summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/Assembler-arm.cpp
blob: a1213b6f21cc48a63b3556b97c911202724437b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/arm/Assembler-arm.h"

#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "mozilla/Sprintf.h"

#include <type_traits>

#include "gc/Marking.h"
#include "jit/arm/disasm/Disasm-arm.h"
#include "jit/arm/MacroAssembler-arm.h"
#include "jit/AutoWritableJitCode.h"
#include "jit/ExecutableAllocator.h"
#include "jit/MacroAssembler.h"
#include "vm/Realm.h"

using namespace js;
using namespace js::jit;

using mozilla::CountLeadingZeroes32;
using mozilla::DebugOnly;

using LabelDoc = DisassemblerSpew::LabelDoc;
using LiteralDoc = DisassemblerSpew::LiteralDoc;

void dbg_break() {}

// The ABIArgGenerator is used for making system ABI calls and for inter-wasm
// calls. The system ABI can either be SoftFp or HardFp, and inter-wasm calls
// are always HardFp calls. The initialization defaults to HardFp, and the ABI
// choice is made before any system ABI calls with the method "setUseHardFp".
ABIArgGenerator::ABIArgGenerator()
    : intRegIndex_(0),
      floatRegIndex_(0),
      stackOffset_(0),
      current_(),
      useHardFp_(true) {}

// See the "Parameter Passing" section of the "Procedure Call Standard for the
// ARM Architecture" documentation.
ABIArg ABIArgGenerator::softNext(MIRType type) {
  switch (type) {
    case MIRType::Int32:
    case MIRType::Pointer:
    case MIRType::RefOrNull:
    case MIRType::StackResults:
      if (intRegIndex_ == NumIntArgRegs) {
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(uint32_t);
        break;
      }
      current_ = ABIArg(Register::FromCode(intRegIndex_));
      intRegIndex_++;
      break;
    case MIRType::Int64:
      // Make sure to use an even register index. Increase to next even number
      // when odd.
      intRegIndex_ = (intRegIndex_ + 1) & ~1;
      if (intRegIndex_ == NumIntArgRegs) {
        // Align the stack on 8 bytes.
        static const uint32_t align = sizeof(uint64_t) - 1;
        stackOffset_ = (stackOffset_ + align) & ~align;
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(uint64_t);
        break;
      }
      current_ = ABIArg(Register::FromCode(intRegIndex_),
                        Register::FromCode(intRegIndex_ + 1));
      intRegIndex_ += 2;
      break;
    case MIRType::Float32:
      if (intRegIndex_ == NumIntArgRegs) {
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(uint32_t);
        break;
      }
      current_ = ABIArg(Register::FromCode(intRegIndex_));
      intRegIndex_++;
      break;
    case MIRType::Double:
      // Make sure to use an even register index. Increase to next even number
      // when odd.
      intRegIndex_ = (intRegIndex_ + 1) & ~1;
      if (intRegIndex_ == NumIntArgRegs) {
        // Align the stack on 8 bytes.
        static const uint32_t align = sizeof(double) - 1;
        stackOffset_ = (stackOffset_ + align) & ~align;
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(double);
        break;
      }
      current_ = ABIArg(Register::FromCode(intRegIndex_),
                        Register::FromCode(intRegIndex_ + 1));
      intRegIndex_ += 2;
      break;
    default:
      MOZ_CRASH("Unexpected argument type");
  }

  return current_;
}

ABIArg ABIArgGenerator::hardNext(MIRType type) {
  switch (type) {
    case MIRType::Int32:
    case MIRType::Pointer:
    case MIRType::RefOrNull:
    case MIRType::StackResults:
      if (intRegIndex_ == NumIntArgRegs) {
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(uint32_t);
        break;
      }
      current_ = ABIArg(Register::FromCode(intRegIndex_));
      intRegIndex_++;
      break;
    case MIRType::Int64:
      // Make sure to use an even register index. Increase to next even number
      // when odd.
      intRegIndex_ = (intRegIndex_ + 1) & ~1;
      if (intRegIndex_ == NumIntArgRegs) {
        // Align the stack on 8 bytes.
        static const uint32_t align = sizeof(uint64_t) - 1;
        stackOffset_ = (stackOffset_ + align) & ~align;
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(uint64_t);
        break;
      }
      current_ = ABIArg(Register::FromCode(intRegIndex_),
                        Register::FromCode(intRegIndex_ + 1));
      intRegIndex_ += 2;
      break;
    case MIRType::Float32:
      if (floatRegIndex_ == NumFloatArgRegs) {
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(uint32_t);
        break;
      }
      current_ = ABIArg(VFPRegister(floatRegIndex_, VFPRegister::Single));
      floatRegIndex_++;
      break;
    case MIRType::Double:
      // Double register are composed of 2 float registers, thus we have to
      // skip any float register which cannot be used in a pair of float
      // registers in which a double value can be stored.
      floatRegIndex_ = (floatRegIndex_ + 1) & ~1;
      if (floatRegIndex_ == NumFloatArgRegs) {
        static const uint32_t align = sizeof(double) - 1;
        stackOffset_ = (stackOffset_ + align) & ~align;
        current_ = ABIArg(stackOffset_);
        stackOffset_ += sizeof(uint64_t);
        break;
      }
      current_ = ABIArg(VFPRegister(floatRegIndex_ >> 1, VFPRegister::Double));
      floatRegIndex_ += 2;
      break;
    default:
      MOZ_CRASH("Unexpected argument type");
  }

  return current_;
}

ABIArg ABIArgGenerator::next(MIRType type) {
  if (useHardFp_) {
    return hardNext(type);
  }
  return softNext(type);
}

bool js::jit::IsUnaligned(const wasm::MemoryAccessDesc& access) {
  if (!access.align()) {
    return false;
  }

  if (access.type() == Scalar::Float64 && access.align() >= 4) {
    return false;
  }

  return access.align() < access.byteSize();
}

// Encode a standard register when it is being used as src1, the dest, and an
// extra register. These should never be called with an InvalidReg.
uint32_t js::jit::RT(Register r) {
  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return r.code() << 12;
}

uint32_t js::jit::RN(Register r) {
  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return r.code() << 16;
}

uint32_t js::jit::RD(Register r) {
  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return r.code() << 12;
}

uint32_t js::jit::RM(Register r) {
  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return r.code() << 8;
}

// Encode a standard register when it is being used as src1, the dest, and an
// extra register. For these, an InvalidReg is used to indicate a optional
// register that has been omitted.
uint32_t js::jit::maybeRT(Register r) {
  if (r == InvalidReg) {
    return 0;
  }

  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return r.code() << 12;
}

uint32_t js::jit::maybeRN(Register r) {
  if (r == InvalidReg) {
    return 0;
  }

  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return r.code() << 16;
}

uint32_t js::jit::maybeRD(Register r) {
  if (r == InvalidReg) {
    return 0;
  }

  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return r.code() << 12;
}

Register js::jit::toRD(Instruction i) {
  return Register::FromCode((i.encode() >> 12) & 0xf);
}
Register js::jit::toR(Instruction i) {
  return Register::FromCode(i.encode() & 0xf);
}

Register js::jit::toRM(Instruction i) {
  return Register::FromCode((i.encode() >> 8) & 0xf);
}

Register js::jit::toRN(Instruction i) {
  return Register::FromCode((i.encode() >> 16) & 0xf);
}

uint32_t js::jit::VD(VFPRegister vr) {
  if (vr.isMissing()) {
    return 0;
  }

  // Bits 15,14,13,12, 22.
  VFPRegister::VFPRegIndexSplit s = vr.encode();
  return s.bit << 22 | s.block << 12;
}
uint32_t js::jit::VN(VFPRegister vr) {
  if (vr.isMissing()) {
    return 0;
  }

  // Bits 19,18,17,16, 7.
  VFPRegister::VFPRegIndexSplit s = vr.encode();
  return s.bit << 7 | s.block << 16;
}
uint32_t js::jit::VM(VFPRegister vr) {
  if (vr.isMissing()) {
    return 0;
  }

  // Bits 5, 3,2,1,0.
  VFPRegister::VFPRegIndexSplit s = vr.encode();
  return s.bit << 5 | s.block;
}

VFPRegister::VFPRegIndexSplit jit::VFPRegister::encode() {
  MOZ_ASSERT(!_isInvalid);

  switch (kind) {
    case Double:
      return VFPRegIndexSplit(code_ & 0xf, code_ >> 4);
    case Single:
      return VFPRegIndexSplit(code_ >> 1, code_ & 1);
    default:
      // VFP register treated as an integer, NOT a gpr.
      return VFPRegIndexSplit(code_ >> 1, code_ & 1);
  }
}

bool InstDTR::IsTHIS(const Instruction& i) {
  return (i.encode() & IsDTRMask) == (uint32_t)IsDTR;
}

InstDTR* InstDTR::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstDTR*)&i;
  }
  return nullptr;
}

bool InstLDR::IsTHIS(const Instruction& i) {
  return (i.encode() & IsDTRMask) == (uint32_t)IsDTR;
}

InstLDR* InstLDR::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstLDR*)&i;
  }
  return nullptr;
}

InstNOP* InstNOP::AsTHIS(Instruction& i) {
  if (IsTHIS(i)) {
    return (InstNOP*)&i;
  }
  return nullptr;
}

bool InstNOP::IsTHIS(const Instruction& i) {
  return (i.encode() & 0x0fffffff) == NopInst;
}

bool InstBranchReg::IsTHIS(const Instruction& i) {
  return InstBXReg::IsTHIS(i) || InstBLXReg::IsTHIS(i);
}

InstBranchReg* InstBranchReg::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstBranchReg*)&i;
  }
  return nullptr;
}
void InstBranchReg::extractDest(Register* dest) { *dest = toR(*this); }
bool InstBranchReg::checkDest(Register dest) { return dest == toR(*this); }

bool InstBranchImm::IsTHIS(const Instruction& i) {
  return InstBImm::IsTHIS(i) || InstBLImm::IsTHIS(i);
}

InstBranchImm* InstBranchImm::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstBranchImm*)&i;
  }
  return nullptr;
}

void InstBranchImm::extractImm(BOffImm* dest) { *dest = BOffImm(*this); }

bool InstBXReg::IsTHIS(const Instruction& i) {
  return (i.encode() & IsBRegMask) == IsBX;
}

InstBXReg* InstBXReg::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstBXReg*)&i;
  }
  return nullptr;
}

bool InstBLXReg::IsTHIS(const Instruction& i) {
  return (i.encode() & IsBRegMask) == IsBLX;
}
InstBLXReg* InstBLXReg::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstBLXReg*)&i;
  }
  return nullptr;
}

bool InstBImm::IsTHIS(const Instruction& i) {
  return (i.encode() & IsBImmMask) == IsB;
}
InstBImm* InstBImm::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstBImm*)&i;
  }
  return nullptr;
}

bool InstBLImm::IsTHIS(const Instruction& i) {
  return (i.encode() & IsBImmMask) == IsBL;
}
InstBLImm* InstBLImm::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstBLImm*)&i;
  }
  return nullptr;
}

bool InstMovWT::IsTHIS(Instruction& i) {
  return InstMovW::IsTHIS(i) || InstMovT::IsTHIS(i);
}
InstMovWT* InstMovWT::AsTHIS(Instruction& i) {
  if (IsTHIS(i)) {
    return (InstMovWT*)&i;
  }
  return nullptr;
}

void InstMovWT::extractImm(Imm16* imm) { *imm = Imm16(*this); }
bool InstMovWT::checkImm(Imm16 imm) {
  return imm.decode() == Imm16(*this).decode();
}

void InstMovWT::extractDest(Register* dest) { *dest = toRD(*this); }
bool InstMovWT::checkDest(Register dest) { return dest == toRD(*this); }

bool InstMovW::IsTHIS(const Instruction& i) {
  return (i.encode() & IsWTMask) == IsW;
}

InstMovW* InstMovW::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstMovW*)&i;
  }
  return nullptr;
}
InstMovT* InstMovT::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstMovT*)&i;
  }
  return nullptr;
}

bool InstMovT::IsTHIS(const Instruction& i) {
  return (i.encode() & IsWTMask) == IsT;
}

InstALU* InstALU::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstALU*)&i;
  }
  return nullptr;
}
bool InstALU::IsTHIS(const Instruction& i) {
  return (i.encode() & ALUMask) == 0;
}
void InstALU::extractOp(ALUOp* ret) { *ret = ALUOp(encode() & (0xf << 21)); }
bool InstALU::checkOp(ALUOp op) {
  ALUOp mine;
  extractOp(&mine);
  return mine == op;
}
void InstALU::extractDest(Register* ret) { *ret = toRD(*this); }
bool InstALU::checkDest(Register rd) { return rd == toRD(*this); }
void InstALU::extractOp1(Register* ret) { *ret = toRN(*this); }
bool InstALU::checkOp1(Register rn) { return rn == toRN(*this); }
Operand2 InstALU::extractOp2() { return Operand2(encode()); }

InstCMP* InstCMP::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstCMP*)&i;
  }
  return nullptr;
}

bool InstCMP::IsTHIS(const Instruction& i) {
  return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkDest(r0) &&
         InstALU::AsTHIS(i)->checkOp(OpCmp);
}

InstMOV* InstMOV::AsTHIS(const Instruction& i) {
  if (IsTHIS(i)) {
    return (InstMOV*)&i;
  }
  return nullptr;
}

bool InstMOV::IsTHIS(const Instruction& i) {
  return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkOp1(r0) &&
         InstALU::AsTHIS(i)->checkOp(OpMov);
}

Op2Reg Operand2::toOp2Reg() const { return *(Op2Reg*)this; }

Imm16::Imm16(Instruction& inst)
    : lower_(inst.encode() & 0xfff),
      upper_(inst.encode() >> 16),
      invalid_(0xfff) {}

Imm16::Imm16(uint32_t imm)
    : lower_(imm & 0xfff), pad_(0), upper_((imm >> 12) & 0xf), invalid_(0) {
  MOZ_ASSERT(decode() == imm);
}

Imm16::Imm16() : invalid_(0xfff) {}

void Assembler::finish() {
  flush();
  MOZ_ASSERT(!isFinished);
  isFinished = true;
}

bool Assembler::appendRawCode(const uint8_t* code, size_t numBytes) {
  flush();
  return m_buffer.appendRawCode(code, numBytes);
}

bool Assembler::reserve(size_t size) {
  // This buffer uses fixed-size chunks so there's no point in reserving
  // now vs. on-demand.
  return !oom();
}

bool Assembler::swapBuffer(wasm::Bytes& bytes) {
  // For now, specialize to the one use case. As long as wasm::Bytes is a
  // Vector, not a linked-list of chunks, there's not much we can do other
  // than copy.
  MOZ_ASSERT(bytes.empty());
  if (!bytes.resize(bytesNeeded())) {
    return false;
  }
  m_buffer.executableCopy(bytes.begin());
  return true;
}

void Assembler::executableCopy(uint8_t* buffer) {
  MOZ_ASSERT(isFinished);
  m_buffer.executableCopy(buffer);
}

class RelocationIterator {
  CompactBufferReader reader_;
  // Offset in bytes.
  uint32_t offset_;

 public:
  explicit RelocationIterator(CompactBufferReader& reader) : reader_(reader) {}

  bool read() {
    if (!reader_.more()) {
      return false;
    }
    offset_ = reader_.readUnsigned();
    return true;
  }

  uint32_t offset() const { return offset_; }
};

template <class Iter>
const uint32_t* Assembler::GetCF32Target(Iter* iter) {
  Instruction* inst1 = iter->cur();

  if (inst1->is<InstBranchImm>()) {
    // See if we have a simple case, b #offset.
    BOffImm imm;
    InstBranchImm* jumpB = inst1->as<InstBranchImm>();
    jumpB->extractImm(&imm);
    return imm.getDest(inst1)->raw();
  }

  if (inst1->is<InstMovW>()) {
    // See if we have the complex case:
    //  movw r_temp, #imm1
    //  movt r_temp, #imm2
    //  bx r_temp
    // OR
    //  movw r_temp, #imm1
    //  movt r_temp, #imm2
    //  str pc, [sp]
    //  bx r_temp

    Imm16 targ_bot;
    Imm16 targ_top;
    Register temp;

    // Extract both the temp register and the bottom immediate.
    InstMovW* bottom = inst1->as<InstMovW>();
    bottom->extractImm(&targ_bot);
    bottom->extractDest(&temp);

    // Extract the top part of the immediate.
    Instruction* inst2 = iter->next();
    MOZ_ASSERT(inst2->is<InstMovT>());
    InstMovT* top = inst2->as<InstMovT>();
    top->extractImm(&targ_top);

    // Make sure they are being loaded into the same register.
    MOZ_ASSERT(top->checkDest(temp));

    // Make sure we're branching to the same register.
#ifdef DEBUG
    // A toggled call sometimes has a NOP instead of a branch for the third
    // instruction. No way to assert that it's valid in that situation.
    Instruction* inst3 = iter->next();
    if (!inst3->is<InstNOP>()) {
      InstBranchReg* realBranch = nullptr;
      if (inst3->is<InstBranchReg>()) {
        realBranch = inst3->as<InstBranchReg>();
      } else {
        Instruction* inst4 = iter->next();
        realBranch = inst4->as<InstBranchReg>();
      }
      MOZ_ASSERT(realBranch->checkDest(temp));
    }
#endif

    uint32_t* dest = (uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16));
    return dest;
  }

  if (inst1->is<InstLDR>()) {
    return *(uint32_t**)inst1->as<InstLDR>()->dest();
  }

  MOZ_CRASH("unsupported branch relocation");
}

uintptr_t Assembler::GetPointer(uint8_t* instPtr) {
  InstructionIterator iter((Instruction*)instPtr);
  uintptr_t ret = (uintptr_t)GetPtr32Target(iter, nullptr, nullptr);
  return ret;
}

const uint32_t* Assembler::GetPtr32Target(InstructionIterator start,
                                          Register* dest, RelocStyle* style) {
  Instruction* load1 = start.cur();
  Instruction* load2 = start.next();

  if (load1->is<InstMovW>() && load2->is<InstMovT>()) {
    if (style) {
      *style = L_MOVWT;
    }

    // See if we have the complex case:
    //  movw r_temp, #imm1
    //  movt r_temp, #imm2

    Imm16 targ_bot;
    Imm16 targ_top;
    Register temp;

    // Extract both the temp register and the bottom immediate.
    InstMovW* bottom = load1->as<InstMovW>();
    bottom->extractImm(&targ_bot);
    bottom->extractDest(&temp);

    // Extract the top part of the immediate.
    InstMovT* top = load2->as<InstMovT>();
    top->extractImm(&targ_top);

    // Make sure they are being loaded into the same register.
    MOZ_ASSERT(top->checkDest(temp));

    if (dest) {
      *dest = temp;
    }

    uint32_t* value =
        (uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16));
    return value;
  }

  if (load1->is<InstLDR>()) {
    if (style) {
      *style = L_LDR;
    }
    if (dest) {
      *dest = toRD(*load1);
    }
    return *(uint32_t**)load1->as<InstLDR>()->dest();
  }

  MOZ_CRASH("unsupported relocation");
}

static JitCode* CodeFromJump(InstructionIterator* jump) {
  uint8_t* target = (uint8_t*)Assembler::GetCF32Target(jump);
  return JitCode::FromExecutable(target);
}

void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code,
                                     CompactBufferReader& reader) {
  RelocationIterator iter(reader);
  while (iter.read()) {
    InstructionIterator institer((Instruction*)(code->raw() + iter.offset()));
    JitCode* child = CodeFromJump(&institer);
    TraceManuallyBarrieredEdge(trc, &child, "rel32");
  }
}

static void TraceOneDataRelocation(JSTracer* trc,
                                   mozilla::Maybe<AutoWritableJitCode>& awjc,
                                   JitCode* code, InstructionIterator iter) {
  Register dest;
  Assembler::RelocStyle rs;
  const void* prior = Assembler::GetPtr32Target(iter, &dest, &rs);
  void* ptr = const_cast<void*>(prior);

  // No barrier needed since these are constants.
  TraceManuallyBarrieredGenericPointerEdge(
      trc, reinterpret_cast<gc::Cell**>(&ptr), "jit-masm-ptr");

  if (ptr != prior) {
    if (awjc.isNothing()) {
      awjc.emplace(code);
    }

    MacroAssemblerARM::ma_mov_patch(Imm32(int32_t(ptr)), dest,
                                    Assembler::Always, rs, iter);
  }
}

/* static */
void Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code,
                                     CompactBufferReader& reader) {
  mozilla::Maybe<AutoWritableJitCode> awjc;
  while (reader.more()) {
    size_t offset = reader.readUnsigned();
    InstructionIterator iter((Instruction*)(code->raw() + offset));
    TraceOneDataRelocation(trc, awjc, code, iter);
  }
}

void Assembler::copyJumpRelocationTable(uint8_t* dest) {
  if (jumpRelocations_.length()) {
    memcpy(dest, jumpRelocations_.buffer(), jumpRelocations_.length());
  }
}

void Assembler::copyDataRelocationTable(uint8_t* dest) {
  if (dataRelocations_.length()) {
    memcpy(dest, dataRelocations_.buffer(), dataRelocations_.length());
  }
}

void Assembler::processCodeLabels(uint8_t* rawCode) {
  for (const CodeLabel& label : codeLabels_) {
    Bind(rawCode, label);
  }
}

void Assembler::writeCodePointer(CodeLabel* label) {
  m_buffer.assertNoPoolAndNoNops();
  BufferOffset off = writeInst(-1);
  label->patchAt()->bind(off.getOffset());
}

void Assembler::Bind(uint8_t* rawCode, const CodeLabel& label) {
  size_t offset = label.patchAt().offset();
  size_t target = label.target().offset();
  *reinterpret_cast<const void**>(rawCode + offset) = rawCode + target;
}

Assembler::Condition Assembler::InvertCondition(Condition cond) {
  const uint32_t ConditionInversionBit = 0x10000000;
  return Condition(ConditionInversionBit ^ cond);
}

Assembler::Condition Assembler::UnsignedCondition(Condition cond) {
  switch (cond) {
    case Zero:
    case NonZero:
      return cond;
    case LessThan:
    case Below:
      return Below;
    case LessThanOrEqual:
    case BelowOrEqual:
      return BelowOrEqual;
    case GreaterThan:
    case Above:
      return Above;
    case AboveOrEqual:
    case GreaterThanOrEqual:
      return AboveOrEqual;
    default:
      MOZ_CRASH("unexpected condition");
  }
}

Assembler::Condition Assembler::ConditionWithoutEqual(Condition cond) {
  switch (cond) {
    case LessThan:
    case LessThanOrEqual:
      return LessThan;
    case Below:
    case BelowOrEqual:
      return Below;
    case GreaterThan:
    case GreaterThanOrEqual:
      return GreaterThan;
    case Above:
    case AboveOrEqual:
      return Above;
    default:
      MOZ_CRASH("unexpected condition");
  }
}

Assembler::DoubleCondition Assembler::InvertCondition(DoubleCondition cond) {
  const uint32_t ConditionInversionBit = 0x10000000;
  return DoubleCondition(ConditionInversionBit ^ cond);
}

Imm8::TwoImm8mData Imm8::EncodeTwoImms(uint32_t imm) {
  // In the ideal case, we are looking for a number that (in binary) looks
  // like:
  //   0b((00)*)n_1((00)*)n_2((00)*)
  //      left  n1   mid  n2
  //   where both n_1 and n_2 fit into 8 bits.
  // Since this is being done with rotates, we also need to handle the case
  // that one of these numbers is in fact split between the left and right
  // sides, in which case the constant will look like:
  //   0bn_1a((00)*)n_2((00)*)n_1b
  //     n1a  mid  n2   rgh    n1b
  // Also remember, values are rotated by multiples of two, and left, mid or
  // right can have length zero.
  uint32_t imm1, imm2;
  int left = CountLeadingZeroes32(imm) & 0x1E;
  uint32_t no_n1 = imm & ~(0xff << (24 - left));

  // Not technically needed: this case only happens if we can encode as a
  // single imm8m. There is a perfectly reasonable encoding in this case, but
  // we shouldn't encourage people to do things like this.
  if (no_n1 == 0) {
    return TwoImm8mData();
  }

  int mid = CountLeadingZeroes32(no_n1) & 0x1E;
  uint32_t no_n2 =
      no_n1 & ~((0xff << ((24 - mid) & 0x1f)) | 0xff >> ((8 + mid) & 0x1f));

  if (no_n2 == 0) {
    // We hit the easy case, no wraparound.
    // Note: a single constant *may* look like this.
    int imm1shift = left + 8;
    int imm2shift = mid + 8;
    imm1 = (imm >> (32 - imm1shift)) & 0xff;
    if (imm2shift >= 32) {
      imm2shift = 0;
      // This assert does not always hold, in fact, this would lead to
      // some incredibly subtle bugs.
      // assert((imm & 0xff) == no_n1);
      imm2 = no_n1;
    } else {
      imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff;
      MOZ_ASSERT(((no_n1 >> (32 - imm2shift)) | (no_n1 << imm2shift)) == imm2);
    }
    MOZ_ASSERT((imm1shift & 0x1) == 0);
    MOZ_ASSERT((imm2shift & 0x1) == 0);
    return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1),
                        datastore::Imm8mData(imm2, imm2shift >> 1));
  }

  // Either it wraps, or it does not fit. If we initially chopped off more
  // than 8 bits, then it won't fit.
  if (left >= 8) {
    return TwoImm8mData();
  }

  int right = 32 - (CountLeadingZeroes32(no_n2) & 30);
  // All remaining set bits *must* fit into the lower 8 bits.
  // The right == 8 case should be handled by the previous case.
  if (right > 8) {
    return TwoImm8mData();
  }

  // Make sure the initial bits that we removed for no_n1 fit into the
  // 8-(32-right) leftmost bits.
  if (((imm & (0xff << (24 - left))) << (8 - right)) != 0) {
    // BUT we may have removed more bits than we needed to for no_n1
    // 0x04104001 e.g. we can encode 0x104 with a single op, then 0x04000001
    // with a second, but we try to encode 0x0410000 and find that we need a
    // second op for 0x4000, and 0x1 cannot be included in the encoding of
    // 0x04100000.
    no_n1 = imm & ~((0xff >> (8 - right)) | (0xff << (24 + right)));
    mid = CountLeadingZeroes32(no_n1) & 30;
    no_n2 = no_n1 & ~((0xff << ((24 - mid) & 31)) | 0xff >> ((8 + mid) & 31));
    if (no_n2 != 0) {
      return TwoImm8mData();
    }
  }

  // Now assemble all of this information into a two coherent constants it is
  // a rotate right from the lower 8 bits.
  int imm1shift = 8 - right;
  imm1 = 0xff & ((imm << imm1shift) | (imm >> (32 - imm1shift)));
  MOZ_ASSERT((imm1shift & ~0x1e) == 0);
  // left + 8 + mid is the position of the leftmost bit of n_2.
  // We needed to rotate 0x000000ab right by 8 in order to get 0xab000000,
  // then shift again by the leftmost bit in order to get the constant that we
  // care about.
  int imm2shift = mid + 8;
  imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff;
  MOZ_ASSERT((imm1shift & 0x1) == 0);
  MOZ_ASSERT((imm2shift & 0x1) == 0);
  return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1),
                      datastore::Imm8mData(imm2, imm2shift >> 1));
}

ALUOp jit::ALUNeg(ALUOp op, Register dest, Register scratch, Imm32* imm,
                  Register* negDest) {
  // Find an alternate ALUOp to get the job done, and use a different imm.
  *negDest = dest;
  switch (op) {
    case OpMov:
      *imm = Imm32(~imm->value);
      return OpMvn;
    case OpMvn:
      *imm = Imm32(~imm->value);
      return OpMov;
    case OpAnd:
      *imm = Imm32(~imm->value);
      return OpBic;
    case OpBic:
      *imm = Imm32(~imm->value);
      return OpAnd;
    case OpAdd:
      *imm = Imm32(-imm->value);
      return OpSub;
    case OpSub:
      *imm = Imm32(-imm->value);
      return OpAdd;
    case OpCmp:
      *imm = Imm32(-imm->value);
      return OpCmn;
    case OpCmn:
      *imm = Imm32(-imm->value);
      return OpCmp;
    case OpTst:
      MOZ_ASSERT(dest == InvalidReg);
      *imm = Imm32(~imm->value);
      *negDest = scratch;
      return OpBic;
      // orr has orn on thumb2 only.
    default:
      return OpInvalid;
  }
}

bool jit::can_dbl(ALUOp op) {
  // Some instructions can't be processed as two separate instructions such as
  // and, and possibly add (when we're setting ccodes). There is also some
  // hilarity with *reading* condition codes. For example, adc dest, src1,
  // 0xfff; (add with carry) can be split up into adc dest, src1, 0xf00; add
  // dest, dest, 0xff, since "reading" the condition code increments the
  // result by one conditionally, that only needs to be done on one of the two
  // instructions.
  switch (op) {
    case OpBic:
    case OpAdd:
    case OpSub:
    case OpEor:
    case OpOrr:
      return true;
    default:
      return false;
  }
}

bool jit::condsAreSafe(ALUOp op) {
  // Even when we are setting condition codes, sometimes we can get away with
  // splitting an operation into two. For example, if our immediate is
  // 0x00ff00ff, and the operation is eors we can split this in half, since x
  // ^ 0x00ff0000 ^ 0x000000ff should set all of its condition codes exactly
  // the same as x ^ 0x00ff00ff. However, if the operation were adds, we
  // cannot split this in half. If the source on the add is 0xfff00ff0, the
  // result sholud be 0xef10ef, but do we set the overflow bit or not?
  // Depending on which half is performed first (0x00ff0000 or 0x000000ff) the
  // V bit will be set differently, and *not* updating the V bit would be
  // wrong. Theoretically, the following should work:
  //  adds r0, r1, 0x00ff0000;
  //  addsvs r0, r1, 0x000000ff;
  //  addvc r0, r1, 0x000000ff;
  // But this is 3 instructions, and at that point, we might as well use
  // something else.
  switch (op) {
    case OpBic:
    case OpOrr:
    case OpEor:
      return true;
    default:
      return false;
  }
}

ALUOp jit::getDestVariant(ALUOp op) {
  // All of the compare operations are dest-less variants of a standard
  // operation. Given the dest-less variant, return the dest-ful variant.
  switch (op) {
    case OpCmp:
      return OpSub;
    case OpCmn:
      return OpAdd;
    case OpTst:
      return OpAnd;
    case OpTeq:
      return OpEor;
    default:
      return op;
  }
}

O2RegImmShift jit::O2Reg(Register r) { return O2RegImmShift(r, LSL, 0); }

O2RegImmShift jit::lsl(Register r, int amt) {
  MOZ_ASSERT(0 <= amt && amt <= 31);
  return O2RegImmShift(r, LSL, amt);
}

O2RegImmShift jit::lsr(Register r, int amt) {
  MOZ_ASSERT(1 <= amt && amt <= 32);
  return O2RegImmShift(r, LSR, amt);
}

O2RegImmShift jit::ror(Register r, int amt) {
  MOZ_ASSERT(1 <= amt && amt <= 31);
  return O2RegImmShift(r, ROR, amt);
}
O2RegImmShift jit::rol(Register r, int amt) {
  MOZ_ASSERT(1 <= amt && amt <= 31);
  return O2RegImmShift(r, ROR, 32 - amt);
}

O2RegImmShift jit::asr(Register r, int amt) {
  MOZ_ASSERT(1 <= amt && amt <= 32);
  return O2RegImmShift(r, ASR, amt);
}

O2RegRegShift jit::lsl(Register r, Register amt) {
  return O2RegRegShift(r, LSL, amt);
}

O2RegRegShift jit::lsr(Register r, Register amt) {
  return O2RegRegShift(r, LSR, amt);
}

O2RegRegShift jit::ror(Register r, Register amt) {
  return O2RegRegShift(r, ROR, amt);
}

O2RegRegShift jit::asr(Register r, Register amt) {
  return O2RegRegShift(r, ASR, amt);
}

static js::jit::DoubleEncoder doubleEncoder;

/* static */
const js::jit::VFPImm js::jit::VFPImm::One(0x3FF00000);

js::jit::VFPImm::VFPImm(uint32_t top) {
  data_ = -1;
  datastore::Imm8VFPImmData tmp;
  if (doubleEncoder.lookup(top, &tmp)) {
    data_ = tmp.encode();
  }
}

BOffImm::BOffImm(const Instruction& inst) : data_(inst.encode() & 0x00ffffff) {}

Instruction* BOffImm::getDest(Instruction* src) const {
  // TODO: It is probably worthwhile to verify that src is actually a branch.
  // NOTE: This does not explicitly shift the offset of the destination left by
  // 2, since it is indexing into an array of instruction sized objects.
  return &src[((int32_t(data_) << 8) >> 8) + 2];
}

const js::jit::DoubleEncoder::DoubleEntry js::jit::DoubleEncoder::table[256] = {
#include "jit/arm/DoubleEntryTable.tbl"
};

// VFPRegister implementation
VFPRegister VFPRegister::doubleOverlay(unsigned int which) const {
  MOZ_ASSERT(!_isInvalid);
  MOZ_ASSERT(which == 0);
  if (kind != Double) {
    return VFPRegister(code_ >> 1, Double);
  }
  return *this;
}
VFPRegister VFPRegister::singleOverlay(unsigned int which) const {
  MOZ_ASSERT(!_isInvalid);
  if (kind == Double) {
    // There are no corresponding float registers for d16-d31.
    MOZ_ASSERT(code_ < 16);
    MOZ_ASSERT(which < 2);
    return VFPRegister((code_ << 1) + which, Single);
  }
  MOZ_ASSERT(which == 0);
  return VFPRegister(code_, Single);
}

static_assert(
    FloatRegisters::TotalDouble <= 16,
    "We assume that every Double register also has an Integer personality");

VFPRegister VFPRegister::sintOverlay(unsigned int which) const {
  MOZ_ASSERT(!_isInvalid);
  if (kind == Double) {
    // There are no corresponding float registers for d16-d31.
    MOZ_ASSERT(code_ < 16);
    MOZ_ASSERT(which < 2);
    return VFPRegister((code_ << 1) + which, Int);
  }
  MOZ_ASSERT(which == 0);
  return VFPRegister(code_, Int);
}
VFPRegister VFPRegister::uintOverlay(unsigned int which) const {
  MOZ_ASSERT(!_isInvalid);
  if (kind == Double) {
    // There are no corresponding float registers for d16-d31.
    MOZ_ASSERT(code_ < 16);
    MOZ_ASSERT(which < 2);
    return VFPRegister((code_ << 1) + which, UInt);
  }
  MOZ_ASSERT(which == 0);
  return VFPRegister(code_, UInt);
}

bool Assembler::oom() const {
  return AssemblerShared::oom() || m_buffer.oom() || jumpRelocations_.oom() ||
         dataRelocations_.oom();
}

// Size of the instruction stream, in bytes. Including pools. This function
// expects all pools that need to be placed have been placed. If they haven't
// then we need to go an flush the pools :(
size_t Assembler::size() const { return m_buffer.size(); }
// Size of the relocation table, in bytes.
size_t Assembler::jumpRelocationTableBytes() const {
  return jumpRelocations_.length();
}
size_t Assembler::dataRelocationTableBytes() const {
  return dataRelocations_.length();
}

// Size of the data table, in bytes.
size_t Assembler::bytesNeeded() const {
  return size() + jumpRelocationTableBytes() + dataRelocationTableBytes();
}

// Allocate memory for a branch instruction, it will be overwritten
// subsequently and should not be disassembled.

BufferOffset Assembler::allocBranchInst() {
  return m_buffer.putInt(Always | InstNOP::NopInst);
}

void Assembler::WriteInstStatic(uint32_t x, uint32_t* dest) {
  MOZ_ASSERT(dest != nullptr);
  *dest = x;
}

void Assembler::haltingAlign(int alignment) {
  // HLT with payload 0xBAAD
  m_buffer.align(alignment, 0xE1000070 | (0xBAA << 8) | 0xD);
}

void Assembler::nopAlign(int alignment) { m_buffer.align(alignment); }

BufferOffset Assembler::as_nop() { return writeInst(0xe320f000); }

static uint32_t EncodeAlu(Register dest, Register src1, Operand2 op2, ALUOp op,
                          SBit s, Assembler::Condition c) {
  return (int)op | (int)s | (int)c | op2.encode() |
         ((dest == InvalidReg) ? 0 : RD(dest)) |
         ((src1 == InvalidReg) ? 0 : RN(src1));
}

BufferOffset Assembler::as_alu(Register dest, Register src1, Operand2 op2,
                               ALUOp op, SBit s, Condition c) {
  return writeInst(EncodeAlu(dest, src1, op2, op, s, c));
}

BufferOffset Assembler::as_mov(Register dest, Operand2 op2, SBit s,
                               Condition c) {
  return as_alu(dest, InvalidReg, op2, OpMov, s, c);
}

/* static */
void Assembler::as_alu_patch(Register dest, Register src1, Operand2 op2,
                             ALUOp op, SBit s, Condition c, uint32_t* pos) {
  WriteInstStatic(EncodeAlu(dest, src1, op2, op, s, c), pos);
}

/* static */
void Assembler::as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c,
                             uint32_t* pos) {
  as_alu_patch(dest, InvalidReg, op2, OpMov, s, c, pos);
}

BufferOffset Assembler::as_mvn(Register dest, Operand2 op2, SBit s,
                               Condition c) {
  return as_alu(dest, InvalidReg, op2, OpMvn, s, c);
}

// Logical operations.
BufferOffset Assembler::as_and(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpAnd, s, c);
}
BufferOffset Assembler::as_bic(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpBic, s, c);
}
BufferOffset Assembler::as_eor(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpEor, s, c);
}
BufferOffset Assembler::as_orr(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpOrr, s, c);
}

// Reverse byte operations.
BufferOffset Assembler::as_rev(Register dest, Register src, Condition c) {
  return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'0011'0000 |
                   RD(dest) | src.code());
}
BufferOffset Assembler::as_rev16(Register dest, Register src, Condition c) {
  return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'1011'0000 |
                   RD(dest) | src.code());
}
BufferOffset Assembler::as_revsh(Register dest, Register src, Condition c) {
  return writeInst((int)c | 0b0000'0110'1111'1111'0000'1111'1011'0000 |
                   RD(dest) | src.code());
}

// Mathematical operations.
BufferOffset Assembler::as_adc(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpAdc, s, c);
}
BufferOffset Assembler::as_add(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpAdd, s, c);
}
BufferOffset Assembler::as_sbc(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpSbc, s, c);
}
BufferOffset Assembler::as_sub(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpSub, s, c);
}
BufferOffset Assembler::as_rsb(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpRsb, s, c);
}
BufferOffset Assembler::as_rsc(Register dest, Register src1, Operand2 op2,
                               SBit s, Condition c) {
  return as_alu(dest, src1, op2, OpRsc, s, c);
}

// Test operations.
BufferOffset Assembler::as_cmn(Register src1, Operand2 op2, Condition c) {
  return as_alu(InvalidReg, src1, op2, OpCmn, SetCC, c);
}
BufferOffset Assembler::as_cmp(Register src1, Operand2 op2, Condition c) {
  return as_alu(InvalidReg, src1, op2, OpCmp, SetCC, c);
}
BufferOffset Assembler::as_teq(Register src1, Operand2 op2, Condition c) {
  return as_alu(InvalidReg, src1, op2, OpTeq, SetCC, c);
}
BufferOffset Assembler::as_tst(Register src1, Operand2 op2, Condition c) {
  return as_alu(InvalidReg, src1, op2, OpTst, SetCC, c);
}

static constexpr Register NoAddend{Registers::pc};

static const int SignExtend = 0x06000070;

enum SignExtend {
  SxSxtb = 10 << 20,
  SxSxth = 11 << 20,
  SxUxtb = 14 << 20,
  SxUxth = 15 << 20
};

// Sign extension operations.
BufferOffset Assembler::as_sxtb(Register dest, Register src, int rotate,
                                Condition c) {
  return writeInst((int)c | SignExtend | SxSxtb | RN(NoAddend) | RD(dest) |
                   ((rotate & 3) << 10) | src.code());
}
BufferOffset Assembler::as_sxth(Register dest, Register src, int rotate,
                                Condition c) {
  return writeInst((int)c | SignExtend | SxSxth | RN(NoAddend) | RD(dest) |
                   ((rotate & 3) << 10) | src.code());
}
BufferOffset Assembler::as_uxtb(Register dest, Register src, int rotate,
                                Condition c) {
  return writeInst((int)c | SignExtend | SxUxtb | RN(NoAddend) | RD(dest) |
                   ((rotate & 3) << 10) | src.code());
}
BufferOffset Assembler::as_uxth(Register dest, Register src, int rotate,
                                Condition c) {
  return writeInst((int)c | SignExtend | SxUxth | RN(NoAddend) | RD(dest) |
                   ((rotate & 3) << 10) | src.code());
}

static uint32_t EncodeMovW(Register dest, Imm16 imm, Assembler::Condition c) {
  MOZ_ASSERT(HasMOVWT());
  return 0x03000000 | c | imm.encode() | RD(dest);
}

static uint32_t EncodeMovT(Register dest, Imm16 imm, Assembler::Condition c) {
  MOZ_ASSERT(HasMOVWT());
  return 0x03400000 | c | imm.encode() | RD(dest);
}

// Not quite ALU worthy, but these are useful none the less. These also have
// the isue of these being formatted completly differently from the standard ALU
// operations.
BufferOffset Assembler::as_movw(Register dest, Imm16 imm, Condition c) {
  return writeInst(EncodeMovW(dest, imm, c));
}

/* static */
void Assembler::as_movw_patch(Register dest, Imm16 imm, Condition c,
                              Instruction* pos) {
  WriteInstStatic(EncodeMovW(dest, imm, c), (uint32_t*)pos);
}

BufferOffset Assembler::as_movt(Register dest, Imm16 imm, Condition c) {
  return writeInst(EncodeMovT(dest, imm, c));
}

/* static */
void Assembler::as_movt_patch(Register dest, Imm16 imm, Condition c,
                              Instruction* pos) {
  WriteInstStatic(EncodeMovT(dest, imm, c), (uint32_t*)pos);
}

static const int mull_tag = 0x90;

BufferOffset Assembler::as_genmul(Register dhi, Register dlo, Register rm,
                                  Register rn, MULOp op, SBit s, Condition c) {
  return writeInst(RN(dhi) | maybeRD(dlo) | RM(rm) | rn.code() | op | s | c |
                   mull_tag);
}
BufferOffset Assembler::as_mul(Register dest, Register src1, Register src2,
                               SBit s, Condition c) {
  return as_genmul(dest, InvalidReg, src1, src2, OpmMul, s, c);
}
BufferOffset Assembler::as_mla(Register dest, Register acc, Register src1,
                               Register src2, SBit s, Condition c) {
  return as_genmul(dest, acc, src1, src2, OpmMla, s, c);
}
BufferOffset Assembler::as_umaal(Register destHI, Register destLO,
                                 Register src1, Register src2, Condition c) {
  return as_genmul(destHI, destLO, src1, src2, OpmUmaal, LeaveCC, c);
}
BufferOffset Assembler::as_mls(Register dest, Register acc, Register src1,
                               Register src2, Condition c) {
  return as_genmul(dest, acc, src1, src2, OpmMls, LeaveCC, c);
}

BufferOffset Assembler::as_umull(Register destHI, Register destLO,
                                 Register src1, Register src2, SBit s,
                                 Condition c) {
  return as_genmul(destHI, destLO, src1, src2, OpmUmull, s, c);
}

BufferOffset Assembler::as_umlal(Register destHI, Register destLO,
                                 Register src1, Register src2, SBit s,
                                 Condition c) {
  return as_genmul(destHI, destLO, src1, src2, OpmUmlal, s, c);
}

BufferOffset Assembler::as_smull(Register destHI, Register destLO,
                                 Register src1, Register src2, SBit s,
                                 Condition c) {
  return as_genmul(destHI, destLO, src1, src2, OpmSmull, s, c);
}

BufferOffset Assembler::as_smlal(Register destHI, Register destLO,
                                 Register src1, Register src2, SBit s,
                                 Condition c) {
  return as_genmul(destHI, destLO, src1, src2, OpmSmlal, s, c);
}

BufferOffset Assembler::as_sdiv(Register rd, Register rn, Register rm,
                                Condition c) {
  return writeInst(0x0710f010 | c | RN(rd) | RM(rm) | rn.code());
}

BufferOffset Assembler::as_udiv(Register rd, Register rn, Register rm,
                                Condition c) {
  return writeInst(0x0730f010 | c | RN(rd) | RM(rm) | rn.code());
}

BufferOffset Assembler::as_clz(Register dest, Register src, Condition c) {
  MOZ_ASSERT(src != pc && dest != pc);
  return writeInst(RD(dest) | src.code() | c | 0x016f0f10);
}

// Data transfer instructions: ldr, str, ldrb, strb. Using an int to
// differentiate between 8 bits and 32 bits is overkill, but meh.

static uint32_t EncodeDtr(LoadStore ls, int size, Index mode, Register rt,
                          DTRAddr addr, Assembler::Condition c) {
  MOZ_ASSERT(mode == Offset || (rt != addr.getBase() && pc != addr.getBase()));
  MOZ_ASSERT(size == 32 || size == 8);
  return 0x04000000 | ls | (size == 8 ? 0x00400000 : 0) | mode | c | RT(rt) |
         addr.encode();
}

BufferOffset Assembler::as_dtr(LoadStore ls, int size, Index mode, Register rt,
                               DTRAddr addr, Condition c) {
  return writeInst(EncodeDtr(ls, size, mode, rt, addr, c));
}

/* static */
void Assembler::as_dtr_patch(LoadStore ls, int size, Index mode, Register rt,
                             DTRAddr addr, Condition c, uint32_t* dest) {
  WriteInstStatic(EncodeDtr(ls, size, mode, rt, addr, c), dest);
}

class PoolHintData {
 public:
  enum LoadType {
    // Set 0 to bogus, since that is the value most likely to be
    // accidentally left somewhere.
    PoolBOGUS = 0,
    PoolDTR = 1,
    PoolBranch = 2,
    PoolVDTR = 3
  };

 private:
  uint32_t index_ : 16;
  uint32_t cond_ : 4;
  uint32_t loadType_ : 2;
  uint32_t destReg_ : 5;
  uint32_t destType_ : 1;
  uint32_t ONES : 4;

  static const uint32_t ExpectedOnes = 0xfu;

 public:
  void init(uint32_t index, Assembler::Condition cond, LoadType lt,
            Register destReg) {
    index_ = index;
    MOZ_ASSERT(index_ == index);
    cond_ = cond >> 28;
    MOZ_ASSERT(cond_ == cond >> 28);
    loadType_ = lt;
    ONES = ExpectedOnes;
    destReg_ = destReg.code();
    destType_ = 0;
  }
  void init(uint32_t index, Assembler::Condition cond, LoadType lt,
            const VFPRegister& destReg) {
    MOZ_ASSERT(destReg.isFloat());
    index_ = index;
    MOZ_ASSERT(index_ == index);
    cond_ = cond >> 28;
    MOZ_ASSERT(cond_ == cond >> 28);
    loadType_ = lt;
    ONES = ExpectedOnes;
    destReg_ = destReg.id();
    destType_ = destReg.isDouble();
  }
  Assembler::Condition getCond() const {
    return Assembler::Condition(cond_ << 28);
  }

  Register getReg() const { return Register::FromCode(destReg_); }
  VFPRegister getVFPReg() const {
    VFPRegister r = VFPRegister(
        destReg_, destType_ ? VFPRegister::Double : VFPRegister::Single);
    return r;
  }

  int32_t getIndex() const { return index_; }
  void setIndex(uint32_t index) {
    MOZ_ASSERT(ONES == ExpectedOnes && loadType_ != PoolBOGUS);
    index_ = index;
    MOZ_ASSERT(index_ == index);
  }

  LoadType getLoadType() const {
    // If this *was* a PoolBranch, but the branch has already been bound
    // then this isn't going to look like a real poolhintdata, but we still
    // want to lie about it so everyone knows it *used* to be a branch.
    if (ONES != ExpectedOnes) {
      return PoolHintData::PoolBranch;
    }
    return static_cast<LoadType>(loadType_);
  }

  bool isValidPoolHint() const {
    // Most instructions cannot have a condition that is 0xf. Notable
    // exceptions are blx and the entire NEON instruction set. For the
    // purposes of pool loads, and possibly patched branches, the possible
    // instructions are ldr and b, neither of which can have a condition
    // code of 0xf.
    return ONES == ExpectedOnes;
  }
};

union PoolHintPun {
  PoolHintData phd;
  uint32_t raw;
};

// Handles all of the other integral data transferring functions: ldrsb, ldrsh,
// ldrd, etc. The size is given in bits.
BufferOffset Assembler::as_extdtr(LoadStore ls, int size, bool IsSigned,
                                  Index mode, Register rt, EDtrAddr addr,
                                  Condition c) {
  int extra_bits2 = 0;
  int extra_bits1 = 0;
  switch (size) {
    case 8:
      MOZ_ASSERT(IsSigned);
      MOZ_ASSERT(ls != IsStore);
      extra_bits1 = 0x1;
      extra_bits2 = 0x2;
      break;
    case 16:
      // 'case 32' doesn't need to be handled, it is handled by the default
      // ldr/str.
      extra_bits2 = 0x01;
      extra_bits1 = (ls == IsStore) ? 0 : 1;
      if (IsSigned) {
        MOZ_ASSERT(ls != IsStore);
        extra_bits2 |= 0x2;
      }
      break;
    case 64:
      extra_bits2 = (ls == IsStore) ? 0x3 : 0x2;
      extra_bits1 = 0;
      break;
    default:
      MOZ_CRASH("unexpected size in as_extdtr");
  }
  return writeInst(extra_bits2 << 5 | extra_bits1 << 20 | 0x90 | addr.encode() |
                   RT(rt) | mode | c);
}

BufferOffset Assembler::as_dtm(LoadStore ls, Register rn, uint32_t mask,
                               DTMMode mode, DTMWriteBack wb, Condition c) {
  return writeInst(0x08000000 | RN(rn) | ls | mode | mask | c | wb);
}

BufferOffset Assembler::allocLiteralLoadEntry(
    size_t numInst, unsigned numPoolEntries, PoolHintPun& php, uint8_t* data,
    const LiteralDoc& doc, ARMBuffer::PoolEntry* pe, bool loadToPC) {
  uint8_t* inst = (uint8_t*)&php.raw;

  MOZ_ASSERT(inst);
  MOZ_ASSERT(numInst == 1);  // Or fix the disassembly

  BufferOffset offs =
      m_buffer.allocEntry(numInst, numPoolEntries, inst, data, pe);
  propagateOOM(offs.assigned());
#ifdef JS_DISASM_ARM
  Instruction* instruction = m_buffer.getInstOrNull(offs);
  if (instruction) {
    spewLiteralLoad(php, loadToPC, instruction, doc);
  }
#endif
  return offs;
}

// This is also used for instructions that might be resolved into branches,
// or might not.  If dest==pc then it is effectively a branch.

BufferOffset Assembler::as_Imm32Pool(Register dest, uint32_t value,
                                     Condition c) {
  PoolHintPun php;
  php.phd.init(0, c, PoolHintData::PoolDTR, dest);
  BufferOffset offs = allocLiteralLoadEntry(
      1, 1, php, (uint8_t*)&value, LiteralDoc(value), nullptr, dest == pc);
  return offs;
}

/* static */
void Assembler::WritePoolEntry(Instruction* addr, Condition c, uint32_t data) {
  MOZ_ASSERT(addr->is<InstLDR>());
  *addr->as<InstLDR>()->dest() = data;
  MOZ_ASSERT(addr->extractCond() == c);
}

BufferOffset Assembler::as_FImm64Pool(VFPRegister dest, double d, Condition c) {
  MOZ_ASSERT(dest.isDouble());
  PoolHintPun php;
  php.phd.init(0, c, PoolHintData::PoolVDTR, dest);
  return allocLiteralLoadEntry(1, 2, php, (uint8_t*)&d, LiteralDoc(d));
}

BufferOffset Assembler::as_FImm32Pool(VFPRegister dest, float f, Condition c) {
  // Insert floats into the double pool as they have the same limitations on
  // immediate offset. This wastes 4 bytes padding per float. An alternative
  // would be to have a separate pool for floats.
  MOZ_ASSERT(dest.isSingle());
  PoolHintPun php;
  php.phd.init(0, c, PoolHintData::PoolVDTR, dest);
  return allocLiteralLoadEntry(1, 1, php, (uint8_t*)&f, LiteralDoc(f));
}

// Pool callbacks stuff:
void Assembler::InsertIndexIntoTag(uint8_t* load_, uint32_t index) {
  uint32_t* load = (uint32_t*)load_;
  PoolHintPun php;
  php.raw = *load;
  php.phd.setIndex(index);
  *load = php.raw;
}

// patchConstantPoolLoad takes the address of the instruction that wants to be
// patched, and the address of the start of the constant pool, and figures
// things out from there.
void Assembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr) {
  PoolHintData data = *(PoolHintData*)loadAddr;
  uint32_t* instAddr = (uint32_t*)loadAddr;
  int offset = (char*)constPoolAddr - (char*)loadAddr;
  switch (data.getLoadType()) {
    case PoolHintData::PoolBOGUS:
      MOZ_CRASH("bogus load type!");
    case PoolHintData::PoolDTR:
      Assembler::as_dtr_patch(
          IsLoad, 32, Offset, data.getReg(),
          DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)),
          data.getCond(), instAddr);
      break;
    case PoolHintData::PoolBranch:
      // Either this used to be a poolBranch, and the label was already bound,
      // so it was replaced with a real branch, or this may happen in the
      // future. If this is going to happen in the future, then the actual
      // bits that are written here don't matter (except the condition code,
      // since that is always preserved across patchings) but if it does not
      // get bound later, then we want to make sure this is a load from the
      // pool entry (and the pool entry should be nullptr so it will crash).
      if (data.isValidPoolHint()) {
        Assembler::as_dtr_patch(
            IsLoad, 32, Offset, pc,
            DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)),
            data.getCond(), instAddr);
      }
      break;
    case PoolHintData::PoolVDTR: {
      VFPRegister dest = data.getVFPReg();
      int32_t imm = offset + (data.getIndex() * 4) - 8;
      MOZ_ASSERT(-1024 < imm && imm < 1024);
      Assembler::as_vdtr_patch(IsLoad, dest, VFPAddr(pc, VFPOffImm(imm)),
                               data.getCond(), instAddr);
      break;
    }
  }
}

// Atomic instruction stuff:

BufferOffset Assembler::as_ldrexd(Register rt, Register rt2, Register rn,
                                  Condition c) {
  MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1);
  MOZ_ASSERT(rt.code() != 14 && rn.code() != 15);
  return writeInst(0x01b00f9f | (int)c | RT(rt) | RN(rn));
}

BufferOffset Assembler::as_ldrex(Register rt, Register rn, Condition c) {
  MOZ_ASSERT(rt.code() != 15 && rn.code() != 15);
  return writeInst(0x01900f9f | (int)c | RT(rt) | RN(rn));
}

BufferOffset Assembler::as_ldrexh(Register rt, Register rn, Condition c) {
  MOZ_ASSERT(rt.code() != 15 && rn.code() != 15);
  return writeInst(0x01f00f9f | (int)c | RT(rt) | RN(rn));
}

BufferOffset Assembler::as_ldrexb(Register rt, Register rn, Condition c) {
  MOZ_ASSERT(rt.code() != 15 && rn.code() != 15);
  return writeInst(0x01d00f9f | (int)c | RT(rt) | RN(rn));
}

BufferOffset Assembler::as_strexd(Register rd, Register rt, Register rt2,
                                  Register rn, Condition c) {
  MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1);
  MOZ_ASSERT(rt.code() != 14 && rn.code() != 15 && rd.code() != 15);
  MOZ_ASSERT(rd != rn && rd != rt && rd != rt2);
  return writeInst(0x01a00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}

BufferOffset Assembler::as_strex(Register rd, Register rt, Register rn,
                                 Condition c) {
  MOZ_ASSERT(rd != rn && rd != rt);  // True restriction on Cortex-A7 (RPi2)
  return writeInst(0x01800f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}

BufferOffset Assembler::as_strexh(Register rd, Register rt, Register rn,
                                  Condition c) {
  MOZ_ASSERT(rd != rn && rd != rt);  // True restriction on Cortex-A7 (RPi2)
  return writeInst(0x01e00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}

BufferOffset Assembler::as_strexb(Register rd, Register rt, Register rn,
                                  Condition c) {
  MOZ_ASSERT(rd != rn && rd != rt);  // True restriction on Cortex-A7 (RPi2)
  return writeInst(0x01c00f90 | (int)c | RD(rd) | RN(rn) | rt.code());
}

BufferOffset Assembler::as_clrex() { return writeInst(0xf57ff01f); }

// Memory barrier stuff:

BufferOffset Assembler::as_dmb(BarrierOption option) {
  return writeInst(0xf57ff050U | (int)option);
}
BufferOffset Assembler::as_dsb(BarrierOption option) {
  return writeInst(0xf57ff040U | (int)option);
}
BufferOffset Assembler::as_isb() {
  return writeInst(0xf57ff06fU);  // option == SY
}
BufferOffset Assembler::as_dsb_trap() {
  // DSB is "mcr 15, 0, r0, c7, c10, 4".
  // See eg https://bugs.kde.org/show_bug.cgi?id=228060.
  // ARMv7 manual, "VMSA CP15 c7 register summary".
  // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
  // ARMv8 manual E2.7.3 and G3.18.16.
  return writeInst(0xee070f9a);
}
BufferOffset Assembler::as_dmb_trap() {
  // DMB is "mcr 15, 0, r0, c7, c10, 5".
  // ARMv7 manual, "VMSA CP15 c7 register summary".
  // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
  // ARMv8 manual E2.7.3 and G3.18.16.
  return writeInst(0xee070fba);
}
BufferOffset Assembler::as_isb_trap() {
  // ISB is "mcr 15, 0, r0, c7, c5, 4".
  // ARMv7 manual, "VMSA CP15 c7 register summary".
  // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see
  // ARMv8 manual E2.7.3 and G3.18.16.
  return writeInst(0xee070f94);
}

BufferOffset Assembler::as_csdb() {
  // NOP (see as_nop) on architectures where this instruction is not defined.
  //
  // https://developer.arm.com/-/media/developer/pdf/Cache_Speculation_Side-channels_22Feb18.pdf
  // CSDB A32: 1110_0011_0010_0000_1111_0000_0001_0100
  return writeInst(0xe320f000 | 0x14);
}

// Control flow stuff:

// bx can *only* branch to a register, never to an immediate.
BufferOffset Assembler::as_bx(Register r, Condition c) {
  BufferOffset ret = writeInst(((int)c) | OpBx | r.code());
  return ret;
}

void Assembler::WritePoolGuard(BufferOffset branch, Instruction* dest,
                               BufferOffset afterPool) {
  BOffImm off = afterPool.diffB<BOffImm>(branch);
  if (off.isInvalid()) {
    MOZ_CRASH("BOffImm invalid");
  }
  *dest = InstBImm(off, Always);
}

// Branch can branch to an immediate *or* to a register.
// Branches to immediates are pc relative, branches to registers are absolute.
BufferOffset Assembler::as_b(BOffImm off, Condition c, Label* documentation) {
  return writeBranchInst(((int)c) | OpB | off.encode(),
                         refLabel(documentation));
}

BufferOffset Assembler::as_b(Label* l, Condition c) {
  if (l->bound()) {
    // Note only one instruction is emitted here, the NOP is overwritten.
    BufferOffset ret = allocBranchInst();
    if (oom()) {
      return BufferOffset();
    }

    BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret);
    MOZ_RELEASE_ASSERT(!offset.isInvalid(),
                       "Buffer size limit should prevent this");
    as_b(offset, c, ret);
#ifdef JS_DISASM_ARM
    spewBranch(m_buffer.getInstOrNull(ret), refLabel(l));
#endif
    return ret;
  }

  if (oom()) {
    return BufferOffset();
  }

  BufferOffset ret;
  if (l->used()) {
    int32_t old = l->offset();
    MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old),
                       "Buffer size limit should prevent this");
    ret = as_b(BOffImm(old), c, l);
  } else {
    BOffImm inv;
    ret = as_b(inv, c, l);
  }

  if (oom()) {
    return BufferOffset();
  }

  l->use(ret.getOffset());
  return ret;
}

BufferOffset Assembler::as_b(BOffImm off, Condition c, BufferOffset inst) {
  // JS_DISASM_ARM NOTE: Can't disassemble here, because numerous callers use
  // this to patchup old code.  Must disassemble in caller where it makes sense.
  // Not many callers.
  *editSrc(inst) = InstBImm(off, c);
  return inst;
}

// blx can go to either an immediate or a register.
// When blx'ing to a register, we change processor state depending on the low
// bit of the register when blx'ing to an immediate, we *always* change
// processor state.

BufferOffset Assembler::as_blx(Register r, Condition c) {
  return writeInst(((int)c) | OpBlx | r.code());
}

// bl can only branch to an pc-relative immediate offset
// It cannot change the processor state.
BufferOffset Assembler::as_bl(BOffImm off, Condition c, Label* documentation) {
  return writeBranchInst(((int)c) | OpBl | off.encode(),
                         refLabel(documentation));
}

BufferOffset Assembler::as_bl(Label* l, Condition c) {
  if (l->bound()) {
    // Note only one instruction is emitted here, the NOP is overwritten.
    BufferOffset ret = allocBranchInst();
    if (oom()) {
      return BufferOffset();
    }

    BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret);
    MOZ_RELEASE_ASSERT(!offset.isInvalid(),
                       "Buffer size limit should prevent this");

    as_bl(offset, c, ret);
#ifdef JS_DISASM_ARM
    spewBranch(m_buffer.getInstOrNull(ret), refLabel(l));
#endif
    return ret;
  }

  if (oom()) {
    return BufferOffset();
  }

  BufferOffset ret;
  // See if the list was empty.
  if (l->used()) {
    int32_t old = l->offset();
    MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old),
                       "Buffer size limit should prevent this");
    ret = as_bl(BOffImm(old), c, l);
  } else {
    BOffImm inv;
    ret = as_bl(inv, c, l);
  }

  if (oom()) {
    return BufferOffset();
  }

  l->use(ret.getOffset());
  return ret;
}

BufferOffset Assembler::as_bl(BOffImm off, Condition c, BufferOffset inst) {
  *editSrc(inst) = InstBLImm(off, c);
  return inst;
}

BufferOffset Assembler::as_mrs(Register r, Condition c) {
  return writeInst(0x010f0000 | int(c) | RD(r));
}

BufferOffset Assembler::as_msr(Register r, Condition c) {
  // Hardcode the 'mask' field to 0b11 for now. It is bits 18 and 19, which
  // are the two high bits of the 'c' in this constant.
  MOZ_ASSERT((r.code() & ~0xf) == 0);
  return writeInst(0x012cf000 | int(c) | r.code());
}

// VFP instructions!
enum vfp_tags { VfpTag = 0x0C000A00, VfpArith = 0x02000000 };

BufferOffset Assembler::writeVFPInst(vfp_size sz, uint32_t blob) {
  MOZ_ASSERT((sz & blob) == 0);
  MOZ_ASSERT((VfpTag & blob) == 0);
  return writeInst(VfpTag | std::underlying_type_t<vfp_size>(sz) | blob);
}

/* static */
void Assembler::WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest) {
  MOZ_ASSERT((sz & blob) == 0);
  MOZ_ASSERT((VfpTag & blob) == 0);
  WriteInstStatic(VfpTag | std::underlying_type_t<vfp_size>(sz) | blob, dest);
}

// Unityped variants: all registers hold the same (ieee754 single/double)
// notably not included are vcvt; vmov vd, #imm; vmov rt, vn.
BufferOffset Assembler::as_vfp_float(VFPRegister vd, VFPRegister vn,
                                     VFPRegister vm, VFPOp op, Condition c) {
  // Make sure we believe that all of our operands are the same kind.
  MOZ_ASSERT_IF(!vn.isMissing(), vd.equiv(vn));
  MOZ_ASSERT_IF(!vm.isMissing(), vd.equiv(vm));
  vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
  return writeVFPInst(sz, VD(vd) | VN(vn) | VM(vm) | op | VfpArith | c);
}

BufferOffset Assembler::as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                                Condition c) {
  return as_vfp_float(vd, vn, vm, OpvAdd, c);
}

BufferOffset Assembler::as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                                Condition c) {
  return as_vfp_float(vd, vn, vm, OpvDiv, c);
}

BufferOffset Assembler::as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                                Condition c) {
  return as_vfp_float(vd, vn, vm, OpvMul, c);
}

BufferOffset Assembler::as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                                 Condition c) {
  return as_vfp_float(vd, vn, vm, OpvMul, c);
}

BufferOffset Assembler::as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                                 Condition c) {
  MOZ_CRASH("Feature NYI");
}

BufferOffset Assembler::as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                                 Condition c) {
  MOZ_CRASH("Feature NYI");
}

BufferOffset Assembler::as_vneg(VFPRegister vd, VFPRegister vm, Condition c) {
  return as_vfp_float(vd, NoVFPRegister, vm, OpvNeg, c);
}

BufferOffset Assembler::as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c) {
  return as_vfp_float(vd, NoVFPRegister, vm, OpvSqrt, c);
}

BufferOffset Assembler::as_vabs(VFPRegister vd, VFPRegister vm, Condition c) {
  return as_vfp_float(vd, NoVFPRegister, vm, OpvAbs, c);
}

BufferOffset Assembler::as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                                Condition c) {
  return as_vfp_float(vd, vn, vm, OpvSub, c);
}

BufferOffset Assembler::as_vcmp(VFPRegister vd, VFPRegister vm, Condition c) {
  return as_vfp_float(vd, NoVFPRegister, vm, OpvCmp, c);
}

BufferOffset Assembler::as_vcmpz(VFPRegister vd, Condition c) {
  return as_vfp_float(vd, NoVFPRegister, NoVFPRegister, OpvCmpz, c);
}

// Specifically, a move between two same sized-registers.
BufferOffset Assembler::as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c) {
  return as_vfp_float(vd, NoVFPRegister, vsrc, OpvMov, c);
}

// Transfer between Core and VFP.

// Unlike the next function, moving between the core registers and vfp registers
// can't be *that* properly typed. Namely, since I don't want to munge the type
// VFPRegister to also include core registers. Thus, the core and vfp registers
// are passed in based on their type, and src/dest is determined by the
// float2core.

BufferOffset Assembler::as_vxfer(Register vt1, Register vt2, VFPRegister vm,
                                 FloatToCore_ f2c, Condition c, int idx) {
  vfp_size sz = IsSingle;
  if (vm.isDouble()) {
    // Technically, this can be done with a vmov à la ARM ARM under vmov
    // however, that requires at least an extra bit saying if the operation
    // should be performed on the lower or upper half of the double. Moving
    // a single to/from 2N/2N+1 isn't equivalent, since there are 32 single
    // registers, and 32 double registers so there is no way to encode the
    // last 16 double registers.
    sz = IsDouble;
    MOZ_ASSERT(idx == 0 || idx == 1);
    // If we are transferring a single half of the double then it must be
    // moving a VFP reg to a core reg.
    MOZ_ASSERT_IF(vt2 == InvalidReg, f2c == FloatToCore);
    idx = idx << 21;
  } else {
    MOZ_ASSERT(idx == 0);
  }

  if (vt2 == InvalidReg) {
    return writeVFPInst(sz, WordTransfer |
                                std::underlying_type_t<FloatToCore_>(f2c) |
                                std::underlying_type_t<Condition>(c) | RT(vt1) |
                                maybeRN(vt2) | VN(vm) | idx);
  }

  // We are doing a 64 bit transfer.
  return writeVFPInst(sz, DoubleTransfer |
                              std::underlying_type_t<FloatToCore_>(f2c) |
                              std::underlying_type_t<Condition>(c) | RT(vt1) |
                              maybeRN(vt2) | VM(vm) | idx);
}

enum vcvt_destFloatness { VcvtToInteger = 1 << 18, VcvtToFloat = 0 << 18 };
enum vcvt_toZero {
  VcvtToZero =
      1 << 7,  // Use the default rounding mode, which rounds truncates.
  VcvtToFPSCR = 0 << 7  // Use whatever rounding mode the fpscr specifies.
};
enum vcvt_Signedness {
  VcvtToSigned = 1 << 16,
  VcvtToUnsigned = 0 << 16,
  VcvtFromSigned = 1 << 7,
  VcvtFromUnsigned = 0 << 7
};

// Our encoding actually allows just the src and the dest (and their types) to
// uniquely specify the encoding that we are going to use.
BufferOffset Assembler::as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR,
                                Condition c) {
  // Unlike other cases, the source and dest types cannot be the same.
  MOZ_ASSERT(!vd.equiv(vm));
  vfp_size sz = IsDouble;
  if (vd.isFloat() && vm.isFloat()) {
    // Doing a float -> float conversion.
    if (vm.isSingle()) {
      sz = IsSingle;
    }
    return writeVFPInst(sz, c | 0x02B700C0 | VM(vm) | VD(vd));
  }

  // At least one of the registers should be a float.
  vcvt_destFloatness destFloat;
  vcvt_Signedness opSign;
  vcvt_toZero doToZero = VcvtToFPSCR;
  MOZ_ASSERT(vd.isFloat() || vm.isFloat());
  if (vd.isSingle() || vm.isSingle()) {
    sz = IsSingle;
  }

  if (vd.isFloat()) {
    destFloat = VcvtToFloat;
    opSign = (vm.isSInt()) ? VcvtFromSigned : VcvtFromUnsigned;
  } else {
    destFloat = VcvtToInteger;
    opSign = (vd.isSInt()) ? VcvtToSigned : VcvtToUnsigned;
    doToZero = useFPSCR ? VcvtToFPSCR : VcvtToZero;
  }
  return writeVFPInst(
      sz, c | 0x02B80040 | VD(vd) | VM(vm) | destFloat | opSign | doToZero);
}

BufferOffset Assembler::as_vcvtFixed(VFPRegister vd, bool isSigned,
                                     uint32_t fixedPoint, bool toFixed,
                                     Condition c) {
  MOZ_ASSERT(vd.isFloat());
  uint32_t sx = 0x1;
  vfp_size sf = vd.isDouble() ? IsDouble : IsSingle;
  int32_t imm5 = fixedPoint;
  imm5 = (sx ? 32 : 16) - imm5;
  MOZ_ASSERT(imm5 >= 0);
  imm5 = imm5 >> 1 | (imm5 & 1) << 5;
  return writeVFPInst(sf, 0x02BA0040 | VD(vd) | toFixed << 18 | sx << 7 |
                              (!isSigned) << 16 | imm5 | c);
}

// Transfer between VFP and memory.
static uint32_t EncodeVdtr(LoadStore ls, VFPRegister vd, VFPAddr addr,
                           Assembler::Condition c) {
  return ls | 0x01000000 | addr.encode() | VD(vd) | c;
}

BufferOffset Assembler::as_vdtr(
    LoadStore ls, VFPRegister vd, VFPAddr addr,
    Condition c /* vfp doesn't have a wb option */) {
  vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
  return writeVFPInst(sz, EncodeVdtr(ls, vd, addr, c));
}

/* static */
void Assembler::as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr,
                              Condition c, uint32_t* dest) {
  vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
  WriteVFPInstStatic(sz, EncodeVdtr(ls, vd, addr, c), dest);
}

// VFP's ldm/stm work differently from the standard arm ones. You can only
// transfer a range.

BufferOffset Assembler::as_vdtm(LoadStore st, Register rn, VFPRegister vd,
                                int length,
                                /* also has update conditions */ Condition c) {
  MOZ_ASSERT(length <= 16 && length >= 0);
  vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;

  if (vd.isDouble()) {
    length *= 2;
  }

  return writeVFPInst(sz, dtmLoadStore | RN(rn) | VD(vd) | length | dtmMode |
                              dtmUpdate | dtmCond);
}

BufferOffset Assembler::as_vldr_unaligned(VFPRegister vd, Register rn) {
  MOZ_ASSERT(HasNEON());
  if (vd.isDouble()) {
    // vld1 (multiple single elements) with align=0, size=3, numregs=1
    return writeInst(0xF42007CF | RN(rn) | VD(vd));
  }
  // vld1 (single element to single lane) with index=0, size=2
  MOZ_ASSERT(vd.isFloat());
  MOZ_ASSERT((vd.code() & 1) == 0);
  return writeInst(0xF4A0080F | RN(rn) | VD(vd.asDouble()));
}

BufferOffset Assembler::as_vstr_unaligned(VFPRegister vd, Register rn) {
  MOZ_ASSERT(HasNEON());
  if (vd.isDouble()) {
    // vst1 (multiple single elements) with align=0, size=3, numregs=1
    return writeInst(0xF40007CF | RN(rn) | VD(vd));
  }
  // vst1 (single element from one lane) with index=0, size=2
  MOZ_ASSERT(vd.isFloat());
  MOZ_ASSERT((vd.code() & 1) == 0);
  return writeInst(0xF480080F | RN(rn) | VD(vd.asDouble()));
}

BufferOffset Assembler::as_vimm(VFPRegister vd, VFPImm imm, Condition c) {
  MOZ_ASSERT(imm.isValid());
  vfp_size sz = vd.isDouble() ? IsDouble : IsSingle;
  return writeVFPInst(sz, c | imm.encode() | VD(vd) | 0x02B00000);
}

BufferOffset Assembler::as_vmrs(Register r, Condition c) {
  return writeInst(c | 0x0ef10a10 | RT(r));
}

BufferOffset Assembler::as_vmsr(Register r, Condition c) {
  return writeInst(c | 0x0ee10a10 | RT(r));
}

bool Assembler::nextLink(BufferOffset b, BufferOffset* next) {
  Instruction branch = *editSrc(b);
  MOZ_ASSERT(branch.is<InstBranchImm>());

  BOffImm destOff;
  branch.as<InstBranchImm>()->extractImm(&destOff);
  if (destOff.isInvalid()) {
    return false;
  }

  // Propagate the next link back to the caller, by constructing a new
  // BufferOffset into the space they provided.
  new (next) BufferOffset(destOff.decode());
  return true;
}

void Assembler::bind(Label* label, BufferOffset boff) {
#ifdef JS_DISASM_ARM
  spew_.spewBind(label);
#endif
  if (oom()) {
    // Ensure we always bind the label. This matches what we do on
    // x86/x64 and silences the assert in ~Label.
    label->bind(0);
    return;
  }

  if (label->used()) {
    bool more;
    // If our caller didn't give us an explicit target to bind to then we
    // want to bind to the location of the next instruction.
    BufferOffset dest = boff.assigned() ? boff : nextOffset();
    BufferOffset b(label);
    do {
      BufferOffset next;
      more = nextLink(b, &next);
      Instruction branch = *editSrc(b);
      Condition c = branch.extractCond();
      BOffImm offset = dest.diffB<BOffImm>(b);
      MOZ_RELEASE_ASSERT(!offset.isInvalid(),
                         "Buffer size limit should prevent this");
      if (branch.is<InstBImm>()) {
        as_b(offset, c, b);
      } else if (branch.is<InstBLImm>()) {
        as_bl(offset, c, b);
      } else {
        MOZ_CRASH("crazy fixup!");
      }
      b = next;
    } while (more);
  }
  label->bind(nextOffset().getOffset());
  MOZ_ASSERT(!oom());
}

void Assembler::retarget(Label* label, Label* target) {
#ifdef JS_DISASM_ARM
  spew_.spewRetarget(label, target);
#endif
  if (label->used() && !oom()) {
    if (target->bound()) {
      bind(label, BufferOffset(target));
    } else if (target->used()) {
      // The target is not bound but used. Prepend label's branch list
      // onto target's.
      BufferOffset labelBranchOffset(label);
      BufferOffset next;

      // Find the head of the use chain for label.
      while (nextLink(labelBranchOffset, &next)) {
        labelBranchOffset = next;
      }

      // Then patch the head of label's use chain to the tail of target's
      // use chain, prepending the entire use chain of target.
      Instruction branch = *editSrc(labelBranchOffset);
      Condition c = branch.extractCond();
      int32_t prev = target->offset();
      target->use(label->offset());
      if (branch.is<InstBImm>()) {
        as_b(BOffImm(prev), c, labelBranchOffset);
      } else if (branch.is<InstBLImm>()) {
        as_bl(BOffImm(prev), c, labelBranchOffset);
      } else {
        MOZ_CRASH("crazy fixup!");
      }
    } else {
      // The target is unbound and unused. We can just take the head of
      // the list hanging off of label, and dump that into target.
      target->use(label->offset());
    }
  }
  label->reset();
}

static int stopBKPT = -1;
void Assembler::as_bkpt() {
  // This is a count of how many times a breakpoint instruction has been
  // generated. It is embedded into the instruction for debugging
  // purposes. Gdb will print "bkpt xxx" when you attempt to dissassemble a
  // breakpoint with the number xxx embedded into it. If this breakpoint is
  // being hit, then you can run (in gdb):
  //  >b dbg_break
  //  >b main
  //  >commands
  //  >set stopBKPT = xxx
  //  >c
  //  >end
  // which will set a breakpoint on the function dbg_break above set a
  // scripted breakpoint on main that will set the (otherwise unmodified)
  // value to the number of the breakpoint, so dbg_break will actuall be
  // called and finally, when you run the executable, execution will halt when
  // that breakpoint is generated.
  static int hit = 0;
  if (stopBKPT == hit) {
    dbg_break();
  }
  writeInst(0xe1200070 | (hit & 0xf) | ((hit & 0xfff0) << 4));
  hit++;
}

BufferOffset Assembler::as_illegal_trap() {
  // Encoding of the permanently-undefined 'udf' instruction, with the imm16
  // set to 0.
  return writeInst(0xe7f000f0);
}

void Assembler::flushBuffer() { m_buffer.flushPool(); }

void Assembler::enterNoPool(size_t maxInst) { m_buffer.enterNoPool(maxInst); }

void Assembler::leaveNoPool() { m_buffer.leaveNoPool(); }

void Assembler::enterNoNops() { m_buffer.enterNoNops(); }

void Assembler::leaveNoNops() { m_buffer.leaveNoNops(); }

struct PoolHeader : Instruction {
  struct Header {
    // The size should take into account the pool header.
    // The size is in units of Instruction (4 bytes), not byte.
    uint32_t size : 15;
    uint32_t isNatural : 1;
    uint32_t ONES : 16;

    Header(int size_, bool isNatural_)
        : size(size_), isNatural(isNatural_), ONES(0xffff) {}

    explicit Header(const Instruction* i) {
      static_assert(sizeof(Header) == sizeof(uint32_t));
      memcpy(this, i, sizeof(Header));
      MOZ_ASSERT(ONES == 0xffff);
    }

    uint32_t raw() const {
      static_assert(sizeof(Header) == sizeof(uint32_t));
      uint32_t dest;
      memcpy(&dest, this, sizeof(Header));
      return dest;
    }
  };

  PoolHeader(int size_, bool isNatural_)
      : Instruction(Header(size_, isNatural_).raw(), true) {}

  uint32_t size() const {
    Header tmp(this);
    return tmp.size;
  }
  uint32_t isNatural() const {
    Header tmp(this);
    return tmp.isNatural;
  }

  static bool IsTHIS(const Instruction& i) {
    return (*i.raw() & 0xffff0000) == 0xffff0000;
  }
  static const PoolHeader* AsTHIS(const Instruction& i) {
    if (!IsTHIS(i)) {
      return nullptr;
    }
    return static_cast<const PoolHeader*>(&i);
  }
};

void Assembler::WritePoolHeader(uint8_t* start, Pool* p, bool isNatural) {
  static_assert(sizeof(PoolHeader) == 4,
                "PoolHandler must have the correct size.");
  uint8_t* pool = start + 4;
  // Go through the usual rigmarole to get the size of the pool.
  pool += p->getPoolSize();
  uint32_t size = pool - start;
  MOZ_ASSERT((size & 3) == 0);
  size = size >> 2;
  MOZ_ASSERT(size < (1 << 15));
  PoolHeader header(size, isNatural);
  *(PoolHeader*)start = header;
}

// The size of an arbitrary 32-bit call in the instruction stream. On ARM this
// sequence is |pc = ldr pc - 4; imm32| given that we never reach the imm32.
uint32_t Assembler::PatchWrite_NearCallSize() { return sizeof(uint32_t); }

void Assembler::PatchWrite_NearCall(CodeLocationLabel start,
                                    CodeLocationLabel toCall) {
  Instruction* inst = (Instruction*)start.raw();
  // Overwrite whatever instruction used to be here with a call. Since the
  // destination is in the same function, it will be within range of the
  // 24 << 2 byte bl instruction.
  uint8_t* dest = toCall.raw();
  new (inst) InstBLImm(BOffImm(dest - (uint8_t*)inst), Always);
}

void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
                                        PatchedImmPtr newValue,
                                        PatchedImmPtr expectedValue) {
  Instruction* ptr = reinterpret_cast<Instruction*>(label.raw());

  Register dest;
  Assembler::RelocStyle rs;

  {
    InstructionIterator iter(ptr);
    DebugOnly<const uint32_t*> val = GetPtr32Target(iter, &dest, &rs);
    MOZ_ASSERT(uint32_t((const uint32_t*)val) == uint32_t(expectedValue.value));
  }

  // Patch over actual instructions.
  {
    InstructionIterator iter(ptr);
    MacroAssembler::ma_mov_patch(Imm32(int32_t(newValue.value)), dest, Always,
                                 rs, iter);
  }
}

void Assembler::PatchDataWithValueCheck(CodeLocationLabel label,
                                        ImmPtr newValue, ImmPtr expectedValue) {
  PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value),
                          PatchedImmPtr(expectedValue.value));
}

// This just stomps over memory with 32 bits of raw data. Its purpose is to
// overwrite the call of JITed code with 32 bits worth of an offset. This will
// is only meant to function on code that has been invalidated, so it should be
// totally safe. Since that instruction will never be executed again, a ICache
// flush should not be necessary
void Assembler::PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm) {
  // Raw is going to be the return address.
  uint32_t* raw = (uint32_t*)label.raw();
  // Overwrite the 4 bytes before the return address, which will end up being
  // the call instruction.
  *(raw - 1) = imm.value;
}

uint8_t* Assembler::NextInstruction(uint8_t* inst_, uint32_t* count) {
  if (count != nullptr) {
    *count += sizeof(Instruction);
  }

  InstructionIterator iter(reinterpret_cast<Instruction*>(inst_));
  return reinterpret_cast<uint8_t*>(iter.next());
}

static bool InstIsGuard(Instruction* inst, const PoolHeader** ph) {
  Assembler::Condition c = inst->extractCond();
  if (c != Assembler::Always) {
    return false;
  }
  if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) {
    return false;
  }
  // See if the next instruction is a pool header.
  *ph = (inst + 1)->as<const PoolHeader>();
  return *ph != nullptr;
}

static bool InstIsGuard(BufferInstructionIterator& iter,
                        const PoolHeader** ph) {
  Instruction* inst = iter.cur();
  Assembler::Condition c = inst->extractCond();
  if (c != Assembler::Always) {
    return false;
  }
  if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) {
    return false;
  }
  // See if the next instruction is a pool header.
  *ph = iter.peek()->as<const PoolHeader>();
  return *ph != nullptr;
}

template <class T>
static bool InstIsBNop(const T& iter) {
  // In some special situations, it is necessary to insert a NOP into the
  // instruction stream that nobody knows about, since nobody should know
  // about it, make sure it gets skipped when Instruction::next() is called.
  // this generates a very specific nop, namely a branch to the next
  // instruction.
  const Instruction* cur = iter.cur();
  Assembler::Condition c = cur->extractCond();
  if (c != Assembler::Always) {
    return false;
  }
  if (!cur->is<InstBImm>()) {
    return false;
  }
  InstBImm* b = cur->as<InstBImm>();
  BOffImm offset;
  b->extractImm(&offset);
  return offset.decode() == 4;
}

Instruction* InstructionIterator::maybeSkipAutomaticInstructions() {
  // If the current instruction was automatically-inserted, skip past it.
  const PoolHeader* ph;

  // Loop until an intentionally-placed instruction is found.
  while (true) {
    if (InstIsGuard(cur(), &ph)) {
      // Don't skip a natural guard.
      if (ph->isNatural()) {
        return cur();
      }
      advanceRaw(1 + ph->size());
    } else if (InstIsBNop<InstructionIterator>(*this)) {
      advanceRaw(1);
    } else {
      return cur();
    }
  }
}

Instruction* BufferInstructionIterator::maybeSkipAutomaticInstructions() {
  const PoolHeader* ph;
  // If this is a guard, and the next instruction is a header, always work
  // around the pool. If it isn't a guard, then start looking ahead.
  if (InstIsGuard(*this, &ph)) {
    // Don't skip a natural guard.
    if (ph->isNatural()) {
      return cur();
    }
    advance(sizeof(Instruction) * ph->size());
    return next();
  }
  if (InstIsBNop<BufferInstructionIterator>(*this)) {
    return next();
  }
  return cur();
}

// Cases to be handled:
// 1) no pools or branches in sight => return this+1
// 2) branch to next instruction => return this+2, because a nop needed to be
//    inserted into the stream.
// 3) this+1 is an artificial guard for a pool => return first instruction
//    after the pool
// 4) this+1 is a natural guard => return the branch
// 5) this is a branch, right before a pool => return first instruction after
//    the pool
// in assembly form:
// 1) add r0, r0, r0 <= this
//    add r1, r1, r1 <= returned value
//    add r2, r2, r2
//
// 2) add r0, r0, r0 <= this
//    b foo
//    foo:
//    add r2, r2, r2 <= returned value
//
// 3) add r0, r0, r0 <= this
//    b after_pool;
//    .word 0xffff0002  # bit 15 being 0 indicates that the branch was not
//                      # requested by the assembler
//    0xdeadbeef        # the 2 indicates that there is 1 pool entry, and the
//                      # pool header
//    add r4, r4, r4 <= returned value
// 4) add r0, r0, r0 <= this
//    b after_pool  <= returned value
//    .word 0xffff8002  # bit 15 being 1 indicates that the branch was
//                      # requested by the assembler
//    0xdeadbeef
//    add r4, r4, r4
// 5) b after_pool  <= this
//    .word 0xffff8002  # bit 15 has no bearing on the returned value
//    0xdeadbeef
//    add r4, r4, r4  <= returned value

Instruction* InstructionIterator::next() {
  const PoolHeader* ph;

  // If the current instruction is followed by a pool header,
  // move past the current instruction and the pool.
  if (InstIsGuard(cur(), &ph)) {
    advanceRaw(1 + ph->size());
    return maybeSkipAutomaticInstructions();
  }

  // The next instruction is then known to not be a PoolHeader.
  advanceRaw(1);
  return maybeSkipAutomaticInstructions();
}

void Assembler::ToggleToJmp(CodeLocationLabel inst_) {
  uint32_t* ptr = (uint32_t*)inst_.raw();

  DebugOnly<Instruction*> inst = (Instruction*)inst_.raw();
  MOZ_ASSERT(inst->is<InstCMP>());

  // Zero bits 20-27, then set 24-27 to be correct for a branch.
  // 20-23 will be party of the B's immediate, and should be 0.
  *ptr = (*ptr & ~(0xff << 20)) | (0xa0 << 20);
}

void Assembler::ToggleToCmp(CodeLocationLabel inst_) {
  uint32_t* ptr = (uint32_t*)inst_.raw();

  DebugOnly<Instruction*> inst = (Instruction*)inst_.raw();
  MOZ_ASSERT(inst->is<InstBImm>());

  // Ensure that this masking operation doesn't affect the offset of the
  // branch instruction when it gets toggled back.
  MOZ_ASSERT((*ptr & (0xf << 20)) == 0);

  // Also make sure that the CMP is valid. Part of having a valid CMP is that
  // all of the bits describing the destination in most ALU instructions are
  // all unset (looks like it is encoding r0).
  MOZ_ASSERT(toRD(*inst) == r0);

  // Zero out bits 20-27, then set them to be correct for a compare.
  *ptr = (*ptr & ~(0xff << 20)) | (0x35 << 20);
}

void Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled) {
  InstructionIterator iter(reinterpret_cast<Instruction*>(inst_.raw()));
  MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>());

  if (iter.cur()->is<InstMovW>()) {
    // If it looks like the start of a movw/movt sequence, then make sure we
    // have all of it (and advance the iterator past the full sequence).
    iter.next();
    MOZ_ASSERT(iter.cur()->is<InstMovT>());
  }

  iter.next();
  MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>());

  if (enabled == iter.cur()->is<InstBLXReg>()) {
    // Nothing to do.
    return;
  }

  Instruction* inst = iter.cur();

  if (enabled) {
    *inst = InstBLXReg(ScratchRegister, Always);
  } else {
    *inst = InstNOP();
  }
}

size_t Assembler::ToggledCallSize(uint8_t* code) {
  InstructionIterator iter(reinterpret_cast<Instruction*>(code));
  MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>());

  if (iter.cur()->is<InstMovW>()) {
    // If it looks like the start of a movw/movt sequence, then make sure we
    // have all of it (and advance the iterator past the full sequence).
    iter.next();
    MOZ_ASSERT(iter.cur()->is<InstMovT>());
  }

  iter.next();
  MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>());
  return uintptr_t(iter.cur()) + 4 - uintptr_t(code);
}

uint32_t Assembler::NopFill = 0;

uint32_t Assembler::GetNopFill() {
  static bool isSet = false;
  if (!isSet) {
    char* fillStr = getenv("ARM_ASM_NOP_FILL");
    uint32_t fill;
    if (fillStr && sscanf(fillStr, "%u", &fill) == 1) {
      NopFill = fill;
    }
    if (NopFill > 8) {
      MOZ_CRASH("Nop fill > 8 is not supported");
    }
    isSet = true;
  }
  return NopFill;
}

uint32_t Assembler::AsmPoolMaxOffset = 1024;

uint32_t Assembler::GetPoolMaxOffset() {
  static bool isSet = false;
  if (!isSet) {
    char* poolMaxOffsetStr = getenv("ASM_POOL_MAX_OFFSET");
    uint32_t poolMaxOffset;
    if (poolMaxOffsetStr &&
        sscanf(poolMaxOffsetStr, "%u", &poolMaxOffset) == 1) {
      AsmPoolMaxOffset = poolMaxOffset;
    }
    isSet = true;
  }
  return AsmPoolMaxOffset;
}

SecondScratchRegisterScope::SecondScratchRegisterScope(MacroAssembler& masm)
    : AutoRegisterScope(masm, masm.getSecondScratchReg()) {}

#ifdef JS_DISASM_ARM

/* static */
void Assembler::disassembleInstruction(const Instruction* i,
                                       DisasmBuffer& buffer) {
  disasm::NameConverter converter;
  disasm::Disassembler dasm(converter);
  uint8_t* loc = reinterpret_cast<uint8_t*>(const_cast<uint32_t*>(i->raw()));
  dasm.InstructionDecode(buffer, loc);
}

void Assembler::initDisassembler() {
  // The line is normally laid out like this:
  //
  // xxxxxxxx        ldr r, op   ; comment
  //
  // where xx...x is the instruction bit pattern.
  //
  // Labels are laid out by themselves to line up with the instructions above
  // and below:
  //
  //            nnnn:
  //
  // Branch targets are normally on the same line as the branch instruction,
  // but when they cannot be they will be on a line by themselves, indented
  // significantly:
  //
  //                     -> label

  spew_.setLabelIndent("          ");             // 10
  spew_.setTargetIndent("                    ");  // 20
}

void Assembler::finishDisassembler() { spew_.spewOrphans(); }

// Labels are named as they are encountered by adding names to a
// table, using the Label address as the key.  This is made tricky by
// the (memory for) Label objects being reused, but reused label
// objects are recognizable from being marked as not used or not
// bound.  See spew_.refLabel().
//
// In a number of cases there is no information about the target, and
// we just end up printing "patchable constant load to PC".  This is
// true especially for jumps to bailout handlers (which have no
// names).  See allocLiteralLoadEntry() and its callers.  In some cases
// (loop back edges) some information about the intended target may be
// propagated from higher levels, and if so it's printed here.

void Assembler::spew(Instruction* i) {
  if (spew_.isDisabled() || !i) {
    return;
  }

  DisasmBuffer buffer;
  disassembleInstruction(i, buffer);
  spew_.spew("%s", buffer.start());
}

// If a target label is known, always print that and do not attempt to
// disassemble the branch operands, as they will often be encoding
// metainformation (pointers for a chain of jump instructions), and
// not actual branch targets.

void Assembler::spewBranch(Instruction* i, const LabelDoc& target) {
  if (spew_.isDisabled() || !i) {
    return;
  }

  DisasmBuffer buffer;
  disassembleInstruction(i, buffer);

  char labelBuf[128];
  labelBuf[0] = 0;

  bool haveTarget = target.valid;
  if (!haveTarget) {
    SprintfLiteral(labelBuf, "  -> (link-time target)");
  }

  if (InstBranchImm::IsTHIS(*i)) {
    InstBranchImm* bimm = InstBranchImm::AsTHIS(*i);
    BOffImm destOff;
    bimm->extractImm(&destOff);
    if (destOff.isInvalid() || haveTarget) {
      // The target information in the instruction is likely garbage, so remove
      // it. The target label will in any case be printed if we have it.
      //
      // The format of the instruction disassembly is [0-9a-f]{8}\s+\S+\s+.*,
      // where the \S+ string is the opcode.  Strip everything after the opcode,
      // and attach the label if we have it.
      int i;
      for (i = 8; i < buffer.length() && buffer[i] == ' '; i++) {
      }
      for (; i < buffer.length() && buffer[i] != ' '; i++) {
      }
      buffer[i] = 0;
      if (haveTarget) {
        SprintfLiteral(labelBuf, "  -> %d%s", target.doc,
                       !target.bound ? "f" : "");
        haveTarget = false;
      }
    }
  }
  spew_.spew("%s%s", buffer.start(), labelBuf);

  if (haveTarget) {
    spew_.spewRef(target);
  }
}

void Assembler::spewLiteralLoad(PoolHintPun& php, bool loadToPC,
                                const Instruction* i, const LiteralDoc& doc) {
  if (spew_.isDisabled()) {
    return;
  }

  char litbuf[2048];
  spew_.formatLiteral(doc, litbuf, sizeof(litbuf));

  // See patchConstantPoolLoad, above.  We assemble the instruction into a
  // buffer with a zero offset, as documentation, but the offset will be
  // patched later.

  uint32_t inst;
  PoolHintData& data = php.phd;
  switch (php.phd.getLoadType()) {
    case PoolHintData::PoolDTR:
      Assembler::as_dtr_patch(IsLoad, 32, Offset, data.getReg(),
                              DTRAddr(pc, DtrOffImm(0)), data.getCond(), &inst);
      break;
    case PoolHintData::PoolBranch:
      if (data.isValidPoolHint()) {
        Assembler::as_dtr_patch(IsLoad, 32, Offset, pc,
                                DTRAddr(pc, DtrOffImm(0)), data.getCond(),
                                &inst);
      }
      break;
    case PoolHintData::PoolVDTR:
      Assembler::as_vdtr_patch(IsLoad, data.getVFPReg(),
                               VFPAddr(pc, VFPOffImm(0)), data.getCond(),
                               &inst);
      break;

    default:
      MOZ_CRASH();
  }

  DisasmBuffer buffer;
  disasm::NameConverter converter;
  disasm::Disassembler dasm(converter);
  dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(&inst));
  spew_.spew("%s    ; .const %s", buffer.start(), litbuf);
}

#endif  // JS_DISASM_ARM