**
     * Fill BigInt with a random number with size of bitsize
     *
     * If \p set_high_bit is true, the highest bit will be set, which causes
     * the entropy to be \a bits-1. Otherwise the highest bit is randomly chosen
     * by the rng, causing the entropy to be \a bits.
     *
     * @param rng the random number generator to use
     * @param bitsize number of bits the created random value should have
     * @param set_high_bit if true, the highest bit is always set
     */
     void randomize(RandomNumberGenerator& rng, size_t bitsize, bool set_high_bit = true);

     /**
     * Store BigInt-value in a given byte array
     * @param buf destination byte array for the integer value
     */
     void binary_encode(uint8_t buf[]) const;

     /**
     * Store BigInt-value in a given byte array. If len is less than
     * the size of the value, then it will be truncated. If len is
     * greater than the size of the value, it will be zero-padded.
     * If len exactly equals this->bytes(), this function behaves identically
     * to binary_encode.
     *
     * @param buf destination byte array for the integer value
     * @param len how many bytes to write
     */
     void binary_encode(uint8_t buf[], size_t len) const;

     /**
     * Read integer value from a byte array with given size
     * @param buf byte array buffer containing the integer
     * @param length size of buf
     */
     void binary_decode(const uint8_t buf[], size_t length);

     /**
     * Read integer value from a byte vector
     * @param buf the vector to load from
     */
     template<typename Alloc>
     void binary_decode(const std::vector<uint8_t, Alloc>& buf)
        {
        binary_decode(buf.data(), buf.size());
        }

     /**
     * @param base the base to measure the size for
     * @return size of this integer in base base
     *
     * Deprecated. This is only needed when using the `encode` and
     * `encode_locked` functions, which are also deprecated.
     */
     BOTAN_DEPRECATED("See comments on declaration")
     size_t encoded_size(Base base = Binary) const;

     /**
     * Place the value into out, zero-padding up to size words
     * Throw if *this cannot be represented in size words
     */
     void encode_words(word out[], size_t size) const;

     /**
     * If predicate is true assign other to *this
     * Uses a masked operation to avoid side channels
     */
     void ct_cond_assign(bool predicate, const BigInt& other);

     /**
     * If predicate is true swap *this and other
     * Uses a masked operation to avoid side channels
     */
     void ct_cond_swap(bool predicate, BigInt& other);

     /**
     * If predicate is true add value to *this
     */
     void ct_cond_add(bool predicate, const BigInt& value);

     /**
     * If predicate is true flip the sign of *this
     */
     void cond_flip_sign(bool predicate);

#if defined(BOTAN_HAS_VALGRIND)
     void const_time_poison() const;
     void const_time_unpoison() const;
#else
     void const_time_poison() const {}
     void const_time_unpoison() const {}
#endif

     /**
     * @param rng a random number generator
     * @param min the minimum value (must be non-negative)
     * @param max the maximum value (must be non-negative and > min)
     * @return random integer in [min,max)
     */
     static BigInt random_integer(RandomNumberGenerator& rng,
                                  const BigInt& min,
                                  const BigInt& max);

     /**
     * Create a power of two
     * @param n the power of two to create
     * @return bigint representing 2^n
     */
     static BigInt power_of_2(size_t n)
        {
        BigInt b;
        b.set_bit(n);
        return b;
        }

     /**
     * Encode the integer value from a BigInt to a std::vector of bytes
     * @param n the BigInt to use as integer source
     * @result secure_vector of bytes containing the bytes of the integer
     */
     static std::vector<uint8_t> encode(const BigInt& n)
        {
        std::vector<uint8_t> output(n.bytes());
        n.binary_encode(output.data());
        return output;
        }

     /**
     * Encode the integer value from a BigInt to a secure_vector of bytes
     * @param n the BigInt to use as integer source
     * @result secure_vector of bytes containing the bytes of the integer
     */
     static secure_vector<uint8_t> encode_locked(const BigInt& n)
        {
        secure_vector<uint8_t> output(n.bytes());
        n.binary_encode(output.data());
        return output;
        }

     /**
     * Encode the integer value from a BigInt to a byte array
     * @param buf destination byte array for the encoded integer
     * @param n the BigInt to use as integer source
     */
     static BOTAN_DEPRECATED("Use n.binary_encode") void encode(uint8_t buf[], const BigInt& n)
        {
        n.binary_encode(buf);
        }

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the binary value to load
     * @param length size of buf
     * @result BigInt representing the integer in the byte array
     */
     static BigInt decode(const uint8_t buf[], size_t length)
        {
        return BigInt(buf, length);
        }

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the binary value to load
     * @result BigInt representing the integer in the byte array
     */
     template<typename Alloc>
     static BigInt decode(const std::vector<uint8_t, Alloc>& buf)
        {
        return BigInt(buf);
        }

     /**
     * Encode the integer value from a BigInt to a std::vector of bytes
     * @param n the BigInt to use as integer source
     * @param base number-base of resulting byte array representation
     * @result secure_vector of bytes containing the integer with given base
     *
     * Deprecated. If you need Binary, call the version of encode that doesn't
     * take a Base. If you need Hex or Decimal output, use to_hex_string or
     * to_dec_string resp.
     */
     BOTAN_DEPRECATED("See comments on declaration")
     static std::vector<uint8_t> encode(const BigInt& n, Base base);

     /**
     * Encode the integer value from a BigInt to a secure_vector of bytes
     * @param n the BigInt to use as integer source
     * @param base number-base of resulting byte array representation
     * @result secure_vector of bytes containing the integer with given base
     *
     * Deprecated. If you need Binary, call the version of encode_locked that
     * doesn't take a Base. If you need Hex or Decimal output, use to_hex_string
     * or to_dec_string resp.
     */
     BOTAN_DEPRECATED("See comments on declaration")
     static secure_vector<uint8_t> encode_locked(const BigInt& n,
                                                 Base base);

     /**
     * Encode the integer value from a BigInt to a byte array
     * @param buf destination byte array for the encoded integer
     * value with given base
     * @param n the BigInt to use as integer source
     * @param base number-base of resulting byte array representation
     *
     * Deprecated. If you need Binary, call binary_encode. If you need
     * Hex or Decimal output, use to_hex_string or to_dec_string resp.
     */
     BOTAN_DEPRECATED("See comments on declaration")
     static void encode(uint8_t buf[], const BigInt& n, Base base);

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the binary value to load
     * @param length size of buf
     * @param base number-base of the integer in buf
     * @result BigInt representing the integer in the byte array
     */
     static BigInt decode(const uint8_t buf[], size_t length,
                          Base base);

     /**
     * Create a BigInt from an integer in a byte array
     * @param buf the binary value to load
     * @param base number-base of the integer in buf
     * @result BigInt representing the integer in the byte array
     */
     template<typename Alloc>
     static BigInt decode(const std::vector<uint8_t, Alloc>& buf, Base base)
        {
        if(base == Binary)
           return BigInt(buf);
        return BigInt::decode(buf.data(), buf.size(), base);
        }

     /**
     * Encode a BigInt to a byte array according to IEEE 1363
     * @param n the BigInt to encode
     * @param bytes the length of the resulting secure_vector<uint8_t>
     * @result a secure_vector<uint8_t> containing the encoded BigInt
     */
     static secure_vector<uint8_t> encode_1363(const BigInt& n, size_t bytes);

     static void encode_1363(uint8_t out[], size_t bytes, const BigInt& n);

     /**
     * Encode two BigInt to a byte array according to IEEE 1363
     * @param n1 the first BigInt to encode
     * @param n2 the second BigInt to encode
     * @param bytes the length of the encoding of each single BigInt
     * @result a secure_vector<uint8_t> containing the concatenation of the two encoded BigInt
     */
     static secure_vector<uint8_t> encode_fixed_length_int_pair(const BigInt& n1, const BigInt& n2, size_t bytes);

     /**
     * Set output = vec[idx].m_reg in constant time
     *
     * All elements of vec must have the same size, and output must be
     * pre-allocated with the same size.
     */
     static void BOTAN_DEPRECATED("No longer in use") const_time_lookup(
        secure_vector<word>& output,
        const std::vector<BigInt>& vec,
        size_t idx);

   private:

     class Data
        {
        public:
           word* mutable_data()
              {
              invalidate_sig_words();
              return m_reg.data();
              }

           const word* const_data() const
              {
              return m_reg.data();
              }

           secure_vector<word>& mutable_vector()
              {
              invalidate_sig_words();
              return m_reg;
              }

           const secure_vector<word>& const_vector() const
              {
              return m_reg;
              }

           word get_word_at(size_t n) const
              {
              if(n < m_reg.size())
                 return m_reg[n];
              return 0;
              }

           void set_word_at(size_t i, word w)
              {
              invalidate_sig_words();
              if(i >= m_reg.size())
                 {
                 if(w == 0)
                    return;
                 grow_to(i + 1);
                 }
              m_reg[i] = w;
              }

           void set_words(const word w[], size_t len)
              {
              invalidate_sig_words();
              m_reg.assign(w, w + len);
              }

           void set_to_zero()
              {
              m_reg.resize(m_reg.capacity());
              clear_mem(m_reg.data(), m_reg.size());
              m_sig_words = 0;
              }

           void set_size(size_t s)
              {
              invalidate_sig_words();
              clear_mem(m_reg.data(), m_reg.size());
              m_reg.resize(s + (8 - (s % 8)));
              }

           void mask_bits(size_t n)
              {
              if(n == 0) { return set_to_zero(); }

              const size_t top_word = n / BOTAN_MP_WORD_BITS;

              // if(top_word < sig_words()) ?
              if(top_word < size())
                 {
                 const word mask = (static_cast<word>(1) << (n % BOTAN_MP_WORD_BITS)) - 1;
                 const size_t len = size() - (top_word + 1);
                 if(len > 0)
                    {
                    clear_mem(&m_reg[top_word+1], len);
                    }
                 m_reg[top_word] &= mask;
                 invalidate_sig_words();
                 }
              }

           void grow_to(size_t n) const
              {
              if(n > size())
                 {
                 if(n <= m_reg.capacity())
                    m_reg.resize(n);
                 else
                    m_reg.resize(n + (8 - (n % 8)));
                 }
              }

           size_t size() const { return m_reg.size(); }

           void shrink_to_fit(size_t min_size = 0)
              {
              const size_t words = std::max(min_size, sig_words());
              m_reg.resize(words);
              }

           void resize(size_t s)
              {
              m_reg.resize(s);
              }

           void swap(Data& other)
              {
              m_reg.swap(other.m_reg);
              std::swap(m_sig_words, other.m_sig_words);
              }

           void swap(secure_vector<word>& reg)
              {
              m_reg.swap(reg);
              invalidate_sig_words();
              }

           void invalidate_sig_words() const
              {
              m_sig_words = sig_words_npos;
              }

           size_t sig_words() const
              {
              if(m_sig_words == sig_words_npos)
                 {
                 m_sig_words = calc_sig_words();
                 }
              else
                 {
                 BOTAN_DEBUG_ASSERT(m_sig_words == calc_sig_words());
                 }
              return m_sig_words;
              }
        private:
           static const size_t sig_words_npos = static_cast<size_t>(-1);

           size_t calc_sig_words() const;

           mutable secure_vector<word> m_reg;
           mutable size_t m_sig_words = sig_words_npos;
        };

      Data m_data;
      Sign m_signedness = Positive;
   };

/*
* Arithmetic Operators
*/
inline BigInt operator+(const BigInt& x, const BigInt& y)
   {
   return BigInt::add2(x, y.data(), y.sig_words(), y.sign());
   }

inline BigInt operator+(const BigInt& x, word y)
   {
   return BigInt::add2(x, &y, 1, BigInt::Positive);
   }

inline BigInt operator+(word x, const BigInt& y)
   {
   return y + x;
   }

inline BigInt operator-(const BigInt& x, const BigInt& y)
   {
   return BigInt::add2(x, y.data(), y.sig_words(), y.reverse_sign());
   }

inline BigInt operator-(const BigInt& x, word y)
   {
   return BigInt::add2(x, &y, 1, BigInt::Negative);
   }

BigInt BOTAN_PUBLIC_API(2,0) operator*(const BigInt& x, const BigInt& y);
BigInt BOTAN_PUBLIC_API(2,8) operator*(const BigInt& x, word y);
inline BigInt operator*(word x, const BigInt& y) { return y*x; }

BigInt BOTAN_PUBLIC_API(2,0) operator/(const BigInt& x, const BigInt& d);
BigInt BOTAN_PUBLIC_API(2,0) operator/(const BigInt& x, word m);
BigInt BOTAN_PUBLIC_API(2,0) operator%(const BigInt& x, const BigInt& m);
word   BOTAN_PUBLIC_API(2,0) operator%(const BigInt& x, word m);
BigInt BOTAN_PUBLIC_API(2,0) operator<<(const BigInt& x, size_t n);
BigInt BOTAN_PUBLIC_API(2,0) operator>>(const BigInt& x, size_t n);

/*
* Comparison Operators
*/
inline bool operator==(const BigInt& a, const BigInt& b)
   { return a.is_equal(b); }
inline bool operator!=(const BigInt& a, const BigInt& b)
   { return !a.is_equal(b); }
inline bool operator<=(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) <= 0); }
inline bool operator>=(const BigInt& a, const BigInt& b)
   { return (a.cmp(b) >= 0); }
inline bool operator<(const BigInt& a, const BigInt& b)
   { return a.is_less_than(b); }
inline bool operator>(const BigInt& a, const BigInt& b)
   { return b.is_less_than(a); }

inline bool operator==(const BigInt& a, word b)
   { return (a.cmp_word(b) == 0); }
inline bool operator!=(const BigInt& a, word b)
   { return (a.cmp_word(b) != 0); }
inline bool operator<=(const BigInt& a, word b)
   { return (a.cmp_word(b) <= 0); }
inline bool operator>=(const BigInt& a, word b)
   { return (a.cmp_word(b) >= 0); }
inline bool operator<(const BigInt& a, word b)
   { return (a.cmp_word(b) < 0); }
inline bool operator>(const BigInt& a, word b)
   { return (a.cmp_word(b) > 0); }

/*
* I/O Operators
*/
BOTAN_PUBLIC_API(2,0) std::ostream& operator<<(std::ostream&, const BigInt&);
BOTAN_PUBLIC_API(2,0) std::istream& operator>>(std::istream&, BigInt&);

}

namespace std {

template<>
inline void swap<Botan::BigInt>(Botan::BigInt& x, Botan::BigInt& y)
   {
   x.swap(y);
   }

}

#endif