1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef DOUBLE_CONVERSION_UTILS_H_
#define DOUBLE_CONVERSION_UTILS_H_
// Use DOUBLE_CONVERSION_NON_PREFIXED_MACROS to get unprefixed macros as was
// the case in double-conversion releases prior to 3.1.6
#include <cstdlib>
#include <cstring>
// For pre-C++11 compatibility
#if __cplusplus >= 201103L
#define DOUBLE_CONVERSION_NULLPTR nullptr
#else
#define DOUBLE_CONVERSION_NULLPTR NULL
#endif
#include "mozilla/Assertions.h"
#ifndef DOUBLE_CONVERSION_ASSERT
#define DOUBLE_CONVERSION_ASSERT(condition) \
MOZ_ASSERT(condition)
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ASSERT)
#define ASSERT DOUBLE_CONVERSION_ASSERT
#endif
#ifndef DOUBLE_CONVERSION_UNIMPLEMENTED
#define DOUBLE_CONVERSION_UNIMPLEMENTED() \
MOZ_CRASH("DOUBLE_CONVERSION_UNIMPLEMENTED")
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNIMPLEMENTED)
#define UNIMPLEMENTED DOUBLE_CONVERSION_UNIMPLEMENTED
#endif
#ifndef DOUBLE_CONVERSION_NO_RETURN
#ifdef _MSC_VER
#define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn)
#else
#define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
#endif
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(NO_RETURN)
#define NO_RETURN DOUBLE_CONVERSION_NO_RETURN
#endif
#ifndef DOUBLE_CONVERSION_UNREACHABLE
#ifdef _MSC_VER
void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
inline void abort_noreturn() { MOZ_CRASH("abort_noreturn"); }
#define DOUBLE_CONVERSION_UNREACHABLE() (abort_noreturn())
#else
#define DOUBLE_CONVERSION_UNREACHABLE() \
MOZ_CRASH("DOUBLE_CONVERSION_UNREACHABLE")
#endif
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNREACHABLE)
#define UNREACHABLE DOUBLE_CONVERSION_UNREACHABLE
#endif
// Not all compilers support __has_attribute and combining a check for both
// ifdef and __has_attribute on the same preprocessor line isn't portable.
#ifdef __has_attribute
# define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) __has_attribute(x)
#else
# define DOUBLE_CONVERSION_HAS_ATTRIBUTE(x) 0
#endif
#ifndef DOUBLE_CONVERSION_UNUSED
#if DOUBLE_CONVERSION_HAS_ATTRIBUTE(unused)
#define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
#else
#define DOUBLE_CONVERSION_UNUSED
#endif
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UNUSED)
#define UNUSED DOUBLE_CONVERSION_UNUSED
#endif
#if DOUBLE_CONVERSION_HAS_ATTRIBUTE(uninitialized)
#define DOUBLE_CONVERSION_STACK_UNINITIALIZED __attribute__((uninitialized))
#else
#define DOUBLE_CONVERSION_STACK_UNINITIALIZED
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(STACK_UNINITIALIZED)
#define STACK_UNINITIALIZED DOUBLE_CONVERSION_STACK_UNINITIALIZED
#endif
// Double operations detection based on target architecture.
// Linux uses a 80bit wide floating point stack on x86. This induces double
// rounding, which in turn leads to wrong results.
// An easy way to test if the floating-point operations are correct is to
// evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
// the result is equal to 89255e-22.
// The best way to test this, is to create a division-function and to compare
// the output of the division with the expected result. (Inlining must be
// disabled.)
// On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
//
// For example:
/*
// -- in div.c
double Div_double(double x, double y) { return x / y; }
// -- in main.c
double Div_double(double x, double y); // Forward declaration.
int main(int argc, char** argv) {
return Div_double(89255.0, 1e22) == 89255e-22;
}
*/
// Run as follows ./main || echo "correct"
//
// If it prints "correct" then the architecture should be here, in the "correct" section.
#if defined(_M_X64) || defined(__x86_64__) || \
defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \
defined(__hppa__) || defined(__ia64__) || \
defined(__mips__) || \
defined(__loongarch__) || \
defined(__nios2__) || defined(__ghs) || \
defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
defined(__SH4__) || defined(__alpha__) || \
defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
defined(__riscv) || defined(__e2k__) || \
defined(__or1k__) || defined(__arc__) || defined(__ARC64__) || \
defined(__microblaze__) || defined(__XTENSA__) || \
defined(__EMSCRIPTEN__) || defined(__wasm32__)
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
#elif defined(__mc68000__) || \
defined(__pnacl__) || defined(__native_client__)
#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
#if defined(_WIN32)
// Windows uses a 64bit wide floating point stack.
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
#else
#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#endif // _WIN32
#else
#error Target architecture was not detected as supported by Double-Conversion.
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(CORRECT_DOUBLE_OPERATIONS)
#define CORRECT_DOUBLE_OPERATIONS DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#endif
#if defined(_WIN32) && !defined(__MINGW32__)
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef short int16_t; // NOLINT
typedef unsigned short uint16_t; // NOLINT
typedef int int32_t;
typedef unsigned int uint32_t;
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
// intptr_t and friends are defined in crtdefs.h through stdio.h.
#else
#include <stdint.h>
#endif
typedef uint16_t uc16;
// The following macro works on both 32 and 64-bit platforms.
// Usage: instead of writing 0x1234567890123456
// write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456);
#define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(UINT64_2PART_C)
#define UINT64_2PART_C DOUBLE_CONVERSION_UINT64_2PART_C
#endif
// The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type
// size_t which represents the number of elements of the given
// array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated
// arrays.
#ifndef DOUBLE_CONVERSION_ARRAY_SIZE
#define DOUBLE_CONVERSION_ARRAY_SIZE(a) \
((sizeof(a) / sizeof(*(a))) / \
static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(ARRAY_SIZE)
#define ARRAY_SIZE DOUBLE_CONVERSION_ARRAY_SIZE
#endif
// A macro to disallow the evil copy constructor and operator= functions
// This should be used in the private: declarations for a class
#ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
#define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
void operator=(const TypeName&)
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_COPY_AND_ASSIGN)
#define DC_DISALLOW_COPY_AND_ASSIGN DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
#endif
// A macro to disallow all the implicit constructors, namely the
// default constructor, copy constructor and operator= functions.
//
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
#ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
#define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName(); \
DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)
#endif
#if defined(DOUBLE_CONVERSION_NON_PREFIXED_MACROS) && !defined(DC_DISALLOW_IMPLICIT_CONSTRUCTORS)
#define DC_DISALLOW_IMPLICIT_CONSTRUCTORS DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
#endif
namespace double_conversion {
inline int StrLength(const char* string) {
size_t length = strlen(string);
DOUBLE_CONVERSION_ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
return static_cast<int>(length);
}
// This is a simplified version of V8's Vector class.
template <typename T>
class Vector {
public:
Vector() : start_(DOUBLE_CONVERSION_NULLPTR), length_(0) {}
Vector(T* data, int len) : start_(data), length_(len) {
DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != DOUBLE_CONVERSION_NULLPTR));
}
// Returns a vector using the same backing storage as this one,
// spanning from and including 'from', to but not including 'to'.
Vector<T> SubVector(int from, int to) {
DOUBLE_CONVERSION_ASSERT(to <= length_);
DOUBLE_CONVERSION_ASSERT(from < to);
DOUBLE_CONVERSION_ASSERT(0 <= from);
return Vector<T>(start() + from, to - from);
}
// Returns the length of the vector.
int length() const { return length_; }
// Returns whether or not the vector is empty.
bool is_empty() const { return length_ == 0; }
// Returns the pointer to the start of the data in the vector.
T* start() const { return start_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](int index) const {
DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_);
return start_[index];
}
T& first() { return start_[0]; }
T& last() { return start_[length_ - 1]; }
void pop_back() {
DOUBLE_CONVERSION_ASSERT(!is_empty());
--length_;
}
private:
T* start_;
int length_;
};
// Helper class for building result strings in a character buffer. The
// purpose of the class is to use safe operations that checks the
// buffer bounds on all operations in debug mode.
class StringBuilder {
public:
StringBuilder(char* buffer, int buffer_size)
: buffer_(buffer, buffer_size), position_(0) { }
~StringBuilder() { if (!is_finalized()) Finalize(); }
int size() const { return buffer_.length(); }
// Get the current position in the builder.
int position() const {
DOUBLE_CONVERSION_ASSERT(!is_finalized());
return position_;
}
// Reset the position.
void Reset() { position_ = 0; }
// Add a single character to the builder. It is not allowed to add
// 0-characters; use the Finalize() method to terminate the string
// instead.
void AddCharacter(char c) {
DOUBLE_CONVERSION_ASSERT(c != '\0');
DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
buffer_[position_++] = c;
}
// Add an entire string to the builder. Uses strlen() internally to
// compute the length of the input string.
void AddString(const char* s) {
AddSubstring(s, StrLength(s));
}
// Add the first 'n' characters of the given string 's' to the
// builder. The input string must have enough characters.
void AddSubstring(const char* s, int n) {
DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length());
DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s));
memmove(&buffer_[position_], s, static_cast<size_t>(n));
position_ += n;
}
// Add character padding to the builder. If count is non-positive,
// nothing is added to the builder.
void AddPadding(char c, int count) {
for (int i = 0; i < count; i++) {
AddCharacter(c);
}
}
// Finalize the string by 0-terminating it and returning the buffer.
char* Finalize() {
DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
buffer_[position_] = '\0';
// Make sure nobody managed to add a 0-character to the
// buffer while building the string.
DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
position_ = -1;
DOUBLE_CONVERSION_ASSERT(is_finalized());
return buffer_.start();
}
private:
Vector<char> buffer_;
int position_;
bool is_finalized() const { return position_ < 0; }
DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
};
// The type-based aliasing rule allows the compiler to assume that pointers of
// different types (for some definition of different) never alias each other.
// Thus the following code does not work:
//
// float f = foo();
// int fbits = *(int*)(&f);
//
// The compiler 'knows' that the int pointer can't refer to f since the types
// don't match, so the compiler may cache f in a register, leaving random data
// in fbits. Using C++ style casts makes no difference, however a pointer to
// char data is assumed to alias any other pointer. This is the 'memcpy
// exception'.
//
// Bit_cast uses the memcpy exception to move the bits from a variable of one
// type of a variable of another type. Of course the end result is likely to
// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
// will completely optimize BitCast away.
//
// There is an additional use for BitCast.
// Recent gccs will warn when they see casts that may result in breakage due to
// the type-based aliasing rule. If you have checked that there is no breakage
// you can use BitCast to cast one pointer type to another. This confuses gcc
// enough that it can no longer see that you have cast one pointer type to
// another thus avoiding the warning.
template <class Dest, class Source>
Dest BitCast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
#if __cplusplus >= 201103L
static_assert(sizeof(Dest) == sizeof(Source),
"source and destination size mismatch");
#else
DOUBLE_CONVERSION_UNUSED
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
#endif
Dest dest;
memmove(&dest, &source, sizeof(dest));
return dest;
}
template <class Dest, class Source>
Dest BitCast(Source* source) {
return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
}
} // namespace double_conversion
#endif // DOUBLE_CONVERSION_UTILS_H_
|