summaryrefslogtreecommitdiffstats
path: root/dom/media/webaudio/test/blink/test_biquadFilterNodeGetFrequencyResponse.html
blob: c2b661203472f709ba839e7c440ea109225abbd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
<!DOCTYPE HTML>
<html>
<head>
  <title>Test BiquadFilterNode All Pass Filter</title>
  <script src="/tests/SimpleTest/SimpleTest.js"></script>
  <link rel="stylesheet" type="text/css" href="/tests/SimpleTest/test.css" />
</head>
<body>
<pre id="test">
<script src="audio-testing.js"></script>
<script src="biquad-filters.js"></script>
<script src="biquad-testing.js"></script>
<script src="webaudio.js" type="text/javascript"></script>
<script class="testbody" type="text/javascript">

SimpleTest.waitForExplicitFinish();

addLoadEvent(function() {
// Test the frequency response of a biquad filter.  We compute the frequency response for a simple
// peaking biquad filter and compare it with the expected frequency response.  The actual filter
// used doesn't matter since we're testing getFrequencyResponse and not the actual filter output.
// The filters are extensively tested in other biquad tests.

var context;

// The biquad filter node.
var filter;

// The magnitude response of the biquad filter.
var magResponse;

// The phase response of the biquad filter.
var phaseResponse;

// Number of frequency samples to take.
var numberOfFrequencies = 1000;

// The filter parameters.
var filterCutoff = 1000; // Hz.
var filterQ = 1;
var filterGain = 5; // Decibels.

// The maximum allowed error in the magnitude response.
var maxAllowedMagError = 5.7e-7;

// The maximum allowed error in the phase response.
var maxAllowedPhaseError = 4.7e-8;

// The magnitudes and phases of the reference frequency response.
var magResponse;
var phaseResponse;

// The magnitudes and phases of the reference frequency response.
var expectedMagnitudes;
var expectedPhases;

// Convert frequency in Hz to a normalized frequency between 0 to 1 with 1 corresponding to the
// Nyquist frequency.
function normalizedFrequency(freqHz, sampleRate)
{
    var nyquist = sampleRate / 2;
    return freqHz / nyquist;
}

// Get the filter response at a (normalized) frequency |f| for the filter with coefficients |coef|.
function getResponseAt(coef, f)
{
    var b0 = coef.b0;
    var b1 = coef.b1;
    var b2 = coef.b2;
    var a1 = coef.a1;
    var a2 = coef.a2;

    // H(z) = (b0 + b1 / z + b2 / z^2) / (1 + a1 / z + a2 / z^2)
    //
    // Compute H(exp(i * pi * f)).  No native complex numbers in javascript, so break H(exp(i * pi * // f))
    // in to the real and imaginary parts of the numerator and denominator.  Let omega = pi * f.
    // Then the numerator is
    //
    // b0 + b1 * cos(omega) + b2 * cos(2 * omega) - i * (b1 * sin(omega) + b2 * sin(2 * omega))
    //
    // and the denominator is
    //
    // 1 + a1 * cos(omega) + a2 * cos(2 * omega) - i * (a1 * sin(omega) + a2 * sin(2 * omega))
    //
    // Compute the magnitude and phase from the real and imaginary parts.

    var omega = Math.PI * f;
    var numeratorReal = b0 + b1 * Math.cos(omega) + b2 * Math.cos(2 * omega);
    var numeratorImag = -(b1 * Math.sin(omega) + b2 * Math.sin(2 * omega));
    var denominatorReal = 1 + a1 * Math.cos(omega) + a2 * Math.cos(2 * omega);
    var denominatorImag = -(a1 * Math.sin(omega) + a2 * Math.sin(2 * omega));

    var magnitude = Math.sqrt((numeratorReal * numeratorReal + numeratorImag * numeratorImag)
                              / (denominatorReal * denominatorReal + denominatorImag * denominatorImag));
    var phase = Math.atan2(numeratorImag, numeratorReal) - Math.atan2(denominatorImag, denominatorReal);

    if (phase >= Math.PI) {
        phase -= 2 * Math.PI;
    } else if (phase <= -Math.PI) {
        phase += 2 * Math.PI;
    }

    return {magnitude : magnitude, phase : phase};
}

// Compute the reference frequency response for the biquad filter |filter| at the frequency samples
// given by |frequencies|.
function frequencyResponseReference(filter, frequencies)
{
    var sampleRate = filter.context.sampleRate;
    var normalizedFreq = normalizedFrequency(filter.frequency.value, sampleRate);
    var filterCoefficients = createFilter(filter.type, normalizedFreq, filter.Q.value, filter.gain.value);

    var magnitudes = [];
    var phases = [];

    for (var k = 0; k < frequencies.length; ++k) {
        var response = getResponseAt(filterCoefficients, normalizedFrequency(frequencies[k], sampleRate));
        magnitudes.push(response.magnitude);
        phases.push(response.phase);
    }

    return {magnitudes : magnitudes, phases : phases};
}

// Compute a set of linearly spaced frequencies.
function createFrequencies(nFrequencies, sampleRate)
{
    var frequencies = new Float32Array(nFrequencies);
    var nyquist = sampleRate / 2;
    var freqDelta = nyquist / nFrequencies;

    for (var k = 0; k < nFrequencies; ++k) {
        frequencies[k] = k * freqDelta;
    }

    return frequencies;
}

function linearToDecibels(x)
{
    if (x) {
        return 20 * Math.log(x) / Math.LN10;
    } else {
        return -1000;
    }
}

// Look through the array and find any NaN or infinity. Returns the index of the first occurence or
// -1 if none.
function findBadNumber(signal)
{
    for (var k = 0; k < signal.length; ++k) {
        if (!isValidNumber(signal[k])) {
           return k;
        }
    }
    return -1;
}

// Compute absolute value of the difference between phase angles, taking into account the wrapping
// of phases.
function absolutePhaseDifference(x, y)
{
    var diff = Math.abs(x - y);

    if (diff > Math.PI) {
        diff = 2 * Math.PI - diff;
    }
    return diff;
}

// Compare the frequency response with our expected response.
function compareResponses(filter, frequencies, magResponse, phaseResponse)
{
    var expectedResponse = frequencyResponseReference(filter, frequencies);

    expectedMagnitudes = expectedResponse.magnitudes;
    expectedPhases = expectedResponse.phases;

    var n = magResponse.length;
    var success = true;
    var badResponse = false;

    var maxMagError = -1;
    var maxMagErrorIndex = -1;

    var k;
    var hasBadNumber;

    hasBadNumber = findBadNumber(magResponse);
    ok (hasBadNumber < 0, "Magnitude response has NaN or infinity at " + hasBadNumber);

    hasBadNumber = findBadNumber(phaseResponse);
    ok (hasBadNumber < 0, "Phase response has NaN or infinity at " + hasBadNumber);

    // These aren't testing the implementation itself.  Instead, these are sanity checks on the
    // reference.  Failure here does not imply an error in the implementation.
    hasBadNumber = findBadNumber(expectedMagnitudes);
    ok (hasBadNumber < 0, "Expected magnitude response has NaN or infinity at " + hasBadNumber);

    hasBadNumber = findBadNumber(expectedPhases);
    ok (hasBadNumber < 0, "Expected phase response has NaN or infinity at " + hasBadNumber);

    for (k = 0; k < n; ++k) {
        var error = Math.abs(linearToDecibels(magResponse[k]) - linearToDecibels(expectedMagnitudes[k]));
        if (error > maxMagError) {
            maxMagError = error;
            maxMagErrorIndex = k;
        }
    }

    var message = "Magnitude error (" + maxMagError + " dB)";
    message += " exceeded threshold at " + frequencies[maxMagErrorIndex];
    message += " Hz.  Actual: " + linearToDecibels(magResponse[maxMagErrorIndex]);
    message += " dB, expected: " + linearToDecibels(expectedMagnitudes[maxMagErrorIndex]) + " dB.";
    ok(maxMagError < maxAllowedMagError, message);

    var maxPhaseError = -1;
    var maxPhaseErrorIndex = -1;

    for (k = 0; k < n; ++k) {
        var error = absolutePhaseDifference(phaseResponse[k], expectedPhases[k]);
        if (error > maxPhaseError) {
            maxPhaseError = error;
            maxPhaseErrorIndex = k;
        }
    }

    message = "Phase error (radians) (" + maxPhaseError;
    message += ") exceeded threshold at " + frequencies[maxPhaseErrorIndex];
    message += " Hz.  Actual: " + phaseResponse[maxPhaseErrorIndex];
    message += " expected: " + expectedPhases[maxPhaseErrorIndex];

    ok(maxPhaseError < maxAllowedPhaseError, message);
}

context = new AudioContext();

filter = context.createBiquadFilter();

// Arbitrarily test a peaking filter, but any kind of filter can be tested.
filter.type = "peaking";
filter.frequency.value = filterCutoff;
filter.Q.value = filterQ;
filter.gain.value = filterGain;

var frequencies = createFrequencies(numberOfFrequencies, context.sampleRate);
magResponse = new Float32Array(numberOfFrequencies);
phaseResponse = new Float32Array(numberOfFrequencies);

filter.getFrequencyResponse(frequencies, magResponse, phaseResponse);
compareResponses(filter, frequencies, magResponse, phaseResponse);

SimpleTest.finish();
});
</script>
</pre>
</body>
</html>