summaryrefslogtreecommitdiffstats
path: root/mozglue/misc/TimeStamp.h
blob: 102116815da0e5511a497f5c5b547285535df6d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_TimeStamp_h
#define mozilla_TimeStamp_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Types.h"
#include <algorithm>  // for std::min, std::max
#include <ostream>
#include <stdint.h>
#include <type_traits>

namespace IPC {
template <typename T>
struct ParamTraits;
}  // namespace IPC

#ifdef XP_WIN
// defines TimeStampValue as a complex value keeping both
// GetTickCount and QueryPerformanceCounter values
#  include "TimeStamp_windows.h"

#  include "mozilla/Maybe.h"  // For TimeStamp::RawQueryPerformanceCounterValue
#endif

namespace mozilla {

#ifndef XP_WIN
typedef uint64_t TimeStampValue;
#endif

class TimeStamp;

/**
 * Platform-specific implementation details of BaseTimeDuration.
 */
class BaseTimeDurationPlatformUtils {
 public:
  static MFBT_API double ToSeconds(int64_t aTicks);
  static MFBT_API double ToSecondsSigDigits(int64_t aTicks);
  static MFBT_API int64_t TicksFromMilliseconds(double aMilliseconds);
  static MFBT_API int64_t ResolutionInTicks();
};

/**
 * Instances of this class represent the length of an interval of time.
 * Negative durations are allowed, meaning the end is before the start.
 *
 * Internally the duration is stored as a int64_t in units of
 * PR_TicksPerSecond() when building with NSPR interval timers, or a
 * system-dependent unit when building with system clocks.  The
 * system-dependent unit must be constant, otherwise the semantics of
 * this class would be broken.
 *
 * The ValueCalculator template parameter determines how arithmetic
 * operations are performed on the integer count of ticks (mValue).
 */
template <typename ValueCalculator>
class BaseTimeDuration {
 public:
  // The default duration is 0.
  constexpr BaseTimeDuration() : mValue(0) {}
  // Allow construction using '0' as the initial value, for readability,
  // but no other numbers (so we don't have any implicit unit conversions).
  struct _SomethingVeryRandomHere;
  MOZ_IMPLICIT BaseTimeDuration(_SomethingVeryRandomHere* aZero) : mValue(0) {
    MOZ_ASSERT(!aZero, "Who's playing funny games here?");
  }
  // Default copy-constructor and assignment are OK

  // Converting copy-constructor and assignment operator
  template <typename E>
  explicit BaseTimeDuration(const BaseTimeDuration<E>& aOther)
      : mValue(aOther.mValue) {}

  template <typename E>
  BaseTimeDuration& operator=(const BaseTimeDuration<E>& aOther) {
    mValue = aOther.mValue;
    return *this;
  }

  double ToSeconds() const {
    if (mValue == INT64_MAX) {
      return PositiveInfinity<double>();
    }
    if (mValue == INT64_MIN) {
      return NegativeInfinity<double>();
    }
    return BaseTimeDurationPlatformUtils::ToSeconds(mValue);
  }
  // Return a duration value that includes digits of time we think to
  // be significant.  This method should be used when displaying a
  // time to humans.
  double ToSecondsSigDigits() const {
    if (mValue == INT64_MAX) {
      return PositiveInfinity<double>();
    }
    if (mValue == INT64_MIN) {
      return NegativeInfinity<double>();
    }
    return BaseTimeDurationPlatformUtils::ToSecondsSigDigits(mValue);
  }
  double ToMilliseconds() const { return ToSeconds() * 1000.0; }
  double ToMicroseconds() const { return ToMilliseconds() * 1000.0; }

  // Using a double here is safe enough; with 53 bits we can represent
  // durations up to over 280,000 years exactly.  If the units of
  // mValue do not allow us to represent durations of that length,
  // long durations are clamped to the max/min representable value
  // instead of overflowing.
  static inline BaseTimeDuration FromSeconds(double aSeconds) {
    return FromMilliseconds(aSeconds * 1000.0);
  }
  static BaseTimeDuration FromMilliseconds(double aMilliseconds) {
    if (aMilliseconds == PositiveInfinity<double>()) {
      return Forever();
    }
    if (aMilliseconds == NegativeInfinity<double>()) {
      return FromTicks(INT64_MIN);
    }
    return FromTicks(
        BaseTimeDurationPlatformUtils::TicksFromMilliseconds(aMilliseconds));
  }
  static inline BaseTimeDuration FromMicroseconds(double aMicroseconds) {
    return FromMilliseconds(aMicroseconds / 1000.0);
  }

  static constexpr BaseTimeDuration Forever() { return FromTicks(INT64_MAX); }

  BaseTimeDuration operator+(const BaseTimeDuration& aOther) const {
    return FromTicks(ValueCalculator::Add(mValue, aOther.mValue));
  }
  BaseTimeDuration operator-(const BaseTimeDuration& aOther) const {
    return FromTicks(ValueCalculator::Subtract(mValue, aOther.mValue));
  }
  BaseTimeDuration& operator+=(const BaseTimeDuration& aOther) {
    mValue = ValueCalculator::Add(mValue, aOther.mValue);
    return *this;
  }
  BaseTimeDuration& operator-=(const BaseTimeDuration& aOther) {
    mValue = ValueCalculator::Subtract(mValue, aOther.mValue);
    return *this;
  }
  BaseTimeDuration operator-() const {
    // We don't just use FromTicks(ValueCalculator::Subtract(0, mValue))
    // since that won't give the correct result for -TimeDuration::Forever().
    int64_t ticks;
    if (mValue == INT64_MAX) {
      ticks = INT64_MIN;
    } else if (mValue == INT64_MIN) {
      ticks = INT64_MAX;
    } else {
      ticks = -mValue;
    }

    return FromTicks(ticks);
  }

  static BaseTimeDuration Max(const BaseTimeDuration& aA,
                              const BaseTimeDuration& aB) {
    return FromTicks(std::max(aA.mValue, aB.mValue));
  }
  static BaseTimeDuration Min(const BaseTimeDuration& aA,
                              const BaseTimeDuration& aB) {
    return FromTicks(std::min(aA.mValue, aB.mValue));
  }

#if defined(DEBUG)
  int64_t GetValue() const { return mValue; }
#endif

 private:
  // Block double multiplier (slower, imprecise if long duration) - Bug 853398.
  // If required, use MultDouble explicitly and with care.
  BaseTimeDuration operator*(const double aMultiplier) const = delete;

  // Block double divisor (for the same reason, and because dividing by
  // fractional values would otherwise invoke the int64_t variant, and rounding
  // the passed argument can then cause divide-by-zero) - Bug 1147491.
  BaseTimeDuration operator/(const double aDivisor) const = delete;

 public:
  BaseTimeDuration MultDouble(double aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const int32_t aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const uint32_t aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const int64_t aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const uint64_t aMultiplier) const {
    if (aMultiplier > INT64_MAX) {
      return Forever();
    }
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator/(const int64_t aDivisor) const {
    MOZ_ASSERT(aDivisor != 0, "Division by zero");
    return FromTicks(ValueCalculator::Divide(mValue, aDivisor));
  }
  double operator/(const BaseTimeDuration& aOther) const {
    MOZ_ASSERT(aOther.mValue != 0, "Division by zero");
    return ValueCalculator::DivideDouble(mValue, aOther.mValue);
  }
  BaseTimeDuration operator%(const BaseTimeDuration& aOther) const {
    MOZ_ASSERT(aOther.mValue != 0, "Division by zero");
    return FromTicks(ValueCalculator::Modulo(mValue, aOther.mValue));
  }

  template <typename E>
  bool operator<(const BaseTimeDuration<E>& aOther) const {
    return mValue < aOther.mValue;
  }
  template <typename E>
  bool operator<=(const BaseTimeDuration<E>& aOther) const {
    return mValue <= aOther.mValue;
  }
  template <typename E>
  bool operator>=(const BaseTimeDuration<E>& aOther) const {
    return mValue >= aOther.mValue;
  }
  template <typename E>
  bool operator>(const BaseTimeDuration<E>& aOther) const {
    return mValue > aOther.mValue;
  }
  template <typename E>
  bool operator==(const BaseTimeDuration<E>& aOther) const {
    return mValue == aOther.mValue;
  }
  template <typename E>
  bool operator!=(const BaseTimeDuration<E>& aOther) const {
    return mValue != aOther.mValue;
  }
  bool IsZero() const { return mValue == 0; }
  explicit operator bool() const { return mValue != 0; }

  friend std::ostream& operator<<(std::ostream& aStream,
                                  const BaseTimeDuration& aDuration) {
    return aStream << aDuration.ToMilliseconds() << " ms";
  }

  // Return a best guess at the system's current timing resolution,
  // which might be variable.  BaseTimeDurations below this order of
  // magnitude are meaningless, and those at the same order of
  // magnitude or just above are suspect.
  static BaseTimeDuration Resolution() {
    return FromTicks(BaseTimeDurationPlatformUtils::ResolutionInTicks());
  }

  // We could define additional operators here:
  // -- convert to/from other time units
  // -- scale duration by a float
  // but let's do that on demand.
  // Comparing durations for equality will only lead to bugs on
  // platforms with high-resolution timers.

 private:
  friend class TimeStamp;
  friend struct IPC::ParamTraits<mozilla::BaseTimeDuration<ValueCalculator>>;
  template <typename>
  friend class BaseTimeDuration;

  static BaseTimeDuration FromTicks(int64_t aTicks) {
    BaseTimeDuration t;
    t.mValue = aTicks;
    return t;
  }

  static BaseTimeDuration FromTicks(double aTicks) {
    // NOTE: this MUST be a >= test, because int64_t(double(INT64_MAX))
    // overflows and gives INT64_MIN.
    if (aTicks >= double(INT64_MAX)) {
      return FromTicks(INT64_MAX);
    }

    // This MUST be a <= test.
    if (aTicks <= double(INT64_MIN)) {
      return FromTicks(INT64_MIN);
    }

    return FromTicks(int64_t(aTicks));
  }

  // Duration, result is implementation-specific difference of two TimeStamps
  int64_t mValue;
};

/**
 * Perform arithmetic operations on the value of a BaseTimeDuration without
 * doing strict checks on the range of values.
 */
class TimeDurationValueCalculator {
 public:
  static int64_t Add(int64_t aA, int64_t aB) { return aA + aB; }
  static int64_t Subtract(int64_t aA, int64_t aB) { return aA - aB; }

  template <typename T>
  static int64_t Multiply(int64_t aA, T aB) {
    static_assert(std::is_integral_v<T>,
                  "Using integer multiplication routine with non-integer type."
                  " Further specialization required");
    return aA * static_cast<int64_t>(aB);
  }

  static int64_t Divide(int64_t aA, int64_t aB) { return aA / aB; }
  static double DivideDouble(int64_t aA, int64_t aB) {
    return static_cast<double>(aA) / aB;
  }
  static int64_t Modulo(int64_t aA, int64_t aB) { return aA % aB; }
};

template <>
inline int64_t TimeDurationValueCalculator::Multiply<double>(int64_t aA,
                                                             double aB) {
  return static_cast<int64_t>(aA * aB);
}

/**
 * Specialization of BaseTimeDuration that uses TimeDurationValueCalculator for
 * arithmetic on the mValue member.
 *
 * Use this class for time durations that are *not* expected to hold values of
 * Forever (or the negative equivalent) or when such time duration are *not*
 * expected to be used in arithmetic operations.
 */
typedef BaseTimeDuration<TimeDurationValueCalculator> TimeDuration;

/**
 * Instances of this class represent moments in time, or a special
 * "null" moment. We do not use the non-monotonic system clock or
 * local time, since they can be reset, causing apparent backward
 * travel in time, which can confuse algorithms. Instead we measure
 * elapsed time according to the system.  This time can never go
 * backwards (i.e. it never wraps around, at least not in less than
 * five million years of system elapsed time). It might not advance
 * while the system is sleeping. If TimeStamp::SetNow() is not called
 * at all for hours or days, we might not notice the passage of some
 * of that time.
 *
 * We deliberately do not expose a way to convert TimeStamps to some
 * particular unit. All you can do is compute a difference between two
 * TimeStamps to get a TimeDuration. You can also add a TimeDuration
 * to a TimeStamp to get a new TimeStamp. You can't do something
 * meaningless like add two TimeStamps.
 *
 * Internally this is implemented as either a wrapper around
 *   - high-resolution, monotonic, system clocks if they exist on this
 *     platform
 *   - PRIntervalTime otherwise.  We detect wraparounds of
 *     PRIntervalTime and work around them.
 *
 * This class is similar to C++11's time_point, however it is
 * explicitly nullable and provides an IsNull() method. time_point
 * is initialized to the clock's epoch and provides a
 * time_since_epoch() method that functions similiarly. i.e.
 * t.IsNull() is equivalent to t.time_since_epoch() ==
 * decltype(t)::duration::zero();
 *
 * Note that, since TimeStamp objects are small, prefer to pass them by value
 * unless there is a specific reason not to do so.
 */
class TimeStamp {
 public:
  /**
   * Initialize to the "null" moment
   */
  constexpr TimeStamp() : mValue(0) {}
  // Default copy-constructor and assignment are OK

  /**
   * The system timestamps are the same as the TimeStamp
   * retrieved by mozilla::TimeStamp. Since we need this for
   * vsync timestamps, we enable the creation of mozilla::TimeStamps
   * on platforms that support vsync aligned refresh drivers / compositors
   * Verified true as of Jan 31, 2015: B2G and OS X
   * False on Windows 7
   * Android's event time uses CLOCK_MONOTONIC via SystemClock.uptimeMilles.
   * So it is same value of TimeStamp posix implementation.
   * Wayland/GTK event time also uses CLOCK_MONOTONIC on Weston/Mutter
   * compositors.
   * UNTESTED ON OTHER PLATFORMS
   */
#if defined(XP_DARWIN) || defined(MOZ_WIDGET_ANDROID) || defined(MOZ_WIDGET_GTK)
  static TimeStamp FromSystemTime(int64_t aSystemTime) {
    static_assert(sizeof(aSystemTime) == sizeof(TimeStampValue),
                  "System timestamp should be same units as TimeStampValue");
    return TimeStamp(aSystemTime);
  }
#endif

  /**
   * Return true if this is the "null" moment
   */
  bool IsNull() const { return mValue == 0; }

  /**
   * Return true if this is not the "null" moment, may be used in tests, e.g.:
   * |if (timestamp) { ... }|
   */
  explicit operator bool() const { return mValue != 0; }

  /**
   * Return a timestamp reflecting the current elapsed system time. This
   * is monotonically increasing (i.e., does not decrease) over the
   * lifetime of this process' XPCOM session.
   *
   * Now() is trying to ensure the best possible precision on each platform,
   * at least one millisecond.
   *
   * NowLoRes() has been introduced to workaround performance problems of
   * QueryPerformanceCounter on the Windows platform.  NowLoRes() is giving
   * lower precision, usually 15.6 ms, but with very good performance benefit.
   * Use it for measurements of longer times, like >200ms timeouts.
   */
  static TimeStamp Now() { return Now(true); }
  static TimeStamp NowLoRes() { return Now(false); }

  /**
   * Return a timestamp representing the time when the current process was
   * created which will be comparable with other timestamps taken with this
   * class.
   *
   * @returns A timestamp representing the time when the process was created
   */
  static MFBT_API TimeStamp ProcessCreation();

  /**
   * Return the very first timestamp that was taken. This can be used instead
   * of TimeStamp::ProcessCreation() by code that might not allow running the
   * complex logic required to compute the real process creation. This will
   * necessarily have been recorded sometimes after TimeStamp::ProcessCreation()
   * or at best should be equal to it.
   *
   * @returns The first tiemstamp that was taken by this process
   */
  static MFBT_API TimeStamp FirstTimeStamp();

  /**
   * Records a process restart. After this call ProcessCreation() will return
   * the time when the browser was restarted instead of the actual time when
   * the process was created.
   */
  static MFBT_API void RecordProcessRestart();

#ifdef XP_LINUX
  uint64_t RawClockMonotonicNanosecondsSinceBoot() {
    return static_cast<uint64_t>(mValue);
  }
#endif

#ifdef XP_MACOSX
  uint64_t RawMachAbsoluteTimeValue() { return static_cast<uint64_t>(mValue); }
#endif

#ifdef XP_WIN
  Maybe<uint64_t> RawQueryPerformanceCounterValue() {
    // mQPC is stored in `mt` i.e. QueryPerformanceCounter * 1000
    // so divide out the 1000
    return mValue.mHasQPC ? Some(mValue.mQPC / 1000ULL) : Nothing();
  }
#endif

  /**
   * Compute the difference between two timestamps. Both must be non-null.
   */
  TimeDuration operator-(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    static_assert(-INT64_MAX > INT64_MIN, "int64_t sanity check");
    int64_t ticks = int64_t(mValue - aOther.mValue);
    // Check for overflow.
    if (mValue > aOther.mValue) {
      if (ticks < 0) {
        ticks = INT64_MAX;
      }
    } else {
      if (ticks > 0) {
        ticks = INT64_MIN;
      }
    }
    return TimeDuration::FromTicks(ticks);
  }

  TimeStamp operator+(const TimeDuration& aOther) const {
    TimeStamp result = *this;
    result += aOther;
    return result;
  }
  TimeStamp operator-(const TimeDuration& aOther) const {
    TimeStamp result = *this;
    result -= aOther;
    return result;
  }
  TimeStamp& operator+=(const TimeDuration& aOther) {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    TimeStampValue value = mValue + aOther.mValue;
    // Check for underflow.
    // (We don't check for overflow because it's not obvious what the error
    //  behavior should be in that case.)
    if (aOther.mValue < 0 && value > mValue) {
      value = 0;
    }
    mValue = value;
    return *this;
  }
  TimeStamp& operator-=(const TimeDuration& aOther) {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    TimeStampValue value = mValue - aOther.mValue;
    // Check for underflow.
    // (We don't check for overflow because it's not obvious what the error
    //  behavior should be in that case.)
    if (aOther.mValue > 0 && value > mValue) {
      value = 0;
    }
    mValue = value;
    return *this;
  }

  bool operator<(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue < aOther.mValue;
  }
  bool operator<=(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue <= aOther.mValue;
  }
  bool operator>=(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue >= aOther.mValue;
  }
  bool operator>(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue > aOther.mValue;
  }
  bool operator==(const TimeStamp& aOther) const {
    return IsNull() ? aOther.IsNull()
                    : !aOther.IsNull() && mValue == aOther.mValue;
  }
  bool operator!=(const TimeStamp& aOther) const { return !(*this == aOther); }

  // Comparing TimeStamps for equality should be discouraged. Adding
  // two TimeStamps, or scaling TimeStamps, is nonsense and must never
  // be allowed.

  static MFBT_API void Startup();
  static MFBT_API void Shutdown();

#if defined(DEBUG)
  TimeStampValue GetValue() const { return mValue; }
#endif

 private:
  friend struct IPC::ParamTraits<mozilla::TimeStamp>;
  friend struct TimeStampInitialization;

  MOZ_IMPLICIT
  TimeStamp(TimeStampValue aValue) : mValue(aValue) {}

  static MFBT_API TimeStamp Now(bool aHighResolution);

  /**
   * Computes the uptime of the current process in microseconds. The result
   * is platform-dependent and needs to be checked against existing timestamps
   * for consistency.
   *
   * @returns The number of microseconds since the calling process was started
   *          or 0 if an error was encountered while computing the uptime
   */
  static MFBT_API uint64_t ComputeProcessUptime();

  /**
   * When built with PRIntervalTime, a value of 0 means this instance
   * is "null". Otherwise, the low 32 bits represent a PRIntervalTime,
   * and the high 32 bits represent a counter of the number of
   * rollovers of PRIntervalTime that we've seen. This counter starts
   * at 1 to avoid a real time colliding with the "null" value.
   *
   * PR_INTERVAL_MAX is set at 100,000 ticks per second. So the minimum
   * time to wrap around is about 2^64/100000 seconds, i.e. about
   * 5,849,424 years.
   *
   * When using a system clock, a value is system dependent.
   */
  TimeStampValue mValue;
};

}  // namespace mozilla

#endif /* mozilla_TimeStamp_h */