summaryrefslogtreecommitdiffstats
path: root/comm/third_party/botan/src/lib/prov/commoncrypto/commoncrypto_mode.cpp
blob: 82d4bd55267cdb684696898fc0d69ac4917b0967 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
* Cipher Modes via CommonCrypto
* (C) 2018 Jose Pereira
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/internal/commoncrypto.h>
#include <botan/internal/commoncrypto_utils.h>
#include <botan/cipher_mode.h>
#include <botan/internal/rounding.h>

#include <limits.h>

namespace Botan {

namespace {

class CommonCrypto_Cipher_Mode final : public Cipher_Mode
   {
   public:
      CommonCrypto_Cipher_Mode(const std::string& name,
                               Cipher_Dir direction,
                               const CommonCryptor_Opts& opts);

      ~CommonCrypto_Cipher_Mode();

      std::string provider() const override { return "commoncrypto"; }
      std::string name() const override { return m_mode_name; }

      void start_msg(const uint8_t nonce[], size_t nonce_len) override;
      size_t process(uint8_t msg[], size_t msg_len) override;
      void finish(secure_vector<uint8_t>& final_block, size_t offset0) override;
      size_t output_length(size_t input_length) const override;
      size_t update_granularity() const override;
      size_t minimum_final_size() const override;
      size_t default_nonce_length() const override;
      bool valid_nonce_length(size_t nonce_len) const override;
      void clear() override;
      void reset() override;
      Key_Length_Specification key_spec() const override;

   private:
      void key_schedule(const uint8_t key[], size_t length) override;

      const std::string m_mode_name;
      Cipher_Dir m_direction;
      CommonCryptor_Opts m_opts;
      CCCryptorRef m_cipher = nullptr;
      bool m_key_set;
      bool m_nonce_set;
   };

CommonCrypto_Cipher_Mode::CommonCrypto_Cipher_Mode(const std::string& name,
      Cipher_Dir direction, const CommonCryptor_Opts& opts) :
   m_mode_name(name),
   m_direction(direction),
   m_opts(opts),
   m_key_set(false),
   m_nonce_set(false)
   {
   }

CommonCrypto_Cipher_Mode::~CommonCrypto_Cipher_Mode()
   {
   if(m_cipher)
      {
      CCCryptorRelease(m_cipher);
      }
   }

void CommonCrypto_Cipher_Mode::start_msg(const uint8_t nonce[], size_t nonce_len)
   {
   verify_key_set(m_key_set);

   if(!valid_nonce_length(nonce_len))
      { throw Invalid_IV_Length(name(), nonce_len); }
   if(nonce_len)
      {
      CCCryptorStatus status = CCCryptorReset(m_cipher, nonce);
      if(status != kCCSuccess)
         {
         throw CommonCrypto_Error("CCCryptorReset on start_msg", status);
         }
      }
   m_nonce_set = true;
   }

size_t CommonCrypto_Cipher_Mode::process(uint8_t msg[], size_t msg_len)
   {
   verify_key_set(m_key_set);
   BOTAN_STATE_CHECK(m_nonce_set);

   if(msg_len == 0)
      { return 0; }
   if(msg_len > INT_MAX)
      { throw Internal_Error("msg_len overflow"); }
   size_t outl = CCCryptorGetOutputLength(m_cipher, msg_len, false);

   secure_vector<uint8_t> out(outl);

   if(m_opts.padding == ccNoPadding && msg_len % m_opts.block_size)
      {
      msg_len = outl;
      }

   CCCryptorStatus status = CCCryptorUpdate(m_cipher, msg, msg_len,
                            out.data(), outl, &outl);
   if(status != kCCSuccess)
      {
      throw CommonCrypto_Error("CCCryptorUpdate", status);
      }
   copy_mem(msg, out.data(), outl);

   return outl;
   }

void CommonCrypto_Cipher_Mode::finish(secure_vector<uint8_t>& buffer,
                                      size_t offset)
   {
   verify_key_set(m_key_set);
   BOTAN_STATE_CHECK(m_nonce_set);

   BOTAN_ASSERT(buffer.size() >= offset, "Offset ok");
   uint8_t* buf = buffer.data() + offset;
   const size_t buf_size = buffer.size() - offset;

   size_t written = process(buf, buf_size);

   size_t outl = CCCryptorGetOutputLength(m_cipher, buf_size - written, true);
   secure_vector<uint8_t> out(outl);

   CCCryptorStatus status = CCCryptorFinal(
                               m_cipher, out.data(), outl, &outl);
   if(status != kCCSuccess)
      {
      throw CommonCrypto_Error("CCCryptorFinal", status);
      }

   size_t new_len = offset + written + outl;
   if(m_opts.padding != ccNoPadding || buffer.size() < new_len)
      {
      buffer.resize(new_len);
      }
   copy_mem(buffer.data() - offset + written, out.data(), outl);
   written += outl;
   }

size_t CommonCrypto_Cipher_Mode::update_granularity() const
   {
   return m_opts.block_size * BOTAN_BLOCK_CIPHER_PAR_MULT;
   }

size_t CommonCrypto_Cipher_Mode::minimum_final_size() const
   {
   if(m_direction == ENCRYPTION)
      return 0;
   else
      return m_opts.block_size;
   }

size_t CommonCrypto_Cipher_Mode::default_nonce_length() const
   {
   return m_opts.block_size;
   }

bool CommonCrypto_Cipher_Mode::valid_nonce_length(size_t nonce_len) const
   {
   return (nonce_len == 0 || nonce_len == m_opts.block_size);
   }

size_t CommonCrypto_Cipher_Mode::output_length(size_t input_length) const
   {
   if(input_length == 0)
      { return m_opts.block_size; }
   else
      { return round_up(input_length, m_opts.block_size); }
   }

void CommonCrypto_Cipher_Mode::clear()
   {
   m_key_set = false;

   if(m_cipher == nullptr)
      {
      return;
      }

   if(m_cipher)
      {
      CCCryptorRelease(m_cipher);
      m_cipher = nullptr;
      }
   }

void CommonCrypto_Cipher_Mode::reset()
   {
   if(m_cipher == nullptr)
      {
      return;
      }

   m_nonce_set = false;

   CCCryptorStatus status = CCCryptorReset(m_cipher, nullptr);
   if(status != kCCSuccess)
      {
      throw CommonCrypto_Error("CCCryptorReset", status);
      }
   }

Key_Length_Specification CommonCrypto_Cipher_Mode::key_spec() const
   {
   return m_opts.key_spec;
   }

void CommonCrypto_Cipher_Mode::key_schedule(const uint8_t key[], size_t length)
   {
   CCCryptorStatus status;
   CCOperation op = m_direction == ENCRYPTION ? kCCEncrypt : kCCDecrypt;
   status = CCCryptorCreateWithMode(op, m_opts.mode, m_opts.algo, m_opts.padding,
                                    nullptr, key, length, nullptr, 0, 0, 0, &m_cipher);
   if(status != kCCSuccess)
      {
      throw CommonCrypto_Error("CCCryptorCreate", status);
      }

   m_key_set = true;
   m_nonce_set = false;
   }
}

Cipher_Mode*
make_commoncrypto_cipher_mode(const std::string& name, Cipher_Dir direction)
   {

   try
      {
      CommonCryptor_Opts opts = commoncrypto_opts_from_algo(name);
      return new CommonCrypto_Cipher_Mode(name, direction, opts);
      }
   catch(CommonCrypto_Error& e)
      {
      return nullptr;
      }
   }
}