summaryrefslogtreecommitdiffstats
path: root/js/src/jit/ProcessExecutableMemory.cpp
blob: 3cf38adcbae5de088a1856899142101cb1b01651 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/ProcessExecutableMemory.h"

#include "mozilla/Array.h"
#include "mozilla/Atomics.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Maybe.h"
#include "mozilla/TaggedAnonymousMemory.h"
#include "mozilla/XorShift128PlusRNG.h"

#include <errno.h>

#include "jsfriendapi.h"
#include "jsmath.h"

#include "gc/Memory.h"
#include "jit/FlushICache.h"  // js::jit::FlushICache
#include "jit/JitOptions.h"
#include "threading/LockGuard.h"
#include "threading/Mutex.h"
#include "util/Memory.h"
#include "util/Poison.h"
#include "util/WindowsWrapper.h"
#include "vm/MutexIDs.h"

#ifdef XP_WIN
#  include "mozilla/StackWalk_windows.h"
#  include "mozilla/WindowsVersion.h"
#elif defined(__wasi__)
#  if defined(JS_CODEGEN_WASM32)
#    include <cstdlib>
#  else
// Nothing.
#  endif
#else
#  include <sys/mman.h>
#  include <unistd.h>
#endif

#ifdef MOZ_VALGRIND
#  include <valgrind/valgrind.h>
#endif

using namespace js;
using namespace js::jit;

#ifdef XP_WIN
#  if defined(HAVE_64BIT_BUILD)
#    define NEED_JIT_UNWIND_HANDLING
#  endif

static void* ComputeRandomAllocationAddress() {
  /*
   * Inspiration is V8's OS::Allocate in platform-win32.cc.
   *
   * VirtualAlloc takes 64K chunks out of the virtual address space, so we
   * keep 16b alignment.
   *
   * x86: V8 comments say that keeping addresses in the [64MiB, 1GiB) range
   * tries to avoid system default DLL mapping space. In the end, we get 13
   * bits of randomness in our selection.
   * x64: [2GiB, 4TiB), with 25 bits of randomness.
   */
#  ifdef HAVE_64BIT_BUILD
  static const uintptr_t base = 0x0000000080000000;
  static const uintptr_t mask = 0x000003ffffff0000;
#  elif defined(_M_IX86) || defined(__i386__)
  static const uintptr_t base = 0x04000000;
  static const uintptr_t mask = 0x3fff0000;
#  else
#    error "Unsupported architecture"
#  endif

  uint64_t rand = js::GenerateRandomSeed();
  return (void*)(base | (rand & mask));
}

#  ifdef NEED_JIT_UNWIND_HANDLING
static js::JitExceptionHandler sJitExceptionHandler;
static bool sHasInstalledFunctionTable = false;
#  endif

JS_PUBLIC_API void js::SetJitExceptionHandler(JitExceptionHandler handler) {
#  ifdef NEED_JIT_UNWIND_HANDLING
  MOZ_ASSERT(!sJitExceptionHandler);
  sJitExceptionHandler = handler;
#  else
  // Just do nothing if unwind handling is disabled.
#  endif
}

#  ifdef NEED_JIT_UNWIND_HANDLING
#    if defined(_M_ARM64)
// See the ".xdata records" section of
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
// These records can have various fields present or absent depending on the
// bits set in the header. Our struct will use one 32-bit slot for unwind codes,
// and no slots for epilog scopes.
struct UnwindData {
  uint32_t functionLength : 18;
  uint32_t version : 2;
  uint32_t hasExceptionHandler : 1;
  uint32_t packedEpilog : 1;
  uint32_t epilogCount : 5;
  uint32_t codeWords : 5;
  uint8_t unwindCodes[4];
  uint32_t exceptionHandler;
};

static const unsigned ThunkLength = 20;
#    else
// From documentation for UNWIND_INFO on
// https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64
struct UnwindInfo {
  uint8_t version : 3;
  uint8_t flags : 5;
  uint8_t sizeOfPrologue;
  uint8_t countOfUnwindCodes;
  uint8_t frameRegister : 4;
  uint8_t frameOffset : 4;
};
static const unsigned ThunkLength = 12;
union UnwindCode {
  struct {
    uint8_t codeOffset;
    uint8_t unwindOp : 4;
    uint8_t opInfo : 4;
  };
  uint16_t frameOffset;
};

static constexpr int kNumberOfUnwindCodes = 2;
static constexpr int kPushRbpInstructionLength = 1;
static constexpr int kMovRbpRspInstructionLength = 3;
static constexpr int kRbpPrefixCodes = 2;
static constexpr int kRbpPrefixLength =
    kPushRbpInstructionLength + kMovRbpRspInstructionLength;

struct UnwindData {
  UnwindInfo unwindInfo;
  UnwindCode unwindCodes[kNumberOfUnwindCodes];
  uint32_t exceptionHandler;

  UnwindData() {
    static constexpr int kOpPushNonvol = 0;
    static constexpr int kOpSetFPReg = 3;

    unwindInfo.version = 1;
    unwindInfo.flags = UNW_FLAG_EHANDLER;
    unwindInfo.sizeOfPrologue = kRbpPrefixLength;
    unwindInfo.countOfUnwindCodes = kRbpPrefixCodes;
    unwindInfo.frameRegister = 5;
    unwindInfo.frameOffset = 0;

    // Offset here are specified to beginning of the -next- instruction.
    unwindCodes[0].codeOffset = kRbpPrefixLength;  // movq rbp, rsp
    unwindCodes[0].unwindOp = kOpSetFPReg;
    unwindCodes[0].opInfo = 0;

    unwindCodes[1].codeOffset = kPushRbpInstructionLength;  // push rbp
    unwindCodes[1].unwindOp = kOpPushNonvol;
    unwindCodes[1].opInfo = 5;
  }
};
#    endif

struct ExceptionHandlerRecord {
  void* dynamicTable;
  UnwindData unwindData;
  uint8_t thunk[ThunkLength];
  RUNTIME_FUNCTION runtimeFunction;
};

// This function must match the function pointer type PEXCEPTION_HANDLER
// mentioned in:
//   http://msdn.microsoft.com/en-us/library/ssa62fwe.aspx.
// This type is rather elusive in documentation; Wine is the best I've found:
//   http://source.winehq.org/source/include/winnt.h
static DWORD ExceptionHandler(PEXCEPTION_RECORD exceptionRecord,
                              _EXCEPTION_REGISTRATION_RECORD*, PCONTEXT context,
                              _EXCEPTION_REGISTRATION_RECORD**) {
  if (sJitExceptionHandler) {
    return sJitExceptionHandler(exceptionRecord, context);
  }

  return ExceptionContinueSearch;
}

PRUNTIME_FUNCTION RuntimeFunctionCallback(DWORD64 ControlPc, PVOID Context);

// Required for enabling Stackwalking on windows using external tools.
NTSYSAPI DWORD NTAPI RtlAddGrowableFunctionTable(
    PVOID* DynamicTable, PRUNTIME_FUNCTION FunctionTable, DWORD EntryCount,
    DWORD MaximumEntryCount, ULONG_PTR RangeBase, ULONG_PTR RangeEnd);

// For an explanation of the problem being solved here, see
// SetJitExceptionFilter in jsfriendapi.h.
static bool RegisterExecutableMemory(void* p, size_t bytes, size_t pageSize) {
  if (!VirtualAlloc(p, pageSize, MEM_COMMIT, PAGE_READWRITE)) {
    MOZ_CRASH();
  }

  // A page was reserved inside this structure for the record. This is because
  // all entries in the record are describes as an offset from the start of the
  // memory region. We construct the record there.
  ExceptionHandlerRecord* r = new (p) ExceptionHandlerRecord();
  void* handler = JS_FUNC_TO_DATA_PTR(void*, ExceptionHandler);

  // Because the .xdata format on ARM64 can only encode sizes up to 1M (much
  // too small for our JIT code regions), we register a function table callback
  // to provide RUNTIME_FUNCTIONs at runtime. Windows doesn't seem to care about
  // the size fields on RUNTIME_FUNCTIONs that are created in this way, so the
  // same RUNTIME_FUNCTION can work for any address in the region. We'll set up
  // a generic one now and the callback can just return a pointer to it.

  // All these fields are specified to be offsets from the base of the
  // executable code (which is 'p'), even if they have 'Address' in their
  // names. In particular, exceptionHandler is a ULONG offset which is a
  // 32-bit integer. Since 'p' can be farther than INT32_MAX away from
  // sJitExceptionHandler, we must generate a little thunk inside the
  // record. The record is put on its own page so that we can take away write
  // access to protect against accidental clobbering.

#    if defined(_M_ARM64)
  if (!sJitExceptionHandler) {
    return false;
  }

  r->runtimeFunction.BeginAddress = pageSize;
  r->runtimeFunction.UnwindData = offsetof(ExceptionHandlerRecord, unwindData);
  static_assert(offsetof(ExceptionHandlerRecord, unwindData) % 4 == 0,
                "The ARM64 .pdata format requires that exception information "
                "RVAs be 4-byte aligned.");

  memset(&r->unwindData, 0, sizeof(r->unwindData));
  r->unwindData.hasExceptionHandler = true;
  r->unwindData.exceptionHandler = offsetof(ExceptionHandlerRecord, thunk);

  // Use a fake unwind code to make the Windows unwinder do _something_. If the
  // PC and SP both stay unchanged, we'll fail the unwinder's sanity checks and
  // it won't call our exception handler.
  r->unwindData.codeWords = 1;  // one 32-bit word gives us up to 4 codes
  r->unwindData.unwindCodes[0] =
      0b00000001;  // alloc_s small stack of size 1*16
  r->unwindData.unwindCodes[1] = 0b11100100;  // end

  uint32_t* thunk = (uint32_t*)r->thunk;
  uint16_t* addr = (uint16_t*)&handler;

  // xip0/r16 should be safe to clobber: Windows just used it to call our thunk.
  const uint8_t reg = 16;

  // Say `handler` is 0x4444333322221111, then:
  thunk[0] = 0xd2800000 | addr[0] << 5 | reg;  // mov  xip0, 1111
  thunk[1] = 0xf2a00000 | addr[1] << 5 | reg;  // movk xip0, 2222 lsl #0x10
  thunk[2] = 0xf2c00000 | addr[2] << 5 | reg;  // movk xip0, 3333 lsl #0x20
  thunk[3] = 0xf2e00000 | addr[3] << 5 | reg;  // movk xip0, 4444 lsl #0x30
  thunk[4] = 0xd61f0000 | reg << 5;            // br xip0
#    else
  r->runtimeFunction.BeginAddress = pageSize;
  r->runtimeFunction.EndAddress = (DWORD)bytes;
  r->runtimeFunction.UnwindData = offsetof(ExceptionHandlerRecord, unwindData);
  r->unwindData.exceptionHandler = offsetof(ExceptionHandlerRecord, thunk);

  // mov imm64, rax
  r->thunk[0] = 0x48;
  r->thunk[1] = 0xb8;
  memcpy(&r->thunk[2], &handler, 8);

  // jmp rax
  r->thunk[10] = 0xff;
  r->thunk[11] = 0xe0;
#    endif

  BOOLEAN result = false;

  // RtlAddGrowableFunctionTable is only available in Windows 8.1 and higher.
  // This can be simplified if our compile target changes.
  HMODULE ntdll_module =
      LoadLibraryExW(L"ntdll.dll", nullptr, LOAD_LIBRARY_SEARCH_SYSTEM32);

  static decltype(&::RtlAddGrowableFunctionTable) addGrowableFunctionTable =
      reinterpret_cast<decltype(&::RtlAddGrowableFunctionTable)>(
          ::GetProcAddress(ntdll_module, "RtlAddGrowableFunctionTable"));

  // AddGrowableFunctionTable will write into the region. We must therefore
  // only write-protect is after this has been called.
  if (addGrowableFunctionTable) {
    // XXX NB: The profiler believes this function is only called from the main
    // thread. If that ever becomes untrue, the profiler must be updated
    // immediately.
    AutoSuppressStackWalking suppress;
    result = addGrowableFunctionTable(&r->dynamicTable, &r->runtimeFunction, 1,
                                      1, (ULONG_PTR)p,
                                      (ULONG_PTR)p + bytes - pageSize) == S_OK;
  } else {
    if (!sJitExceptionHandler) {
      // No point installing this.
      return false;
    }
    // XXX NB: The profiler believes this function is only called from the main
    // thread. If that ever becomes untrue, the profiler must be updated
    // immediately.
    AutoSuppressStackWalking suppress;
    result =
        RtlInstallFunctionTableCallback((DWORD64)p | 0x3, (DWORD64)p, bytes,
                                        RuntimeFunctionCallback, NULL, NULL);
  }

  DWORD oldProtect;
  if (result && !VirtualProtect(p, pageSize, PAGE_EXECUTE_READ, &oldProtect)) {
    MOZ_CRASH();
  }

  return result;
}

static void UnregisterExecutableMemory(void* p, size_t bytes, size_t pageSize) {
  // There's no such thing as RtlUninstallFunctionTableCallback, so there's
  // nothing to do here.
}
#  endif

static void* ReserveProcessExecutableMemory(size_t bytes) {
#  ifdef NEED_JIT_UNWIND_HANDLING
  size_t pageSize = gc::SystemPageSize();
  // Always reserve space for the unwind information.
  bytes += pageSize;
#  endif

  void* p = nullptr;
  for (size_t i = 0; i < 10; i++) {
    void* randomAddr = ComputeRandomAllocationAddress();
    p = VirtualAlloc(randomAddr, bytes, MEM_RESERVE, PAGE_NOACCESS);
    if (p) {
      break;
    }
  }

  if (!p) {
    // Try again without randomization.
    p = VirtualAlloc(nullptr, bytes, MEM_RESERVE, PAGE_NOACCESS);
    if (!p) {
      return nullptr;
    }
  }

#  ifdef NEED_JIT_UNWIND_HANDLING
  if (RegisterExecutableMemory(p, bytes, pageSize)) {
    sHasInstalledFunctionTable = true;
  } else {
    if (sJitExceptionHandler) {
      // This should have succeeded if we have an exception handler. Bail.
      VirtualFree(p, 0, MEM_RELEASE);
      return nullptr;
    }
  }

  // Skip the first page where we might have allocated an exception handler
  // record.
  p = (uint8_t*)p + pageSize;
  bytes -= pageSize;

  RegisterJitCodeRegion((uint8_t*)p, bytes);
#  endif
  return p;
}

static void DeallocateProcessExecutableMemory(void* addr, size_t bytes) {
#  ifdef NEED_JIT_UNWIND_HANDLING
  UnregisterJitCodeRegion((uint8_t*)addr, bytes);

  size_t pageSize = gc::SystemPageSize();
  addr = (uint8_t*)addr - pageSize;

  if (sHasInstalledFunctionTable) {
    UnregisterExecutableMemory(addr, bytes, pageSize);
  }
#  endif

  VirtualFree(addr, 0, MEM_RELEASE);
}

static DWORD ProtectionSettingToFlags(ProtectionSetting protection) {
  switch (protection) {
    case ProtectionSetting::Protected:
      return PAGE_NOACCESS;
    case ProtectionSetting::Writable:
      return PAGE_READWRITE;
    case ProtectionSetting::Executable:
      return PAGE_EXECUTE_READ;
  }
  MOZ_CRASH();
}

[[nodiscard]] static bool CommitPages(void* addr, size_t bytes,
                                      ProtectionSetting protection) {
  void* p = VirtualAlloc(addr, bytes, MEM_COMMIT,
                         ProtectionSettingToFlags(protection));
  if (!p) {
    return false;
  }
  MOZ_RELEASE_ASSERT(p == addr);
  return true;
}

static void DecommitPages(void* addr, size_t bytes) {
  if (!VirtualFree(addr, bytes, MEM_DECOMMIT)) {
    MOZ_CRASH("DecommitPages failed");
  }
}
#elif defined(__wasi__)
#  if defined(JS_CODEGEN_WASM32)
static void* ReserveProcessExecutableMemory(size_t bytes) {
  return malloc(bytes);
}

static void DeallocateProcessExecutableMemory(void* addr, size_t bytes) {
  free(addr);
}

[[nodiscard]] static bool CommitPages(void* addr, size_t bytes,
                                      ProtectionSetting protection) {
  return true;
}

static void DecommitPages(void* addr, size_t bytes) {}

#  else
static void* ReserveProcessExecutableMemory(size_t bytes) {
  MOZ_CRASH("NYI for WASI.");
  return nullptr;
}
static void DeallocateProcessExecutableMemory(void* addr, size_t bytes) {
  MOZ_CRASH("NYI for WASI.");
}
[[nodiscard]] static bool CommitPages(void* addr, size_t bytes,
                                      ProtectionSetting protection) {
  MOZ_CRASH("NYI for WASI.");
  return false;
}
static void DecommitPages(void* addr, size_t bytes) {
  MOZ_CRASH("NYI for WASI.");
}
#  endif
#else  // !XP_WIN && !__wasi__
#  ifndef MAP_NORESERVE
#    define MAP_NORESERVE 0
#  endif

static void* ComputeRandomAllocationAddress() {
#  ifdef __OpenBSD__
  // OpenBSD already has random mmap and the idea that all x64 cpus
  // have 48-bit address space is not correct. Returning nullptr
  // allows OpenBSD do to the right thing.
  return nullptr;
#  else
  uint64_t rand = js::GenerateRandomSeed();

#    ifdef HAVE_64BIT_BUILD
  // x64 CPUs have a 48-bit address space and on some platforms the OS will
  // give us access to 47 bits, so to be safe we right shift by 18 to leave
  // 46 bits.
  rand >>= 18;
#    else
  // On 32-bit, right shift by 34 to leave 30 bits, range [0, 1GiB). Then add
  // 512MiB to get range [512MiB, 1.5GiB), or [0x20000000, 0x60000000). This
  // is based on V8 comments in platform-posix.cc saying this range is
  // relatively unpopulated across a variety of kernels.
  rand >>= 34;
  rand += 512 * 1024 * 1024;
#    endif

  // Ensure page alignment.
  uintptr_t mask = ~uintptr_t(gc::SystemPageSize() - 1);
  return (void*)uintptr_t(rand & mask);
#  endif
}

static void* ReserveProcessExecutableMemory(size_t bytes) {
  // Note that randomAddr is just a hint: if the address is not available
  // mmap will pick a different address.
  void* randomAddr = ComputeRandomAllocationAddress();
  void* p = MozTaggedAnonymousMmap(randomAddr, bytes, PROT_NONE,
                                   MAP_NORESERVE | MAP_PRIVATE | MAP_ANON, -1,
                                   0, "js-executable-memory");
  if (p == MAP_FAILED) {
    return nullptr;
  }
  return p;
}

static void DeallocateProcessExecutableMemory(void* addr, size_t bytes) {
  mozilla::DebugOnly<int> result = munmap(addr, bytes);
  MOZ_ASSERT(!result || errno == ENOMEM);
}

static unsigned ProtectionSettingToFlags(ProtectionSetting protection) {
#  ifdef MOZ_VALGRIND
  // If we're configured for Valgrind and running on it, use a slacker
  // scheme that doesn't change execute permissions, since doing so causes
  // Valgrind a lot of extra overhead re-JITting code that loses and later
  // regains execute permission.  See bug 1338179.
  if (RUNNING_ON_VALGRIND) {
    switch (protection) {
      case ProtectionSetting::Protected:
        return PROT_NONE;
      case ProtectionSetting::Writable:
        return PROT_READ | PROT_WRITE | PROT_EXEC;
      case ProtectionSetting::Executable:
        return PROT_READ | PROT_EXEC;
    }
    MOZ_CRASH();
  }
  // If we get here, we're configured for Valgrind but not running on
  // it, so use the standard scheme.
#  endif
  switch (protection) {
    case ProtectionSetting::Protected:
      return PROT_NONE;
    case ProtectionSetting::Writable:
      return PROT_READ | PROT_WRITE;
    case ProtectionSetting::Executable:
      return PROT_READ | PROT_EXEC;
  }
  MOZ_CRASH();
}

[[nodiscard]] static bool CommitPages(void* addr, size_t bytes,
                                      ProtectionSetting protection) {
  void* p = MozTaggedAnonymousMmap(
      addr, bytes, ProtectionSettingToFlags(protection),
      MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0, "js-executable-memory");
  if (p == MAP_FAILED) {
    return false;
  }
  MOZ_RELEASE_ASSERT(p == addr);
  return true;
}

static void DecommitPages(void* addr, size_t bytes) {
  // Use mmap with MAP_FIXED and PROT_NONE. Inspired by jemalloc's
  // pages_decommit.
  void* p = MozTaggedAnonymousMmap(addr, bytes, PROT_NONE,
                                   MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0,
                                   "js-executable-memory");
  MOZ_RELEASE_ASSERT(addr == p);
}
#endif

template <size_t NumBits>
class PageBitSet {
  using WordType = uint32_t;
  static const size_t BitsPerWord = sizeof(WordType) * 8;

  static_assert((NumBits % BitsPerWord) == 0,
                "NumBits must be a multiple of BitsPerWord");
  static const size_t NumWords = NumBits / BitsPerWord;

  mozilla::Array<WordType, NumWords> words_;

  uint32_t indexToWord(uint32_t index) const {
    MOZ_ASSERT(index < NumBits);
    return index / BitsPerWord;
  }
  WordType indexToBit(uint32_t index) const {
    MOZ_ASSERT(index < NumBits);
    return WordType(1) << (index % BitsPerWord);
  }

 public:
  void init() { mozilla::PodArrayZero(words_); }
  bool contains(size_t index) const {
    uint32_t word = indexToWord(index);
    return words_[word] & indexToBit(index);
  }
  void insert(size_t index) {
    MOZ_ASSERT(!contains(index));
    uint32_t word = indexToWord(index);
    words_[word] |= indexToBit(index);
  }
  void remove(size_t index) {
    MOZ_ASSERT(contains(index));
    uint32_t word = indexToWord(index);
    words_[word] &= ~indexToBit(index);
  }

#ifdef DEBUG
  bool empty() const {
    for (size_t i = 0; i < NumWords; i++) {
      if (words_[i] != 0) {
        return false;
      }
    }
    return true;
  }
#endif
};

// Per-process executable memory allocator. It reserves a block of memory of
// MaxCodeBytesPerProcess bytes, then allocates/deallocates pages from that.
//
// This has a number of benefits compared to raw mmap/VirtualAlloc:
//
// * More resillient against certain attacks.
//
// * Behaves more consistently across platforms: it avoids the 64K granularity
//   issues on Windows, for instance.
//
// * On x64, near jumps can be used for jumps to other JIT pages.
//
// * On Win64, we have to register the exception handler only once (at process
//   startup). This saves some memory and avoids RtlAddFunctionTable profiler
//   deadlocks.
class ProcessExecutableMemory {
  static_assert(
      (MaxCodeBytesPerProcess % ExecutableCodePageSize) == 0,
      "MaxCodeBytesPerProcess must be a multiple of ExecutableCodePageSize");
  static const size_t MaxCodePages =
      MaxCodeBytesPerProcess / ExecutableCodePageSize;

  // Start of the MaxCodeBytesPerProcess memory block or nullptr if
  // uninitialized. Note that this is NOT guaranteed to be aligned to
  // ExecutableCodePageSize.
  uint8_t* base_;

  // The fields below should only be accessed while we hold the lock.
  Mutex lock_ MOZ_UNANNOTATED;

  // pagesAllocated_ is an Atomic so that bytesAllocated does not have to
  // take the lock.
  mozilla::Atomic<size_t, mozilla::ReleaseAcquire> pagesAllocated_;

  // Page where we should try to allocate next.
  size_t cursor_;

  mozilla::Maybe<mozilla::non_crypto::XorShift128PlusRNG> rng_;
  PageBitSet<MaxCodePages> pages_;

 public:
  ProcessExecutableMemory()
      : base_(nullptr),
        lock_(mutexid::ProcessExecutableRegion),
        pagesAllocated_(0),
        cursor_(0),
        rng_(),
        pages_() {}

  [[nodiscard]] bool init() {
    pages_.init();

    MOZ_RELEASE_ASSERT(!initialized());
    MOZ_RELEASE_ASSERT(HasJitBackend());
    MOZ_RELEASE_ASSERT(gc::SystemPageSize() <= ExecutableCodePageSize);

    void* p = ReserveProcessExecutableMemory(MaxCodeBytesPerProcess);
    if (!p) {
      return false;
    }

    base_ = static_cast<uint8_t*>(p);

    mozilla::Array<uint64_t, 2> seed;
    GenerateXorShift128PlusSeed(seed);
    rng_.emplace(seed[0], seed[1]);
    return true;
  }

  uint8_t* base() const { return base_; }

  bool initialized() const { return base_ != nullptr; }

  size_t bytesAllocated() const {
    MOZ_ASSERT(pagesAllocated_ <= MaxCodePages);
    return pagesAllocated_ * ExecutableCodePageSize;
  }

  void release() {
    MOZ_ASSERT(initialized());
    MOZ_ASSERT(pages_.empty());
    MOZ_ASSERT(pagesAllocated_ == 0);
    DeallocateProcessExecutableMemory(base_, MaxCodeBytesPerProcess);
    base_ = nullptr;
    rng_.reset();
    MOZ_ASSERT(!initialized());
  }

  void assertValidAddress(void* p, size_t bytes) const {
    MOZ_RELEASE_ASSERT(p >= base_ &&
                       uintptr_t(p) + bytes <=
                           uintptr_t(base_) + MaxCodeBytesPerProcess);
  }

  bool containsAddress(const void* p) const {
    return p >= base_ &&
           uintptr_t(p) < uintptr_t(base_) + MaxCodeBytesPerProcess;
  }

  void* allocate(size_t bytes, ProtectionSetting protection,
                 MemCheckKind checkKind);
  void deallocate(void* addr, size_t bytes, bool decommit);
};

void* ProcessExecutableMemory::allocate(size_t bytes,
                                        ProtectionSetting protection,
                                        MemCheckKind checkKind) {
  MOZ_ASSERT(initialized());
  MOZ_ASSERT(HasJitBackend());
  MOZ_ASSERT(bytes > 0);
  MOZ_ASSERT((bytes % ExecutableCodePageSize) == 0);

  size_t numPages = bytes / ExecutableCodePageSize;

  // Take the lock and try to allocate.
  void* p = nullptr;
  {
    LockGuard<Mutex> guard(lock_);
    MOZ_ASSERT(pagesAllocated_ <= MaxCodePages);

    // Check if we have enough pages available.
    if (pagesAllocated_ + numPages >= MaxCodePages) {
      return nullptr;
    }

    MOZ_ASSERT(bytes <= MaxCodeBytesPerProcess);

    // Maybe skip a page to make allocations less predictable.
    size_t page = cursor_ + (rng_.ref().next() % 2);

    for (size_t i = 0; i < MaxCodePages; i++) {
      // Make sure page + numPages - 1 is a valid index.
      if (page + numPages > MaxCodePages) {
        page = 0;
      }

      bool available = true;
      for (size_t j = 0; j < numPages; j++) {
        if (pages_.contains(page + j)) {
          available = false;
          break;
        }
      }
      if (!available) {
        page++;
        continue;
      }

      // Mark the pages as unavailable.
      for (size_t j = 0; j < numPages; j++) {
        pages_.insert(page + j);
      }

      pagesAllocated_ += numPages;
      MOZ_ASSERT(pagesAllocated_ <= MaxCodePages);

      // If we allocated a small number of pages, move cursor_ to the
      // next page. We don't do this for larger allocations to avoid
      // skipping a large number of small holes.
      if (numPages <= 2) {
        cursor_ = page + numPages;
      }

      p = base_ + page * ExecutableCodePageSize;
      break;
    }
    if (!p) {
      return nullptr;
    }
  }

  // Commit the pages after releasing the lock.
  if (!CommitPages(p, bytes, protection)) {
    deallocate(p, bytes, /* decommit = */ false);
    return nullptr;
  }

  SetMemCheckKind(p, bytes, checkKind);

  return p;
}

void ProcessExecutableMemory::deallocate(void* addr, size_t bytes,
                                         bool decommit) {
  MOZ_ASSERT(initialized());
  MOZ_ASSERT(addr);
  MOZ_ASSERT((uintptr_t(addr) % gc::SystemPageSize()) == 0);
  MOZ_ASSERT(bytes > 0);
  MOZ_ASSERT((bytes % ExecutableCodePageSize) == 0);

  assertValidAddress(addr, bytes);

  size_t firstPage =
      (static_cast<uint8_t*>(addr) - base_) / ExecutableCodePageSize;
  size_t numPages = bytes / ExecutableCodePageSize;

  // Decommit before taking the lock.
  MOZ_MAKE_MEM_NOACCESS(addr, bytes);
  if (decommit) {
    DecommitPages(addr, bytes);
  }

  LockGuard<Mutex> guard(lock_);
  MOZ_ASSERT(numPages <= pagesAllocated_);
  pagesAllocated_ -= numPages;

  for (size_t i = 0; i < numPages; i++) {
    pages_.remove(firstPage + i);
  }

  // Move the cursor back so we can reuse pages instead of fragmenting the
  // whole region.
  if (firstPage < cursor_) {
    cursor_ = firstPage;
  }
}

static ProcessExecutableMemory execMemory;

void* js::jit::AllocateExecutableMemory(size_t bytes,
                                        ProtectionSetting protection,
                                        MemCheckKind checkKind) {
  return execMemory.allocate(bytes, protection, checkKind);
}

void js::jit::DeallocateExecutableMemory(void* addr, size_t bytes) {
  execMemory.deallocate(addr, bytes, /* decommit = */ true);
}

bool js::jit::InitProcessExecutableMemory() { return execMemory.init(); }

void js::jit::ReleaseProcessExecutableMemory() { execMemory.release(); }

size_t js::jit::LikelyAvailableExecutableMemory() {
  // Round down available memory to the closest MB.
  return MaxCodeBytesPerProcess -
         AlignBytes(execMemory.bytesAllocated(), 0x100000U);
}

bool js::jit::CanLikelyAllocateMoreExecutableMemory() {
  // Use a 8 MB buffer.
  static const size_t BufferSize = 8 * 1024 * 1024;

  MOZ_ASSERT(execMemory.bytesAllocated() <= MaxCodeBytesPerProcess);

  return execMemory.bytesAllocated() + BufferSize <= MaxCodeBytesPerProcess;
}

bool js::jit::AddressIsInExecutableMemory(const void* p) {
  return execMemory.containsAddress(p);
}

bool js::jit::ReprotectRegion(void* start, size_t size,
                              ProtectionSetting protection,
                              MustFlushICache flushICache) {
#if defined(JS_CODEGEN_WASM32)
  return true;
#endif

  // Flush ICache when making code executable, before we modify |size|.
  if (flushICache == MustFlushICache::Yes) {
    MOZ_ASSERT(protection == ProtectionSetting::Executable);
    jit::FlushICache(start, size);
  }

  // Calculate the start of the page containing this region,
  // and account for this extra memory within size.
  size_t pageSize = gc::SystemPageSize();
  intptr_t startPtr = reinterpret_cast<intptr_t>(start);
  intptr_t pageStartPtr = startPtr & ~(pageSize - 1);
  void* pageStart = reinterpret_cast<void*>(pageStartPtr);
  size += (startPtr - pageStartPtr);

  // Round size up
  size += (pageSize - 1);
  size &= ~(pageSize - 1);

  MOZ_ASSERT((uintptr_t(pageStart) % pageSize) == 0);

  execMemory.assertValidAddress(pageStart, size);

  // On weak memory systems, make sure new code is visible on all cores before
  // addresses of the code are made public.  Now is the latest moment in time
  // when we can do that, and we're assuming that every other thread that has
  // written into the memory that is being reprotected here has synchronized
  // with this thread in such a way that the memory writes have become visible
  // and we therefore only need to execute the fence once here.  See bug 1529933
  // for a longer discussion of why this is both necessary and sufficient.
  //
  // We use the C++ fence here -- and not AtomicOperations::fenceSeqCst() --
  // primarily because ReprotectRegion will be called while we construct our own
  // jitted atomics.  But the C++ fence is sufficient and correct, too.
#ifdef __wasi__
  MOZ_CRASH("NYI FOR WASI.");
#else
  std::atomic_thread_fence(std::memory_order_seq_cst);

#  ifdef XP_WIN
  DWORD flags = ProtectionSettingToFlags(protection);
  // This is a essentially a VirtualProtect, but with lighter impact on
  // antivirus analysis. See bug 1823634.
  if (!VirtualAlloc(pageStart, size, MEM_COMMIT, flags)) {
    return false;
  }
#  else
  unsigned flags = ProtectionSettingToFlags(protection);
  if (mprotect(pageStart, size, flags)) {
    return false;
  }
#  endif
#endif  // __wasi__

  execMemory.assertValidAddress(pageStart, size);
  return true;
}

#if defined(XP_WIN) && defined(NEED_JIT_UNWIND_HANDLING)
static PRUNTIME_FUNCTION RuntimeFunctionCallback(DWORD64 ControlPc,
                                                 PVOID Context) {
  MOZ_ASSERT(sJitExceptionHandler);

  // RegisterExecutableMemory already set up the runtime function in the
  // exception-data page preceding the allocation.
  uint8_t* p = execMemory.base();
  if (!p) {
    return nullptr;
  }
  return (PRUNTIME_FUNCTION)(p - gc::SystemPageSize() +
                             offsetof(ExceptionHandlerRecord, runtimeFunction));
}
#endif