summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/Simulator-arm.h
blob: fba0f8ce5e00dea569cc31a1578a4c0cee5895cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef jit_arm_Simulator_arm_h
#define jit_arm_Simulator_arm_h

#ifdef JS_SIMULATOR_ARM

#  include "mozilla/Atomics.h"

#  include "jit/arm/Architecture-arm.h"
#  include "jit/arm/disasm/Disasm-arm.h"
#  include "jit/IonTypes.h"
#  include "js/AllocPolicy.h"
#  include "js/ProfilingFrameIterator.h"
#  include "threading/Thread.h"
#  include "vm/MutexIDs.h"
#  include "wasm/WasmSignalHandlers.h"

namespace js {
namespace jit {

class JitActivation;
class Simulator;
class Redirection;
class CachePage;
class AutoLockSimulator;

// When the SingleStepCallback is called, the simulator is about to execute
// sim->get_pc() and the current machine state represents the completed
// execution of the previous pc.
typedef void (*SingleStepCallback)(void* arg, Simulator* sim, void* pc);

// VFP rounding modes. See ARM DDI 0406B Page A2-29.
enum VFPRoundingMode {
  SimRN = 0 << 22,  // Round to Nearest.
  SimRP = 1 << 22,  // Round towards Plus Infinity.
  SimRM = 2 << 22,  // Round towards Minus Infinity.
  SimRZ = 3 << 22,  // Round towards zero.

  // Aliases.
  kRoundToNearest = SimRN,
  kRoundToPlusInf = SimRP,
  kRoundToMinusInf = SimRM,
  kRoundToZero = SimRZ
};

const uint32_t kVFPRoundingModeMask = 3 << 22;

typedef int32_t Instr;
class SimInstruction;

// Per thread simulator state.
class Simulator {
 public:
  friend class ArmDebugger;
  enum Register {
    no_reg = -1,
    r0 = 0,
    r1,
    r2,
    r3,
    r4,
    r5,
    r6,
    r7,
    r8,
    r9,
    r10,
    r11,
    r12,
    r13,
    r14,
    r15,
    num_registers,
    fp = 11,
    ip = 12,
    sp = 13,
    lr = 14,
    pc = 15,
    s0 = 0,
    s1,
    s2,
    s3,
    s4,
    s5,
    s6,
    s7,
    s8,
    s9,
    s10,
    s11,
    s12,
    s13,
    s14,
    s15,
    s16,
    s17,
    s18,
    s19,
    s20,
    s21,
    s22,
    s23,
    s24,
    s25,
    s26,
    s27,
    s28,
    s29,
    s30,
    s31,
    num_s_registers = 32,
    d0 = 0,
    d1,
    d2,
    d3,
    d4,
    d5,
    d6,
    d7,
    d8,
    d9,
    d10,
    d11,
    d12,
    d13,
    d14,
    d15,
    d16,
    d17,
    d18,
    d19,
    d20,
    d21,
    d22,
    d23,
    d24,
    d25,
    d26,
    d27,
    d28,
    d29,
    d30,
    d31,
    num_d_registers = 32,
    q0 = 0,
    q1,
    q2,
    q3,
    q4,
    q5,
    q6,
    q7,
    q8,
    q9,
    q10,
    q11,
    q12,
    q13,
    q14,
    q15,
    num_q_registers = 16
  };

  // Returns nullptr on OOM.
  static Simulator* Create();

  static void Destroy(Simulator* simulator);

  // Constructor/destructor are for internal use only; use the static methods
  // above.
  Simulator();
  ~Simulator();

  // The currently executing Simulator instance. Potentially there can be one
  // for each native thread.
  static Simulator* Current();

  static uintptr_t StackLimit() { return Simulator::Current()->stackLimit(); }

  // Disassemble some instructions starting at instr and print them
  // on stdout.  Useful for working within GDB after a MOZ_CRASH(),
  // among other things.
  //
  // Typical use within a crashed instruction decoding method is simply:
  //
  //   call Simulator::disassemble(instr, 1)
  //
  // or use one of the more convenient inline methods below.
  static void disassemble(SimInstruction* instr, size_t n);

  // Disassemble one instruction.
  // "call disasm(instr)"
  void disasm(SimInstruction* instr);

  // Disassemble n instructions starting at instr.
  // "call disasm(instr, 3)"
  void disasm(SimInstruction* instr, size_t n);

  // Skip backwards m instructions before starting, then disassemble n
  // instructions.
  // "call disasm(instr, 3, 7)"
  void disasm(SimInstruction* instr, size_t m, size_t n);

  uintptr_t* addressOfStackLimit();

  // Accessors for register state. Reading the pc value adheres to the ARM
  // architecture specification and is off by a 8 from the currently executing
  // instruction.
  void set_register(int reg, int32_t value);
  int32_t get_register(int reg) const;
  double get_double_from_register_pair(int reg);
  void set_register_pair_from_double(int reg, double* value);
  void set_dw_register(int dreg, const int* dbl);

  // Support for VFP.
  void get_d_register(int dreg, uint64_t* value);
  void set_d_register(int dreg, const uint64_t* value);
  void get_d_register(int dreg, uint32_t* value);
  void set_d_register(int dreg, const uint32_t* value);
  void get_q_register(int qreg, uint64_t* value);
  void set_q_register(int qreg, const uint64_t* value);
  void get_q_register(int qreg, uint32_t* value);
  void set_q_register(int qreg, const uint32_t* value);
  void set_s_register(int reg, unsigned int value);
  unsigned int get_s_register(int reg) const;

  void set_d_register_from_double(int dreg, const double& dbl) {
    setVFPRegister<double, 2>(dreg, dbl);
  }
  void get_double_from_d_register(int dreg, double* out) {
    getFromVFPRegister<double, 2>(dreg, out);
  }
  void set_s_register_from_float(int sreg, const float flt) {
    setVFPRegister<float, 1>(sreg, flt);
  }
  void get_float_from_s_register(int sreg, float* out) {
    getFromVFPRegister<float, 1>(sreg, out);
  }
  void set_s_register_from_sinteger(int sreg, const int sint) {
    setVFPRegister<int, 1>(sreg, sint);
  }
  int get_sinteger_from_s_register(int sreg) {
    int ret;
    getFromVFPRegister<int, 1>(sreg, &ret);
    return ret;
  }

  // Special case of set_register and get_register to access the raw PC value.
  void set_pc(int32_t value);
  int32_t get_pc() const;

  template <typename T>
  T get_pc_as() const {
    return reinterpret_cast<T>(get_pc());
  }

  void enable_single_stepping(SingleStepCallback cb, void* arg);
  void disable_single_stepping();

  uintptr_t stackLimit() const;
  bool overRecursed(uintptr_t newsp = 0) const;
  bool overRecursedWithExtra(uint32_t extra) const;

  // Executes ARM instructions until the PC reaches end_sim_pc.
  template <bool EnableStopSimAt>
  void execute();

  // Sets up the simulator state and grabs the result on return.
  int32_t call(uint8_t* entry, int argument_count, ...);

  // Debugger input.
  void setLastDebuggerInput(char* input);
  char* lastDebuggerInput() { return lastDebuggerInput_; }

  // Returns true if pc register contains one of the 'special_values' defined
  // below (bad_lr, end_sim_pc).
  bool has_bad_pc() const;

 private:
  enum special_values {
    // Known bad pc value to ensure that the simulator does not execute
    // without being properly setup.
    bad_lr = -1,
    // A pc value used to signal the simulator to stop execution. Generally
    // the lr is set to this value on transition from native C code to
    // simulated execution, so that the simulator can "return" to the native
    // C code.
    end_sim_pc = -2
  };

  // ForbidUnaligned means "always fault on unaligned access".
  //
  // AllowUnaligned means "allow the unaligned access if other conditions are
  // met".  The "other conditions" vary with the instruction: For all
  // instructions the base condition is !HasAlignmentFault(), ie, the chip is
  // configured to allow unaligned accesses.  For instructions like VLD1
  // there is an additional constraint that the alignment attribute in the
  // instruction must be set to "default alignment".

  enum UnalignedPolicy { ForbidUnaligned, AllowUnaligned };

  bool init();

  // Checks if the current instruction should be executed based on its
  // condition bits.
  inline bool conditionallyExecute(SimInstruction* instr);

  // Helper functions to set the conditional flags in the architecture state.
  void setNZFlags(int32_t val);
  void setCFlag(bool val);
  void setVFlag(bool val);
  bool carryFrom(int32_t left, int32_t right, int32_t carry = 0);
  bool borrowFrom(int32_t left, int32_t right);
  bool overflowFrom(int32_t alu_out, int32_t left, int32_t right,
                    bool addition);

  inline int getCarry() { return c_flag_ ? 1 : 0; };

  // Support for VFP.
  void compute_FPSCR_Flags(double val1, double val2);
  void copy_FPSCR_to_APSR();
  inline void canonicalizeNaN(double* value);
  inline void canonicalizeNaN(float* value);

  // Helper functions to decode common "addressing" modes
  int32_t getShiftRm(SimInstruction* instr, bool* carry_out);
  int32_t getImm(SimInstruction* instr, bool* carry_out);
  int32_t processPU(SimInstruction* instr, int num_regs, int operand_size,
                    intptr_t* start_address, intptr_t* end_address);
  void handleRList(SimInstruction* instr, bool load);
  void handleVList(SimInstruction* inst);
  void softwareInterrupt(SimInstruction* instr);

  // Stop helper functions.
  inline bool isStopInstruction(SimInstruction* instr);
  inline bool isWatchedStop(uint32_t bkpt_code);
  inline bool isEnabledStop(uint32_t bkpt_code);
  inline void enableStop(uint32_t bkpt_code);
  inline void disableStop(uint32_t bkpt_code);
  inline void increaseStopCounter(uint32_t bkpt_code);
  void printStopInfo(uint32_t code);

  // Handle a wasm interrupt triggered by an async signal handler.
  JS::ProfilingFrameIterator::RegisterState registerState();

  // Handle any wasm faults, returning true if the fault was handled.
  // This method is rather hot so inline the normal (no-wasm) case.
  bool MOZ_ALWAYS_INLINE handleWasmSegFault(int32_t addr, unsigned numBytes) {
    if (MOZ_LIKELY(!wasm::CodeExists)) {
      return false;
    }

    uint8_t* newPC;
    if (!wasm::MemoryAccessTraps(registerState(), (uint8_t*)addr, numBytes,
                                 &newPC)) {
      return false;
    }

    set_pc(int32_t(newPC));
    return true;
  }

  // Read and write memory.
  inline uint8_t readBU(int32_t addr);
  inline int8_t readB(int32_t addr);
  inline void writeB(int32_t addr, uint8_t value);
  inline void writeB(int32_t addr, int8_t value);

  inline uint8_t readExBU(int32_t addr);
  inline int32_t writeExB(int32_t addr, uint8_t value);

  inline uint16_t readHU(int32_t addr, SimInstruction* instr);
  inline int16_t readH(int32_t addr, SimInstruction* instr);
  // Note: Overloaded on the sign of the value.
  inline void writeH(int32_t addr, uint16_t value, SimInstruction* instr);
  inline void writeH(int32_t addr, int16_t value, SimInstruction* instr);

  inline uint16_t readExHU(int32_t addr, SimInstruction* instr);
  inline int32_t writeExH(int32_t addr, uint16_t value, SimInstruction* instr);

  inline int readW(int32_t addr, SimInstruction* instr,
                   UnalignedPolicy f = ForbidUnaligned);
  inline void writeW(int32_t addr, int value, SimInstruction* instr,
                     UnalignedPolicy f = ForbidUnaligned);

  inline uint64_t readQ(int32_t addr, SimInstruction* instr,
                        UnalignedPolicy f = ForbidUnaligned);
  inline void writeQ(int32_t addr, uint64_t value, SimInstruction* instr,
                     UnalignedPolicy f = ForbidUnaligned);

  inline int readExW(int32_t addr, SimInstruction* instr);
  inline int writeExW(int32_t addr, int value, SimInstruction* instr);

  int32_t* readDW(int32_t addr);
  void writeDW(int32_t addr, int32_t value1, int32_t value2);

  int32_t readExDW(int32_t addr, int32_t* hibits);
  int32_t writeExDW(int32_t addr, int32_t value1, int32_t value2);

  // Executing is handled based on the instruction type.
  // Both type 0 and type 1 rolled into one.
  void decodeType01(SimInstruction* instr);
  void decodeType2(SimInstruction* instr);
  void decodeType3(SimInstruction* instr);
  void decodeType4(SimInstruction* instr);
  void decodeType5(SimInstruction* instr);
  void decodeType6(SimInstruction* instr);
  void decodeType7(SimInstruction* instr);

  // Support for VFP.
  void decodeTypeVFP(SimInstruction* instr);
  void decodeType6CoprocessorIns(SimInstruction* instr);
  void decodeSpecialCondition(SimInstruction* instr);

  void decodeVMOVBetweenCoreAndSinglePrecisionRegisters(SimInstruction* instr);
  void decodeVCMP(SimInstruction* instr);
  void decodeVCVTBetweenDoubleAndSingle(SimInstruction* instr);
  void decodeVCVTBetweenFloatingPointAndInteger(SimInstruction* instr);
  void decodeVCVTBetweenFloatingPointAndIntegerFrac(SimInstruction* instr);

  // Support for some system functions.
  void decodeType7CoprocessorIns(SimInstruction* instr);

  // Executes one instruction.
  void instructionDecode(SimInstruction* instr);

 public:
  static int64_t StopSimAt;

  // For testing the MoveResolver code, a MoveResolver is set up, and
  // the VFP registers are loaded with pre-determined values,
  // then the sequence of code is simulated.  In order to test this with the
  // simulator, the callee-saved registers can't be trashed. This flag
  // disables that feature.
  bool skipCalleeSavedRegsCheck;

  // Runtime call support.
  static void* RedirectNativeFunction(void* nativeFunction,
                                      ABIFunctionType type);

 private:
  // Handle arguments and return value for runtime FP functions.
  void getFpArgs(double* x, double* y, int32_t* z);
  void getFpFromStack(int32_t* stack, double* x1);
  void setCallResultDouble(double result);
  void setCallResultFloat(float result);
  void setCallResult(int64_t res);
  void scratchVolatileRegisters(bool scratchFloat = true);

  template <class ReturnType, int register_size>
  void getFromVFPRegister(int reg_index, ReturnType* out);

  template <class InputType, int register_size>
  void setVFPRegister(int reg_index, const InputType& value);

  void callInternal(uint8_t* entry);

  // Architecture state.
  // Saturating instructions require a Q flag to indicate saturation.
  // There is currently no way to read the CPSR directly, and thus read the Q
  // flag, so this is left unimplemented.
  int32_t registers_[16];
  bool n_flag_;
  bool z_flag_;
  bool c_flag_;
  bool v_flag_;

  // VFP architecture state.
  uint32_t vfp_registers_[num_d_registers * 2];
  bool n_flag_FPSCR_;
  bool z_flag_FPSCR_;
  bool c_flag_FPSCR_;
  bool v_flag_FPSCR_;

  // VFP rounding mode. See ARM DDI 0406B Page A2-29.
  VFPRoundingMode FPSCR_rounding_mode_;
  bool FPSCR_default_NaN_mode_;

  // VFP FP exception flags architecture state.
  bool inv_op_vfp_flag_;
  bool div_zero_vfp_flag_;
  bool overflow_vfp_flag_;
  bool underflow_vfp_flag_;
  bool inexact_vfp_flag_;

  // Simulator support.
  char* stack_;
  uintptr_t stackLimit_;
  bool pc_modified_;
  int64_t icount_;

  // Debugger input.
  char* lastDebuggerInput_;

  // Registered breakpoints.
  SimInstruction* break_pc_;
  Instr break_instr_;

  // Single-stepping support
  bool single_stepping_;
  SingleStepCallback single_step_callback_;
  void* single_step_callback_arg_;

  // A stop is watched if its code is less than kNumOfWatchedStops.
  // Only watched stops support enabling/disabling and the counter feature.
  static const uint32_t kNumOfWatchedStops = 256;

  // Breakpoint is disabled if bit 31 is set.
  static const uint32_t kStopDisabledBit = 1 << 31;

  // A stop is enabled, meaning the simulator will stop when meeting the
  // instruction, if bit 31 of watched_stops_[code].count is unset.
  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
  // the breakpoint was hit or gone through.
  struct StopCountAndDesc {
    uint32_t count;
    char* desc;
  };
  StopCountAndDesc watched_stops_[kNumOfWatchedStops];

 public:
  int64_t icount() { return icount_; }

 private:
  // Exclusive access monitor
  void exclusiveMonitorSet(uint64_t value);
  uint64_t exclusiveMonitorGetAndClear(bool* held);
  void exclusiveMonitorClear();

  bool exclusiveMonitorHeld_;
  uint64_t exclusiveMonitor_;
};

// Process wide simulator state.
class SimulatorProcess {
  friend class Redirection;
  friend class AutoLockSimulatorCache;

 private:
  // ICache checking.
  struct ICacheHasher {
    typedef void* Key;
    typedef void* Lookup;
    static HashNumber hash(const Lookup& l);
    static bool match(const Key& k, const Lookup& l);
  };

 public:
  typedef HashMap<void*, CachePage*, ICacheHasher, SystemAllocPolicy> ICacheMap;

  static mozilla::Atomic<size_t, mozilla::ReleaseAcquire>
      ICacheCheckingDisableCount;
  static void FlushICache(void* start, size_t size);

  static void checkICacheLocked(SimInstruction* instr);

  static bool initialize() {
    singleton_ = js_new<SimulatorProcess>();
    return singleton_;
  }
  static void destroy() {
    js_delete(singleton_);
    singleton_ = nullptr;
  }

  SimulatorProcess();
  ~SimulatorProcess();

 private:
  static SimulatorProcess* singleton_;

  // This lock creates a critical section around 'redirection_' and
  // 'icache_', which are referenced both by the execution engine
  // and by the off-thread compiler (see Redirection::Get in the cpp file).
  Mutex cacheLock_ MOZ_UNANNOTATED;

  Redirection* redirection_;
  ICacheMap icache_;

 public:
  static ICacheMap& icache() {
    // Technically we need the lock to access the innards of the
    // icache, not to take its address, but the latter condition
    // serves as a useful complement to the former.
    singleton_->cacheLock_.assertOwnedByCurrentThread();
    return singleton_->icache_;
  }

  static Redirection* redirection() {
    singleton_->cacheLock_.assertOwnedByCurrentThread();
    return singleton_->redirection_;
  }

  static void setRedirection(js::jit::Redirection* redirection) {
    singleton_->cacheLock_.assertOwnedByCurrentThread();
    singleton_->redirection_ = redirection;
  }
};

}  // namespace jit
}  // namespace js

#endif /* JS_SIMULATOR_ARM */

#endif /* jit_arm_Simulator_arm_h */