summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy/ops/rvv-inl.h
blob: 502611282ca7e86932c14d9fdd19cd1353a1a71a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
// Copyright 2021 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// RISC-V V vectors (length not known at compile time).
// External include guard in highway.h - see comment there.

#include <riscv_vector.h>
#include <stddef.h>
#include <stdint.h>

#include "hwy/base.h"
#include "hwy/ops/shared-inl.h"

HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {

template <class V>
struct DFromV_t {};  // specialized in macros
template <class V>
using DFromV = typename DFromV_t<RemoveConst<V>>::type;

template <class V>
using TFromV = TFromD<DFromV<V>>;

// Enables the overload if Pow2 is in [min, max].
#define HWY_RVV_IF_POW2_IN(D, min, max) \
  hwy::EnableIf<(min) <= Pow2(D()) && Pow2(D()) <= (max)>* = nullptr

template <typename T, size_t N, int kPow2>
constexpr size_t MLenFromD(Simd<T, N, kPow2> /* tag */) {
  // Returns divisor = type bits / LMUL. Folding *8 into the ScaleByPower
  // argument enables fractional LMUL < 1. Limit to 64 because that is the
  // largest value for which vbool##_t are defined.
  return HWY_MIN(64, sizeof(T) * 8 * 8 / detail::ScaleByPower(8, kPow2));
}

// ================================================== MACROS

// Generate specializations and function definitions using X macros. Although
// harder to read and debug, writing everything manually is too bulky.

namespace detail {  // for code folding

// For all mask sizes MLEN: (1/Nth of a register, one bit per lane)
// The first two arguments are SEW and SHIFT such that SEW >> SHIFT = MLEN.
#define HWY_RVV_FOREACH_B(X_MACRO, NAME, OP) \
  X_MACRO(64, 0, 64, NAME, OP)               \
  X_MACRO(32, 0, 32, NAME, OP)               \
  X_MACRO(16, 0, 16, NAME, OP)               \
  X_MACRO(8, 0, 8, NAME, OP)                 \
  X_MACRO(8, 1, 4, NAME, OP)                 \
  X_MACRO(8, 2, 2, NAME, OP)                 \
  X_MACRO(8, 3, 1, NAME, OP)

// For given SEW, iterate over one of LMULS: _TRUNC, _EXT, _ALL. This allows
// reusing type lists such as HWY_RVV_FOREACH_U for _ALL (the usual case) or
// _EXT (for Combine). To achieve this, we HWY_CONCAT with the LMULS suffix.
//
// Precompute SEW/LMUL => MLEN to allow token-pasting the result. For the same
// reason, also pass the double-width and half SEW and LMUL (suffixed D and H,
// respectively). "__" means there is no corresponding LMUL (e.g. LMULD for m8).
// Args: BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, MLEN, NAME, OP

// LMULS = _TRUNC: truncatable (not the smallest LMUL)
#define HWY_RVV_FOREACH_08_TRUNC(X_MACRO, BASE, CHAR, NAME, OP)            \
  X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \
  X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP)  \
  X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP)     \
  X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP)      \
  X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP)      \
  X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP)

#define HWY_RVV_FOREACH_16_TRUNC(X_MACRO, BASE, CHAR, NAME, OP)           \
  X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP) \
  X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP)   \
  X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP)     \
  X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP)     \
  X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP)

#define HWY_RVV_FOREACH_32_TRUNC(X_MACRO, BASE, CHAR, NAME, OP)          \
  X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP) \
  X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP)  \
  X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP)   \
  X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP)

#define HWY_RVV_FOREACH_64_TRUNC(X_MACRO, BASE, CHAR, NAME, OP)         \
  X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP) \
  X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP) \
  X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP)

// LMULS = _DEMOTE: can demote from SEW*LMUL to SEWH*LMULH.
#define HWY_RVV_FOREACH_08_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)           \
  X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \
  X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP)  \
  X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP)     \
  X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP)      \
  X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP)      \
  X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP)

#define HWY_RVV_FOREACH_16_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)           \
  X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -2, /*MLEN=*/64, NAME, OP) \
  X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP)  \
  X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP)    \
  X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP)      \
  X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP)      \
  X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP)

#define HWY_RVV_FOREACH_32_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)           \
  X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -1, /*MLEN=*/64, NAME, OP) \
  X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP)   \
  X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP)    \
  X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP)     \
  X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP)

#define HWY_RVV_FOREACH_64_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)         \
  X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, 0, /*MLEN=*/64, NAME, OP) \
  X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP)  \
  X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP)  \
  X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP)

// LMULS = _LE2: <= 2
#define HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP)              \
  X_MACRO(BASE, CHAR, 8, 16, __, mf8, mf4, __, -3, /*MLEN=*/64, NAME, OP)  \
  X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \
  X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP)  \
  X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP)     \
  X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP)

#define HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP)              \
  X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -2, /*MLEN=*/64, NAME, OP) \
  X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP)  \
  X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP)    \
  X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP)

#define HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP)              \
  X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -1, /*MLEN=*/64, NAME, OP) \
  X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP)   \
  X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP)

#define HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP)            \
  X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, 0, /*MLEN=*/64, NAME, OP) \
  X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP)

// LMULS = _EXT: not the largest LMUL
#define HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP)

#define HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP)

#define HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP)

#define HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP)

// LMULS = _ALL (2^MinPow2() <= LMUL <= 8)
#define HWY_RVV_FOREACH_08_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP)

#define HWY_RVV_FOREACH_16_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP)

#define HWY_RVV_FOREACH_32_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP)

#define HWY_RVV_FOREACH_64_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP)       \
  X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP)

// 'Virtual' LMUL. This upholds the Highway guarantee that vectors are at least
// 128 bit and LowerHalf is defined whenever there are at least 2 lanes, even
// though RISC-V LMUL must be at least SEW/64 (notice that this rules out
// LMUL=1/2 for SEW=64). To bridge the gap, we add overloads for kPow2 equal to
// one less than should be supported, with all other parameters (vector type
// etc.) unchanged. For D with the lowest kPow2 ('virtual LMUL'), Lanes()
// returns half of what it usually would.
//
// Notice that we can only add overloads whenever there is a D argument: those
// are unique with respect to non-virtual-LMUL overloads because their kPow2
// template argument differs. Otherwise, there is no actual vuint64mf2_t, and
// defining another overload with the same LMUL would be an error. Thus we have
// a separate _VIRT category for HWY_RVV_FOREACH*, and the common case is
// _ALL_VIRT (meaning the regular LMUL plus the VIRT overloads), used in most
// functions that take a D.

#define HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -3, /*MLEN=*/64, NAME, OP)

#define HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -2, /*MLEN=*/64, NAME, OP)

#define HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, -1, /*MLEN=*/64, NAME, OP)

// ALL + VIRT
#define HWY_RVV_FOREACH_08_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_08_ALL(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_16_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_16_ALL(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_32_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_32_ALL(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_64_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_64_ALL(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

// LE2 + VIRT
#define HWY_RVV_FOREACH_08_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_16_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_32_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_64_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

// EXT + VIRT
#define HWY_RVV_FOREACH_08_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_16_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_32_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_64_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

// DEMOTE + VIRT
#define HWY_RVV_FOREACH_08_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_08_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_16_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_16_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_32_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_32_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

#define HWY_RVV_FOREACH_64_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
  HWY_RVV_FOREACH_64_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP)            \
  HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)

// SEW for unsigned:
#define HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_08, LMULS)(X_MACRO, uint, u, NAME, OP)
#define HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, uint, u, NAME, OP)
#define HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, uint, u, NAME, OP)
#define HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, uint, u, NAME, OP)

// SEW for signed:
#define HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_08, LMULS)(X_MACRO, int, i, NAME, OP)
#define HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, int, i, NAME, OP)
#define HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, int, i, NAME, OP)
#define HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, int, i, NAME, OP)

// SEW for float:
#if HWY_HAVE_FLOAT16
#define HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, float, f, NAME, OP)
#else
#define HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS)
#endif
#define HWY_RVV_FOREACH_F32(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, float, f, NAME, OP)
#define HWY_RVV_FOREACH_F64(X_MACRO, NAME, OP, LMULS) \
  HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, float, f, NAME, OP)

// Commonly used type/SEW groups:
#define HWY_RVV_FOREACH_UI08(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS)        \
  HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_UI16(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS)        \
  HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_UI32(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS)        \
  HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_UI64(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS)        \
  HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_UI3264(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_UI32(X_MACRO, NAME, OP, LMULS)         \
  HWY_RVV_FOREACH_UI64(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_U163264(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS)           \
  HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS)           \
  HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_I163264(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS)           \
  HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS)           \
  HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_UI163264(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U163264(X_MACRO, NAME, OP, LMULS)        \
  HWY_RVV_FOREACH_I163264(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_F3264(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_F32(X_MACRO, NAME, OP, LMULS)         \
  HWY_RVV_FOREACH_F64(X_MACRO, NAME, OP, LMULS)

// For all combinations of SEW:
#define HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH_F(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_F3264(X_MACRO, NAME, OP, LMULS)

// Commonly used type categories:
#define HWY_RVV_FOREACH_UI(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS)        \
  HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS)

#define HWY_RVV_FOREACH(X_MACRO, NAME, OP, LMULS) \
  HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS)     \
  HWY_RVV_FOREACH_F(X_MACRO, NAME, OP, LMULS)

// Assemble types for use in x-macros
#define HWY_RVV_T(BASE, SEW) BASE##SEW##_t
#define HWY_RVV_D(BASE, SEW, N, SHIFT) Simd<HWY_RVV_T(BASE, SEW), N, SHIFT>
#define HWY_RVV_V(BASE, SEW, LMUL) v##BASE##SEW##LMUL##_t
#define HWY_RVV_M(MLEN) vbool##MLEN##_t

}  // namespace detail

// Until we have full intrinsic support for fractional LMUL, mixed-precision
// code can use LMUL 1..8 (adequate unless they need many registers).
#define HWY_SPECIALIZE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <>                                                                  \
  struct DFromV_t<HWY_RVV_V(BASE, SEW, LMUL)> {                                \
    using Lane = HWY_RVV_T(BASE, SEW);                                         \
    using type = ScalableTag<Lane, SHIFT>;                                     \
  };

HWY_RVV_FOREACH(HWY_SPECIALIZE, _, _, _ALL)
#undef HWY_SPECIALIZE

// ------------------------------ Lanes

// WARNING: we want to query VLMAX/sizeof(T), but this actually changes VL!
// vlenb is not exposed through intrinsics and vreadvl is not VLMAX.
#define HWY_RVV_LANES(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  template <size_t N>                                                         \
  HWY_API size_t NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d) {                     \
    size_t actual = v##OP##SEW##LMUL();                                       \
    /* Common case of full vectors: avoid any extra instructions. */          \
    /* actual includes LMUL, so do not shift again. */                        \
    if (detail::IsFull(d)) return actual;                                     \
    /* Check for virtual LMUL, e.g. "uint16mf8_t" (not provided by */         \
    /* intrinsics). In this case the actual LMUL is 1/4, so divide by */      \
    /* another factor of two. */                                              \
    if (detail::ScaleByPower(128 / SEW, SHIFT) == 1) actual >>= 1;            \
    return HWY_MIN(actual, N);                                                \
  }

HWY_RVV_FOREACH(HWY_RVV_LANES, Lanes, setvlmax_e, _ALL_VIRT)
#undef HWY_RVV_LANES

template <size_t N, int kPow2>
HWY_API size_t Lanes(Simd<bfloat16_t, N, kPow2> /* tag*/) {
  return Lanes(Simd<uint16_t, N, kPow2>());
}

// ------------------------------ Common x-macros

// Last argument to most intrinsics. Use when the op has no d arg of its own,
// which means there is no user-specified cap.
#define HWY_RVV_AVL(SEW, SHIFT) \
  Lanes(ScalableTag<HWY_RVV_T(uint, SEW), SHIFT>())

// vector = f(vector), e.g. Not
#define HWY_RVV_RETV_ARGV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                          SHIFT, MLEN, NAME, OP)                           \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) {  \
    return v##OP##_v_##CHAR##SEW##LMUL(v, HWY_RVV_AVL(SEW, SHIFT));        \
  }

// vector = f(vector, scalar), e.g. detail::AddS
#define HWY_RVV_RETV_ARGVS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                           SHIFT, MLEN, NAME, OP)                           \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                        \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_T(BASE, SEW) b) {          \
    return v##OP##_##CHAR##SEW##LMUL(a, b, HWY_RVV_AVL(SEW, SHIFT));        \
  }

// vector = f(vector, vector), e.g. Add
#define HWY_RVV_RETV_ARGVV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                           SHIFT, MLEN, NAME, OP)                           \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                        \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) {    \
    return v##OP##_vv_##CHAR##SEW##LMUL(a, b, HWY_RVV_AVL(SEW, SHIFT));     \
  }

// mask = f(mask)
#define HWY_RVV_RETM_ARGM(SEW, SHIFT, MLEN, NAME, OP) \
  HWY_API HWY_RVV_M(MLEN) NAME(HWY_RVV_M(MLEN) m) {   \
    return vm##OP##_m_b##MLEN(m, ~0ull);              \
  }

// ================================================== INIT

// ------------------------------ Set

#define HWY_RVV_SET(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                    MLEN, NAME, OP)                                         \
  template <size_t N>                                                       \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                        \
      NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_T(BASE, SEW) arg) {    \
    return v##OP##_##CHAR##SEW##LMUL(arg, Lanes(d));                        \
  }

HWY_RVV_FOREACH_UI(HWY_RVV_SET, Set, mv_v_x, _ALL_VIRT)
HWY_RVV_FOREACH_F(HWY_RVV_SET, Set, fmv_v_f, _ALL_VIRT)
#undef HWY_RVV_SET

// Treat bfloat16_t as uint16_t (using the previously defined Set overloads);
// required for Zero and VFromD.
template <size_t N, int kPow2>
decltype(Set(Simd<uint16_t, N, kPow2>(), 0)) Set(Simd<bfloat16_t, N, kPow2> d,
                                                 bfloat16_t arg) {
  return Set(RebindToUnsigned<decltype(d)>(), arg.bits);
}

template <class D>
using VFromD = decltype(Set(D(), TFromD<D>()));

// ------------------------------ Zero

template <class D>
HWY_API VFromD<D> Zero(D d) {
  // Cast to support bfloat16_t.
  const RebindToUnsigned<decltype(d)> du;
  return BitCast(d, Set(du, 0));
}

// ------------------------------ Undefined

// RVV vundefined is 'poisoned' such that even XORing a _variable_ initialized
// by it gives unpredictable results. It should only be used for maskoff, so
// keep it internal. For the Highway op, just use Zero (single instruction).
namespace detail {
#define HWY_RVV_UNDEFINED(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                          SHIFT, MLEN, NAME, OP)                           \
  template <size_t N>                                                      \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                       \
      NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) /* tag */) {                     \
    return v##OP##_##CHAR##SEW##LMUL(); /* no AVL */                       \
  }

HWY_RVV_FOREACH(HWY_RVV_UNDEFINED, Undefined, undefined, _ALL)
#undef HWY_RVV_UNDEFINED
}  // namespace detail

template <class D>
HWY_API VFromD<D> Undefined(D d) {
  return Zero(d);
}

// ------------------------------ BitCast

namespace detail {

// Halves LMUL. (Use LMUL arg for the source so we can use _TRUNC.)
#define HWY_RVV_TRUNC(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  HWY_API HWY_RVV_V(BASE, SEW, LMULH) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) {    \
    return v##OP##_v_##CHAR##SEW##LMUL##_##CHAR##SEW##LMULH(v); /* no AVL */  \
  }
HWY_RVV_FOREACH(HWY_RVV_TRUNC, Trunc, lmul_trunc, _TRUNC)
#undef HWY_RVV_TRUNC

// Doubles LMUL to `d2` (the arg is only necessary for _VIRT).
#define HWY_RVV_EXT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT,  \
                    MLEN, NAME, OP)                                          \
  template <size_t N>                                                        \
  HWY_API HWY_RVV_V(BASE, SEW, LMULD)                                        \
      NAME(HWY_RVV_D(BASE, SEW, N, SHIFT + 1) /* d2 */,                      \
           HWY_RVV_V(BASE, SEW, LMUL) v) {                                   \
    return v##OP##_v_##CHAR##SEW##LMUL##_##CHAR##SEW##LMULD(v); /* no AVL */ \
  }
HWY_RVV_FOREACH(HWY_RVV_EXT, Ext, lmul_ext, _EXT)
#undef HWY_RVV_EXT

// For virtual LMUL e.g. 'uint32mf4_t', the return type should be mf2, which is
// the same as the actual input type.
#define HWY_RVV_EXT_VIRT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                         SHIFT, MLEN, NAME, OP)                           \
  template <size_t N>                                                     \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                      \
      NAME(HWY_RVV_D(BASE, SEW, N, SHIFT + 1) /* d2 */,                   \
           HWY_RVV_V(BASE, SEW, LMUL) v) {                                \
    return v;                                                             \
  }
HWY_RVV_FOREACH(HWY_RVV_EXT_VIRT, Ext, lmul_ext, _VIRT)
#undef HWY_RVV_EXT_VIRT

// For BitCastToByte, the D arg is only to prevent duplicate definitions caused
// by _ALL_VIRT.

// There is no reinterpret from u8 <-> u8, so just return.
#define HWY_RVV_CAST_U8(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                        SHIFT, MLEN, NAME, OP)                           \
  template <typename T, size_t N>                                        \
  HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */,      \
                                         vuint8##LMUL##_t v) {           \
    return v;                                                            \
  }                                                                      \
  template <size_t N>                                                    \
  HWY_API vuint8##LMUL##_t BitCastFromByte(                              \
      HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) {      \
    return v;                                                            \
  }

// For i8, need a single reinterpret (HWY_RVV_CAST_IF does two).
#define HWY_RVV_CAST_I8(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                        SHIFT, MLEN, NAME, OP)                           \
  template <typename T, size_t N>                                        \
  HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */,      \
                                         vint8##LMUL##_t v) {            \
    return vreinterpret_v_i8##LMUL##_u8##LMUL(v);                        \
  }                                                                      \
  template <size_t N>                                                    \
  HWY_API vint8##LMUL##_t BitCastFromByte(                               \
      HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) {      \
    return vreinterpret_v_u8##LMUL##_i8##LMUL(v);                        \
  }

// Separate u/i because clang only provides signed <-> unsigned reinterpret for
// the same SEW.
#define HWY_RVV_CAST_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <typename T, size_t N>                                              \
  HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */,            \
                                         HWY_RVV_V(BASE, SEW, LMUL) v) {       \
    return v##OP##_v_##CHAR##SEW##LMUL##_u8##LMUL(v);                          \
  }                                                                            \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte(                          \
      HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) {            \
    return v##OP##_v_u8##LMUL##_##CHAR##SEW##LMUL(v);                          \
  }

// Signed/Float: first cast to/from unsigned
#define HWY_RVV_CAST_IF(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                        SHIFT, MLEN, NAME, OP)                           \
  template <typename T, size_t N>                                        \
  HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */,      \
                                         HWY_RVV_V(BASE, SEW, LMUL) v) { \
    return v##OP##_v_u##SEW##LMUL##_u8##LMUL(                            \
        v##OP##_v_##CHAR##SEW##LMUL##_u##SEW##LMUL(v));                  \
  }                                                                      \
  template <size_t N>                                                    \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte(                    \
      HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) {      \
    return v##OP##_v_u##SEW##LMUL##_##CHAR##SEW##LMUL(                   \
        v##OP##_v_u8##LMUL##_u##SEW##LMUL(v));                           \
  }

// Additional versions for virtual LMUL using LMULH for byte vectors.
#define HWY_RVV_CAST_VIRT_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                            SHIFT, MLEN, NAME, OP)                           \
  template <typename T, size_t N>                                            \
  HWY_API vuint8##LMULH##_t BitCastToByte(Simd<T, N, SHIFT> /* d */,         \
                                          HWY_RVV_V(BASE, SEW, LMUL) v) {    \
    return detail::Trunc(v##OP##_v_##CHAR##SEW##LMUL##_u8##LMUL(v));         \
  }                                                                          \
  template <size_t N>                                                        \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte(                        \
      HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMULH##_t v) {         \
    HWY_RVV_D(uint, 8, N, SHIFT + 1) d2;                                     \
    const vuint8##LMUL##_t v2 = detail::Ext(d2, v);                          \
    return v##OP##_v_u8##LMUL##_##CHAR##SEW##LMUL(v2);                       \
  }

// Signed/Float: first cast to/from unsigned
#define HWY_RVV_CAST_VIRT_IF(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                             SHIFT, MLEN, NAME, OP)                           \
  template <typename T, size_t N>                                             \
  HWY_API vuint8##LMULH##_t BitCastToByte(Simd<T, N, SHIFT> /* d */,          \
                                          HWY_RVV_V(BASE, SEW, LMUL) v) {     \
    return detail::Trunc(v##OP##_v_u##SEW##LMUL##_u8##LMUL(                   \
        v##OP##_v_##CHAR##SEW##LMUL##_u##SEW##LMUL(v)));                      \
  }                                                                           \
  template <size_t N>                                                         \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte(                         \
      HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMULH##_t v) {          \
    HWY_RVV_D(uint, 8, N, SHIFT + 1) d2;                                      \
    const vuint8##LMUL##_t v2 = detail::Ext(d2, v);                           \
    return v##OP##_v_u##SEW##LMUL##_##CHAR##SEW##LMUL(                        \
        v##OP##_v_u8##LMUL##_u##SEW##LMUL(v2));                               \
  }

HWY_RVV_FOREACH_U08(HWY_RVV_CAST_U8, _, reinterpret, _ALL)
HWY_RVV_FOREACH_I08(HWY_RVV_CAST_I8, _, reinterpret, _ALL)
HWY_RVV_FOREACH_U163264(HWY_RVV_CAST_U, _, reinterpret, _ALL)
HWY_RVV_FOREACH_I163264(HWY_RVV_CAST_IF, _, reinterpret, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_CAST_IF, _, reinterpret, _ALL)
HWY_RVV_FOREACH_U163264(HWY_RVV_CAST_VIRT_U, _, reinterpret, _VIRT)
HWY_RVV_FOREACH_I163264(HWY_RVV_CAST_VIRT_IF, _, reinterpret, _VIRT)
HWY_RVV_FOREACH_F(HWY_RVV_CAST_VIRT_IF, _, reinterpret, _VIRT)

#undef HWY_RVV_CAST_U8
#undef HWY_RVV_CAST_I8
#undef HWY_RVV_CAST_U
#undef HWY_RVV_CAST_IF
#undef HWY_RVV_CAST_VIRT_U
#undef HWY_RVV_CAST_VIRT_IF

template <size_t N, int kPow2>
HWY_INLINE VFromD<Simd<uint16_t, N, kPow2>> BitCastFromByte(
    Simd<bfloat16_t, N, kPow2> /* d */, VFromD<Simd<uint8_t, N, kPow2>> v) {
  return BitCastFromByte(Simd<uint16_t, N, kPow2>(), v);
}

}  // namespace detail

template <class D, class FromV>
HWY_API VFromD<D> BitCast(D d, FromV v) {
  return detail::BitCastFromByte(d, detail::BitCastToByte(d, v));
}

namespace detail {

template <class V, class DU = RebindToUnsigned<DFromV<V>>>
HWY_INLINE VFromD<DU> BitCastToUnsigned(V v) {
  return BitCast(DU(), v);
}

}  // namespace detail

// ------------------------------ Iota

namespace detail {

#define HWY_RVV_IOTA(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT,  \
                     MLEN, NAME, OP)                                          \
  template <size_t N>                                                         \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d) { \
    return v##OP##_##CHAR##SEW##LMUL(Lanes(d));                               \
  }

HWY_RVV_FOREACH_U(HWY_RVV_IOTA, Iota0, id_v, _ALL_VIRT)
#undef HWY_RVV_IOTA

template <class D, class DU = RebindToUnsigned<D>>
HWY_INLINE VFromD<DU> Iota0(const D /*d*/) {
  return BitCastToUnsigned(Iota0(DU()));
}

}  // namespace detail

// ================================================== LOGICAL

// ------------------------------ Not

HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGV, Not, not, _ALL)

template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Not(const V v) {
  using DF = DFromV<V>;
  using DU = RebindToUnsigned<DF>;
  return BitCast(DF(), Not(BitCast(DU(), v)));
}

// ------------------------------ And

// Non-vector version (ideally immediate) for use with Iota0
namespace detail {
HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, AndS, and_vx, _ALL)
}  // namespace detail

HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, And, and, _ALL)

template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V And(const V a, const V b) {
  using DF = DFromV<V>;
  using DU = RebindToUnsigned<DF>;
  return BitCast(DF(), And(BitCast(DU(), a), BitCast(DU(), b)));
}

// ------------------------------ Or

HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Or, or, _ALL)

template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Or(const V a, const V b) {
  using DF = DFromV<V>;
  using DU = RebindToUnsigned<DF>;
  return BitCast(DF(), Or(BitCast(DU(), a), BitCast(DU(), b)));
}

// ------------------------------ Xor

// Non-vector version (ideally immediate) for use with Iota0
namespace detail {
HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, XorS, xor_vx, _ALL)
}  // namespace detail

HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Xor, xor, _ALL)

template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Xor(const V a, const V b) {
  using DF = DFromV<V>;
  using DU = RebindToUnsigned<DF>;
  return BitCast(DF(), Xor(BitCast(DU(), a), BitCast(DU(), b)));
}

// ------------------------------ AndNot
template <class V>
HWY_API V AndNot(const V not_a, const V b) {
  return And(Not(not_a), b);
}

// ------------------------------ Xor3
template <class V>
HWY_API V Xor3(V x1, V x2, V x3) {
  return Xor(x1, Xor(x2, x3));
}

// ------------------------------ Or3
template <class V>
HWY_API V Or3(V o1, V o2, V o3) {
  return Or(o1, Or(o2, o3));
}

// ------------------------------ OrAnd
template <class V>
HWY_API V OrAnd(const V o, const V a1, const V a2) {
  return Or(o, And(a1, a2));
}

// ------------------------------ CopySign

HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, CopySign, fsgnj, _ALL)

template <class V>
HWY_API V CopySignToAbs(const V abs, const V sign) {
  // RVV can also handle abs < 0, so no extra action needed.
  return CopySign(abs, sign);
}

// ================================================== ARITHMETIC

// ------------------------------ Add

namespace detail {
HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, AddS, add_vx, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, AddS, fadd_vf, _ALL)
HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, ReverseSubS, rsub_vx, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, ReverseSubS, frsub_vf, _ALL)
}  // namespace detail

HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Add, add, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Add, fadd, _ALL)

// ------------------------------ Sub
HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Sub, sub, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Sub, fsub, _ALL)

// ------------------------------ SaturatedAdd

HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, SaturatedAdd, saddu, _ALL)
HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, SaturatedAdd, saddu, _ALL)

HWY_RVV_FOREACH_I08(HWY_RVV_RETV_ARGVV, SaturatedAdd, sadd, _ALL)
HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, SaturatedAdd, sadd, _ALL)

// ------------------------------ SaturatedSub

HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, SaturatedSub, ssubu, _ALL)
HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, SaturatedSub, ssubu, _ALL)

HWY_RVV_FOREACH_I08(HWY_RVV_RETV_ARGVV, SaturatedSub, ssub, _ALL)
HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, SaturatedSub, ssub, _ALL)

// ------------------------------ AverageRound

// TODO(janwas): check vxrm rounding mode
HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, AverageRound, aaddu, _ALL)
HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, AverageRound, aaddu, _ALL)

// ------------------------------ ShiftLeft[Same]

// Intrinsics do not define .vi forms, so use .vx instead.
#define HWY_RVV_SHIFT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  template <int kBits>                                                        \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) {     \
    return v##OP##_vx_##CHAR##SEW##LMUL(v, kBits, HWY_RVV_AVL(SEW, SHIFT));   \
  }                                                                           \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                          \
      NAME##Same(HWY_RVV_V(BASE, SEW, LMUL) v, int bits) {                    \
    return v##OP##_vx_##CHAR##SEW##LMUL(v, static_cast<uint8_t>(bits),        \
                                        HWY_RVV_AVL(SEW, SHIFT));             \
  }

HWY_RVV_FOREACH_UI(HWY_RVV_SHIFT, ShiftLeft, sll, _ALL)

// ------------------------------ ShiftRight[Same]

HWY_RVV_FOREACH_U(HWY_RVV_SHIFT, ShiftRight, srl, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_SHIFT, ShiftRight, sra, _ALL)

#undef HWY_RVV_SHIFT

// ------------------------------ SumsOf8 (ShiftRight, Add)
template <class VU8>
HWY_API VFromD<Repartition<uint64_t, DFromV<VU8>>> SumsOf8(const VU8 v) {
  const DFromV<VU8> du8;
  const RepartitionToWide<decltype(du8)> du16;
  const RepartitionToWide<decltype(du16)> du32;
  const RepartitionToWide<decltype(du32)> du64;
  using VU16 = VFromD<decltype(du16)>;

  const VU16 vFDB97531 = ShiftRight<8>(BitCast(du16, v));
  const VU16 vECA86420 = detail::AndS(BitCast(du16, v), 0xFF);
  const VU16 sFE_DC_BA_98_76_54_32_10 = Add(vFDB97531, vECA86420);

  const VU16 szz_FE_zz_BA_zz_76_zz_32 =
      BitCast(du16, ShiftRight<16>(BitCast(du32, sFE_DC_BA_98_76_54_32_10)));
  const VU16 sxx_FC_xx_B8_xx_74_xx_30 =
      Add(sFE_DC_BA_98_76_54_32_10, szz_FE_zz_BA_zz_76_zz_32);
  const VU16 szz_zz_xx_FC_zz_zz_xx_74 =
      BitCast(du16, ShiftRight<32>(BitCast(du64, sxx_FC_xx_B8_xx_74_xx_30)));
  const VU16 sxx_xx_xx_F8_xx_xx_xx_70 =
      Add(sxx_FC_xx_B8_xx_74_xx_30, szz_zz_xx_FC_zz_zz_xx_74);
  return detail::AndS(BitCast(du64, sxx_xx_xx_F8_xx_xx_xx_70), 0xFFFFull);
}

// ------------------------------ RotateRight
template <int kBits, class V>
HWY_API V RotateRight(const V v) {
  constexpr size_t kSizeInBits = sizeof(TFromV<V>) * 8;
  static_assert(0 <= kBits && kBits < kSizeInBits, "Invalid shift count");
  if (kBits == 0) return v;
  return Or(ShiftRight<kBits>(v), ShiftLeft<kSizeInBits - kBits>(v));
}

// ------------------------------ Shl
#define HWY_RVV_SHIFT_VV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,   \
                         SHIFT, MLEN, NAME, OP)                             \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                        \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, LMUL) bits) { \
    return v##OP##_vv_##CHAR##SEW##LMUL(v, bits, HWY_RVV_AVL(SEW, SHIFT));  \
  }

HWY_RVV_FOREACH_U(HWY_RVV_SHIFT_VV, Shl, sll, _ALL)

#define HWY_RVV_SHIFT_II(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,   \
                         SHIFT, MLEN, NAME, OP)                             \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                        \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, LMUL) bits) { \
    return v##OP##_vv_##CHAR##SEW##LMUL(v, detail::BitCastToUnsigned(bits), \
                                        HWY_RVV_AVL(SEW, SHIFT));           \
  }

HWY_RVV_FOREACH_I(HWY_RVV_SHIFT_II, Shl, sll, _ALL)

// ------------------------------ Shr

HWY_RVV_FOREACH_U(HWY_RVV_SHIFT_VV, Shr, srl, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_SHIFT_II, Shr, sra, _ALL)

#undef HWY_RVV_SHIFT_II
#undef HWY_RVV_SHIFT_VV

// ------------------------------ Min

HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVV, Min, minu, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVV, Min, min, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Min, fmin, _ALL)

// ------------------------------ Max

namespace detail {

HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVS, MaxS, maxu_vx, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVS, MaxS, max_vx, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, MaxS, fmax_vf, _ALL)

}  // namespace detail

HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVV, Max, maxu, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVV, Max, max, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Max, fmax, _ALL)

// ------------------------------ Mul

HWY_RVV_FOREACH_UI163264(HWY_RVV_RETV_ARGVV, Mul, mul, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Mul, fmul, _ALL)

// Per-target flag to prevent generic_ops-inl.h from defining i64 operator*.
#ifdef HWY_NATIVE_I64MULLO
#undef HWY_NATIVE_I64MULLO
#else
#define HWY_NATIVE_I64MULLO
#endif

// ------------------------------ MulHigh

// Only for internal use (Highway only promises MulHigh for 16-bit inputs).
// Used by MulEven; vwmul does not work for m8.
namespace detail {
HWY_RVV_FOREACH_I32(HWY_RVV_RETV_ARGVV, MulHigh, mulh, _ALL)
HWY_RVV_FOREACH_U32(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL)
HWY_RVV_FOREACH_U64(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL)
}  // namespace detail

HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL)
HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, MulHigh, mulh, _ALL)

// ------------------------------ MulFixedPoint15
HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, MulFixedPoint15, smul, _ALL)

// ------------------------------ Div
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Div, fdiv, _ALL)

// ------------------------------ ApproximateReciprocal
HWY_RVV_FOREACH_F32(HWY_RVV_RETV_ARGV, ApproximateReciprocal, frec7, _ALL)

// ------------------------------ Sqrt
HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV, Sqrt, fsqrt, _ALL)

// ------------------------------ ApproximateReciprocalSqrt
HWY_RVV_FOREACH_F32(HWY_RVV_RETV_ARGV, ApproximateReciprocalSqrt, frsqrt7, _ALL)

// ------------------------------ MulAdd
// Note: op is still named vv, not vvv.
#define HWY_RVV_FMA(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT,    \
                    MLEN, NAME, OP)                                            \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                           \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) mul, HWY_RVV_V(BASE, SEW, LMUL) x,       \
           HWY_RVV_V(BASE, SEW, LMUL) add) {                                   \
    return v##OP##_vv_##CHAR##SEW##LMUL(add, mul, x, HWY_RVV_AVL(SEW, SHIFT)); \
  }

HWY_RVV_FOREACH_F(HWY_RVV_FMA, MulAdd, fmacc, _ALL)

// ------------------------------ NegMulAdd
HWY_RVV_FOREACH_F(HWY_RVV_FMA, NegMulAdd, fnmsac, _ALL)

// ------------------------------ MulSub
HWY_RVV_FOREACH_F(HWY_RVV_FMA, MulSub, fmsac, _ALL)

// ------------------------------ NegMulSub
HWY_RVV_FOREACH_F(HWY_RVV_FMA, NegMulSub, fnmacc, _ALL)

#undef HWY_RVV_FMA

// ================================================== COMPARE

// Comparisons set a mask bit to 1 if the condition is true, else 0. The XX in
// vboolXX_t is a power of two divisor for vector bits. SLEN 8 / LMUL 1 = 1/8th
// of all bits; SLEN 8 / LMUL 4 = half of all bits.

// mask = f(vector, vector)
#define HWY_RVV_RETM_ARGVV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                           SHIFT, MLEN, NAME, OP)                           \
  HWY_API HWY_RVV_M(MLEN)                                                   \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) {    \
    return v##OP##_vv_##CHAR##SEW##LMUL##_b##MLEN(a, b,                     \
                                                  HWY_RVV_AVL(SEW, SHIFT)); \
  }

// mask = f(vector, scalar)
#define HWY_RVV_RETM_ARGVS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,    \
                           SHIFT, MLEN, NAME, OP)                              \
  HWY_API HWY_RVV_M(MLEN)                                                      \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_T(BASE, SEW) b) {             \
    return v##OP##_##CHAR##SEW##LMUL##_b##MLEN(a, b, HWY_RVV_AVL(SEW, SHIFT)); \
  }

// ------------------------------ Eq
HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVV, Eq, mseq, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Eq, mfeq, _ALL)

namespace detail {
HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVS, EqS, mseq_vx, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, EqS, mfeq_vf, _ALL)
}  // namespace detail

// ------------------------------ Ne
HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVV, Ne, msne, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Ne, mfne, _ALL)

namespace detail {
HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVS, NeS, msne_vx, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, NeS, mfne_vf, _ALL)
}  // namespace detail

// ------------------------------ Lt
HWY_RVV_FOREACH_U(HWY_RVV_RETM_ARGVV, Lt, msltu, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_RETM_ARGVV, Lt, mslt, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Lt, mflt, _ALL)

namespace detail {
HWY_RVV_FOREACH_I(HWY_RVV_RETM_ARGVS, LtS, mslt_vx, _ALL)
HWY_RVV_FOREACH_U(HWY_RVV_RETM_ARGVS, LtS, msltu_vx, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, LtS, mflt_vf, _ALL)
}  // namespace detail

// ------------------------------ Le
HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Le, mfle, _ALL)

#undef HWY_RVV_RETM_ARGVV
#undef HWY_RVV_RETM_ARGVS

// ------------------------------ Gt/Ge

template <class V>
HWY_API auto Ge(const V a, const V b) -> decltype(Le(a, b)) {
  return Le(b, a);
}

template <class V>
HWY_API auto Gt(const V a, const V b) -> decltype(Lt(a, b)) {
  return Lt(b, a);
}

// ------------------------------ TestBit
template <class V>
HWY_API auto TestBit(const V a, const V bit) -> decltype(Eq(a, bit)) {
  return detail::NeS(And(a, bit), 0);
}

// ------------------------------ Not
// NOLINTNEXTLINE
HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGM, Not, not )

// ------------------------------ And

// mask = f(mask_a, mask_b) (note arg2,arg1 order!)
#define HWY_RVV_RETM_ARGMM(SEW, SHIFT, MLEN, NAME, OP)                 \
  HWY_API HWY_RVV_M(MLEN) NAME(HWY_RVV_M(MLEN) a, HWY_RVV_M(MLEN) b) { \
    return vm##OP##_mm_b##MLEN(b, a, HWY_RVV_AVL(SEW, SHIFT));         \
  }

HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, And, and)

// ------------------------------ AndNot
HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, AndNot, andn)

// ------------------------------ Or
HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, Or, or)

// ------------------------------ Xor
HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, Xor, xor)

// ------------------------------ ExclusiveNeither
HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, ExclusiveNeither, xnor)

#undef HWY_RVV_RETM_ARGMM

// ------------------------------ IfThenElse
#define HWY_RVV_IF_THEN_ELSE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,  \
                             SHIFT, MLEN, NAME, OP)                            \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                           \
      NAME(HWY_RVV_M(MLEN) m, HWY_RVV_V(BASE, SEW, LMUL) yes,                  \
           HWY_RVV_V(BASE, SEW, LMUL) no) {                                    \
    return v##OP##_vvm_##CHAR##SEW##LMUL(no, yes, m, HWY_RVV_AVL(SEW, SHIFT)); \
  }

HWY_RVV_FOREACH(HWY_RVV_IF_THEN_ELSE, IfThenElse, merge, _ALL)

#undef HWY_RVV_IF_THEN_ELSE

// ------------------------------ IfThenElseZero
template <class M, class V>
HWY_API V IfThenElseZero(const M mask, const V yes) {
  return IfThenElse(mask, yes, Zero(DFromV<V>()));
}

// ------------------------------ IfThenZeroElse

#define HWY_RVV_IF_THEN_ZERO_ELSE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, \
                                  LMULH, SHIFT, MLEN, NAME, OP)             \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                        \
      NAME(HWY_RVV_M(MLEN) m, HWY_RVV_V(BASE, SEW, LMUL) no) {              \
    return v##OP##_##CHAR##SEW##LMUL(no, 0, m, HWY_RVV_AVL(SEW, SHIFT));    \
  }

HWY_RVV_FOREACH_UI(HWY_RVV_IF_THEN_ZERO_ELSE, IfThenZeroElse, merge_vxm, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_IF_THEN_ZERO_ELSE, IfThenZeroElse, fmerge_vfm, _ALL)

#undef HWY_RVV_IF_THEN_ZERO_ELSE

// ------------------------------ MaskFromVec

template <class V>
HWY_API auto MaskFromVec(const V v) -> decltype(Eq(v, v)) {
  return detail::NeS(v, 0);
}

template <class D>
using MFromD = decltype(MaskFromVec(Zero(D())));

template <class D, typename MFrom>
HWY_API MFromD<D> RebindMask(const D /*d*/, const MFrom mask) {
  // No need to check lane size/LMUL are the same: if not, casting MFrom to
  // MFromD<D> would fail.
  return mask;
}

// ------------------------------ VecFromMask

namespace detail {
#define HWY_RVV_VEC_FROM_MASK(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                              SHIFT, MLEN, NAME, OP)                           \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                           \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_M(MLEN) m) {                 \
    return v##OP##_##CHAR##SEW##LMUL##_m(m, v0, v0, 1,                         \
                                         HWY_RVV_AVL(SEW, SHIFT));             \
  }

HWY_RVV_FOREACH_UI(HWY_RVV_VEC_FROM_MASK, SubS, sub_vx, _ALL)
#undef HWY_RVV_VEC_FROM_MASK
}  // namespace detail

template <class D, HWY_IF_NOT_FLOAT_D(D)>
HWY_API VFromD<D> VecFromMask(const D d, MFromD<D> mask) {
  return detail::SubS(Zero(d), mask);
}

template <class D, HWY_IF_FLOAT_D(D)>
HWY_API VFromD<D> VecFromMask(const D d, MFromD<D> mask) {
  return BitCast(d, VecFromMask(RebindToUnsigned<D>(), mask));
}

// ------------------------------ IfVecThenElse (MaskFromVec)

template <class V>
HWY_API V IfVecThenElse(const V mask, const V yes, const V no) {
  return IfThenElse(MaskFromVec(mask), yes, no);
}

// ------------------------------ ZeroIfNegative
template <class V>
HWY_API V ZeroIfNegative(const V v) {
  return IfThenZeroElse(detail::LtS(v, 0), v);
}

// ------------------------------ BroadcastSignBit
template <class V>
HWY_API V BroadcastSignBit(const V v) {
  return ShiftRight<sizeof(TFromV<V>) * 8 - 1>(v);
}

// ------------------------------ IfNegativeThenElse (BroadcastSignBit)
template <class V>
HWY_API V IfNegativeThenElse(V v, V yes, V no) {
  static_assert(IsSigned<TFromV<V>>(), "Only works for signed/float");
  const DFromV<V> d;
  const RebindToSigned<decltype(d)> di;

  MFromD<decltype(d)> m =
      MaskFromVec(BitCast(d, BroadcastSignBit(BitCast(di, v))));
  return IfThenElse(m, yes, no);
}

// ------------------------------ FindFirstTrue

#define HWY_RVV_FIND_FIRST_TRUE(SEW, SHIFT, MLEN, NAME, OP)    \
  template <class D>                                           \
  HWY_API intptr_t FindFirstTrue(D d, HWY_RVV_M(MLEN) m) {     \
    static_assert(MLenFromD(d) == MLEN, "Type mismatch");      \
    return vfirst_m_b##MLEN(m, Lanes(d));                      \
  }                                                            \
  template <class D>                                           \
  HWY_API size_t FindKnownFirstTrue(D d, HWY_RVV_M(MLEN) m) {  \
    static_assert(MLenFromD(d) == MLEN, "Type mismatch");      \
    return static_cast<size_t>(vfirst_m_b##MLEN(m, Lanes(d))); \
  }

HWY_RVV_FOREACH_B(HWY_RVV_FIND_FIRST_TRUE, , _)
#undef HWY_RVV_FIND_FIRST_TRUE

// ------------------------------ AllFalse
template <class D>
HWY_API bool AllFalse(D d, MFromD<D> m) {
  return FindFirstTrue(d, m) < 0;
}

// ------------------------------ AllTrue

#define HWY_RVV_ALL_TRUE(SEW, SHIFT, MLEN, NAME, OP)      \
  template <class D>                                      \
  HWY_API bool AllTrue(D d, HWY_RVV_M(MLEN) m) {          \
    static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \
    return AllFalse(d, vmnot_m_b##MLEN(m, Lanes(d)));     \
  }

HWY_RVV_FOREACH_B(HWY_RVV_ALL_TRUE, _, _)
#undef HWY_RVV_ALL_TRUE

// ------------------------------ CountTrue

#define HWY_RVV_COUNT_TRUE(SEW, SHIFT, MLEN, NAME, OP)    \
  template <class D>                                      \
  HWY_API size_t CountTrue(D d, HWY_RVV_M(MLEN) m) {      \
    static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \
    return vcpop_m_b##MLEN(m, Lanes(d));                  \
  }

HWY_RVV_FOREACH_B(HWY_RVV_COUNT_TRUE, _, _)
#undef HWY_RVV_COUNT_TRUE

// ================================================== MEMORY

// ------------------------------ Load

#define HWY_RVV_LOAD(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                     MLEN, NAME, OP)                                         \
  template <size_t N>                                                        \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                         \
      NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d,                                 \
           const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) {                    \
    return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, Lanes(d));                    \
  }
HWY_RVV_FOREACH(HWY_RVV_LOAD, Load, le, _ALL_VIRT)
#undef HWY_RVV_LOAD

// There is no native BF16, treat as uint16_t.
template <size_t N, int kPow2>
HWY_API VFromD<Simd<uint16_t, N, kPow2>> Load(
    Simd<bfloat16_t, N, kPow2> d, const bfloat16_t* HWY_RESTRICT p) {
  return Load(RebindToUnsigned<decltype(d)>(),
              reinterpret_cast<const uint16_t * HWY_RESTRICT>(p));
}

template <size_t N, int kPow2>
HWY_API void Store(VFromD<Simd<uint16_t, N, kPow2>> v,
                   Simd<bfloat16_t, N, kPow2> d, bfloat16_t* HWY_RESTRICT p) {
  Store(v, RebindToUnsigned<decltype(d)>(),
        reinterpret_cast<uint16_t * HWY_RESTRICT>(p));
}

// ------------------------------ LoadU

// RVV only requires lane alignment, not natural alignment of the entire vector.
template <class D>
HWY_API VFromD<D> LoadU(D d, const TFromD<D>* HWY_RESTRICT p) {
  return Load(d, p);
}

// ------------------------------ MaskedLoad

#define HWY_RVV_MASKED_LOAD(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                            SHIFT, MLEN, NAME, OP)                           \
  template <size_t N>                                                        \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                         \
      NAME(HWY_RVV_M(MLEN) m, HWY_RVV_D(BASE, SEW, N, SHIFT) d,              \
           const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) {                    \
    return v##OP##SEW##_v_##CHAR##SEW##LMUL##_m(m, Zero(d), p, Lanes(d));    \
  }
HWY_RVV_FOREACH(HWY_RVV_MASKED_LOAD, MaskedLoad, le, _ALL_VIRT)
#undef HWY_RVV_MASKED_LOAD

// ------------------------------ Store

#define HWY_RVV_STORE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  template <size_t N>                                                         \
  HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v,                             \
                    HWY_RVV_D(BASE, SEW, N, SHIFT) d,                         \
                    HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) {                  \
    return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, v, Lanes(d));                  \
  }
HWY_RVV_FOREACH(HWY_RVV_STORE, Store, se, _ALL_VIRT)
#undef HWY_RVV_STORE

// ------------------------------ BlendedStore

#define HWY_RVV_BLENDED_STORE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                              SHIFT, MLEN, NAME, OP)                           \
  template <size_t N>                                                          \
  HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_M(MLEN) m,           \
                    HWY_RVV_D(BASE, SEW, N, SHIFT) d,                          \
                    HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) {                   \
    return v##OP##SEW##_v_##CHAR##SEW##LMUL##_m(m, p, v, Lanes(d));            \
  }
HWY_RVV_FOREACH(HWY_RVV_BLENDED_STORE, BlendedStore, se, _ALL_VIRT)
#undef HWY_RVV_BLENDED_STORE

namespace detail {

#define HWY_RVV_STOREN(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <size_t N>                                                          \
  HWY_API void NAME(size_t count, HWY_RVV_V(BASE, SEW, LMUL) v,                \
                    HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */,                    \
                    HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) {                   \
    return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, v, count);                      \
  }
HWY_RVV_FOREACH(HWY_RVV_STOREN, StoreN, se, _ALL_VIRT)
#undef HWY_RVV_STOREN

}  // namespace detail

// ------------------------------ StoreU

// RVV only requires lane alignment, not natural alignment of the entire vector.
template <class V, class D>
HWY_API void StoreU(const V v, D d, TFromD<D>* HWY_RESTRICT p) {
  Store(v, d, p);
}

// ------------------------------ Stream
template <class V, class D, typename T>
HWY_API void Stream(const V v, D d, T* HWY_RESTRICT aligned) {
  Store(v, d, aligned);
}

// ------------------------------ ScatterOffset

#define HWY_RVV_SCATTER(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                        SHIFT, MLEN, NAME, OP)                           \
  template <size_t N>                                                    \
  HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v,                        \
                    HWY_RVV_D(BASE, SEW, N, SHIFT) d,                    \
                    HWY_RVV_T(BASE, SEW) * HWY_RESTRICT base,            \
                    HWY_RVV_V(int, SEW, LMUL) offset) {                  \
    return v##OP##ei##SEW##_v_##CHAR##SEW##LMUL(                         \
        base, detail::BitCastToUnsigned(offset), v, Lanes(d));           \
  }
HWY_RVV_FOREACH(HWY_RVV_SCATTER, ScatterOffset, sux, _ALL_VIRT)
#undef HWY_RVV_SCATTER

// ------------------------------ ScatterIndex

template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
HWY_API void ScatterIndex(VFromD<D> v, D d, TFromD<D>* HWY_RESTRICT base,
                          const VFromD<RebindToSigned<D>> index) {
  return ScatterOffset(v, d, base, ShiftLeft<2>(index));
}

template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
HWY_API void ScatterIndex(VFromD<D> v, D d, TFromD<D>* HWY_RESTRICT base,
                          const VFromD<RebindToSigned<D>> index) {
  return ScatterOffset(v, d, base, ShiftLeft<3>(index));
}

// ------------------------------ GatherOffset

#define HWY_RVV_GATHER(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                           \
      NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d,                                   \
           const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT base,                     \
           HWY_RVV_V(int, SEW, LMUL) offset) {                                 \
    return v##OP##ei##SEW##_v_##CHAR##SEW##LMUL(                               \
        base, detail::BitCastToUnsigned(offset), Lanes(d));                    \
  }
HWY_RVV_FOREACH(HWY_RVV_GATHER, GatherOffset, lux, _ALL_VIRT)
#undef HWY_RVV_GATHER

// ------------------------------ GatherIndex

template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
HWY_API VFromD<D> GatherIndex(D d, const TFromD<D>* HWY_RESTRICT base,
                              const VFromD<RebindToSigned<D>> index) {
  return GatherOffset(d, base, ShiftLeft<2>(index));
}

template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
HWY_API VFromD<D> GatherIndex(D d, const TFromD<D>* HWY_RESTRICT base,
                              const VFromD<RebindToSigned<D>> index) {
  return GatherOffset(d, base, ShiftLeft<3>(index));
}

// ------------------------------ LoadInterleaved2

// Per-target flag to prevent generic_ops-inl.h from defining LoadInterleaved2.
#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
#else
#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
#endif

#define HWY_RVV_LOAD2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  template <size_t N>                                                         \
  HWY_API void NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d,                         \
                    const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned,      \
                    HWY_RVV_V(BASE, SEW, LMUL) & v0,                          \
                    HWY_RVV_V(BASE, SEW, LMUL) & v1) {                        \
    v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, unaligned, Lanes(d));       \
  }
// Segments are limited to 8 registers, so we can only go up to LMUL=2.
HWY_RVV_FOREACH(HWY_RVV_LOAD2, LoadInterleaved2, lseg2, _LE2_VIRT)
#undef HWY_RVV_LOAD2

// ------------------------------ LoadInterleaved3

#define HWY_RVV_LOAD3(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  template <size_t N>                                                         \
  HWY_API void NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d,                         \
                    const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned,      \
                    HWY_RVV_V(BASE, SEW, LMUL) & v0,                          \
                    HWY_RVV_V(BASE, SEW, LMUL) & v1,                          \
                    HWY_RVV_V(BASE, SEW, LMUL) & v2) {                        \
    v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, &v2, unaligned, Lanes(d));  \
  }
// Segments are limited to 8 registers, so we can only go up to LMUL=2.
HWY_RVV_FOREACH(HWY_RVV_LOAD3, LoadInterleaved3, lseg3, _LE2_VIRT)
#undef HWY_RVV_LOAD3

// ------------------------------ LoadInterleaved4

#define HWY_RVV_LOAD4(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  template <size_t N>                                                         \
  HWY_API void NAME(                                                          \
      HWY_RVV_D(BASE, SEW, N, SHIFT) d,                                       \
      const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT aligned,                      \
      HWY_RVV_V(BASE, SEW, LMUL) & v0, HWY_RVV_V(BASE, SEW, LMUL) & v1,       \
      HWY_RVV_V(BASE, SEW, LMUL) & v2, HWY_RVV_V(BASE, SEW, LMUL) & v3) {     \
    v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, &v2, &v3, aligned,          \
                                        Lanes(d));                            \
  }
// Segments are limited to 8 registers, so we can only go up to LMUL=2.
HWY_RVV_FOREACH(HWY_RVV_LOAD4, LoadInterleaved4, lseg4, _LE2_VIRT)
#undef HWY_RVV_LOAD4

// ------------------------------ StoreInterleaved2

#define HWY_RVV_STORE2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <size_t N>                                                          \
  HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v0,                             \
                    HWY_RVV_V(BASE, SEW, LMUL) v1,                             \
                    HWY_RVV_D(BASE, SEW, N, SHIFT) d,                          \
                    HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned) {           \
    v##OP##e##SEW##_v_##CHAR##SEW##LMUL(unaligned, v0, v1, Lanes(d));          \
  }
// Segments are limited to 8 registers, so we can only go up to LMUL=2.
HWY_RVV_FOREACH(HWY_RVV_STORE2, StoreInterleaved2, sseg2, _LE2_VIRT)
#undef HWY_RVV_STORE2

// ------------------------------ StoreInterleaved3

#define HWY_RVV_STORE3(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <size_t N>                                                          \
  HWY_API void NAME(                                                           \
      HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_V(BASE, SEW, LMUL) v1,            \
      HWY_RVV_V(BASE, SEW, LMUL) v2, HWY_RVV_D(BASE, SEW, N, SHIFT) d,         \
      HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned) {                         \
    v##OP##e##SEW##_v_##CHAR##SEW##LMUL(unaligned, v0, v1, v2, Lanes(d));      \
  }
// Segments are limited to 8 registers, so we can only go up to LMUL=2.
HWY_RVV_FOREACH(HWY_RVV_STORE3, StoreInterleaved3, sseg3, _LE2_VIRT)
#undef HWY_RVV_STORE3

// ------------------------------ StoreInterleaved4

#define HWY_RVV_STORE4(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <size_t N>                                                          \
  HWY_API void NAME(                                                           \
      HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_V(BASE, SEW, LMUL) v1,            \
      HWY_RVV_V(BASE, SEW, LMUL) v2, HWY_RVV_V(BASE, SEW, LMUL) v3,            \
      HWY_RVV_D(BASE, SEW, N, SHIFT) d,                                        \
      HWY_RVV_T(BASE, SEW) * HWY_RESTRICT aligned) {                           \
    v##OP##e##SEW##_v_##CHAR##SEW##LMUL(aligned, v0, v1, v2, v3, Lanes(d));    \
  }
// Segments are limited to 8 registers, so we can only go up to LMUL=2.
HWY_RVV_FOREACH(HWY_RVV_STORE4, StoreInterleaved4, sseg4, _LE2_VIRT)
#undef HWY_RVV_STORE4

// ================================================== CONVERT

// ------------------------------ PromoteTo

// SEW is for the input so we can use F16 (no-op if not supported).
#define HWY_RVV_PROMOTE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,     \
                        SHIFT, MLEN, NAME, OP)                               \
  template <size_t N>                                                        \
  HWY_API HWY_RVV_V(BASE, SEWD, LMULD) NAME(                                 \
      HWY_RVV_D(BASE, SEWD, N, SHIFT + 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \
    return OP##CHAR##SEWD##LMULD(v, Lanes(d));                               \
  }

HWY_RVV_FOREACH_U08(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT)
HWY_RVV_FOREACH_U16(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT)
HWY_RVV_FOREACH_U32(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT)
HWY_RVV_FOREACH_I08(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT)
HWY_RVV_FOREACH_I16(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT)
HWY_RVV_FOREACH_I32(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT)
HWY_RVV_FOREACH_F16(HWY_RVV_PROMOTE, PromoteTo, vfwcvt_f_f_v_, _EXT_VIRT)
HWY_RVV_FOREACH_F32(HWY_RVV_PROMOTE, PromoteTo, vfwcvt_f_f_v_, _EXT_VIRT)
#undef HWY_RVV_PROMOTE

// The above X-macro cannot handle 4x promotion nor type switching.
// TODO(janwas): use BASE2 arg to allow the latter.
#define HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, LMUL, LMUL_IN, \
                        SHIFT, ADD)                                            \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, BITS, LMUL)                                          \
      PromoteTo(HWY_RVV_D(BASE, BITS, N, SHIFT + ADD) d,                       \
                HWY_RVV_V(BASE_IN, BITS_IN, LMUL_IN) v) {                      \
    return OP##CHAR##BITS##LMUL(v, Lanes(d));                                  \
  }

#define HWY_RVV_PROMOTE_X2(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN)        \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf2, -2, 1) \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf2, -1, 1) \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m2, m1, 0, 1)   \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m4, m2, 1, 1)   \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m8, m4, 2, 1)

#define HWY_RVV_PROMOTE_X4(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN)         \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, mf2, mf8, -3, 2) \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf4, -2, 2)  \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m2, mf2, -1, 2)  \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m4, m1, 0, 2)    \
  HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m8, m2, 1, 2)

HWY_RVV_PROMOTE_X4(vzext_vf4_, uint, u, 32, uint, 8)
HWY_RVV_PROMOTE_X4(vsext_vf4_, int, i, 32, int, 8)

// i32 to f64
HWY_RVV_PROMOTE_X2(vfwcvt_f_x_v_, float, f, 64, int, 32)

#undef HWY_RVV_PROMOTE_X4
#undef HWY_RVV_PROMOTE_X2
#undef HWY_RVV_PROMOTE

// Unsigned to signed: cast for unsigned promote.
template <size_t N, int kPow2>
HWY_API auto PromoteTo(Simd<int16_t, N, kPow2> d,
                       VFromD<Rebind<uint8_t, decltype(d)>> v)
    -> VFromD<decltype(d)> {
  return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v));
}

template <size_t N, int kPow2>
HWY_API auto PromoteTo(Simd<int32_t, N, kPow2> d,
                       VFromD<Rebind<uint8_t, decltype(d)>> v)
    -> VFromD<decltype(d)> {
  return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v));
}

template <size_t N, int kPow2>
HWY_API auto PromoteTo(Simd<int32_t, N, kPow2> d,
                       VFromD<Rebind<uint16_t, decltype(d)>> v)
    -> VFromD<decltype(d)> {
  return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v));
}

template <size_t N, int kPow2>
HWY_API auto PromoteTo(Simd<float32_t, N, kPow2> d,
                       VFromD<Rebind<bfloat16_t, decltype(d)>> v)
    -> VFromD<decltype(d)> {
  const RebindToSigned<decltype(d)> di32;
  const Rebind<uint16_t, decltype(d)> du16;
  return BitCast(d, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v))));
}

// ------------------------------ DemoteTo U

// SEW is for the source so we can use _DEMOTE.
#define HWY_RVV_DEMOTE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME(                                   \
      HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) {   \
    return OP##CHAR##SEWH##LMULH(v, 0, Lanes(d));                              \
  }                                                                            \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME##Shr16(                            \
      HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) {   \
    return OP##CHAR##SEWH##LMULH(v, 16, Lanes(d));                             \
  }

// Unsigned -> unsigned (also used for bf16)
namespace detail {
HWY_RVV_FOREACH_U16(HWY_RVV_DEMOTE, DemoteTo, vnclipu_wx_, _DEMOTE_VIRT)
HWY_RVV_FOREACH_U32(HWY_RVV_DEMOTE, DemoteTo, vnclipu_wx_, _DEMOTE_VIRT)
}  // namespace detail

// SEW is for the source so we can use _DEMOTE.
#define HWY_RVV_DEMOTE_I_TO_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                              SHIFT, MLEN, NAME, OP)                           \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(uint, SEWH, LMULH) NAME(                                   \
      HWY_RVV_D(uint, SEWH, N, SHIFT - 1) d, HWY_RVV_V(int, SEW, LMUL) v) {    \
    /* First clamp negative numbers to zero to match x86 packus. */            \
    return detail::DemoteTo(d, detail::BitCastToUnsigned(detail::MaxS(v, 0))); \
  }
HWY_RVV_FOREACH_I32(HWY_RVV_DEMOTE_I_TO_U, DemoteTo, _, _DEMOTE_VIRT)
HWY_RVV_FOREACH_I16(HWY_RVV_DEMOTE_I_TO_U, DemoteTo, _, _DEMOTE_VIRT)
#undef HWY_RVV_DEMOTE_I_TO_U

template <size_t N>
HWY_API vuint8mf8_t DemoteTo(Simd<uint8_t, N, -3> d, const vint32mf2_t v) {
  return vnclipu_wx_u8mf8(DemoteTo(Simd<uint16_t, N, -2>(), v), 0, Lanes(d));
}
template <size_t N>
HWY_API vuint8mf4_t DemoteTo(Simd<uint8_t, N, -2> d, const vint32m1_t v) {
  return vnclipu_wx_u8mf4(DemoteTo(Simd<uint16_t, N, -1>(), v), 0, Lanes(d));
}
template <size_t N>
HWY_API vuint8mf2_t DemoteTo(Simd<uint8_t, N, -1> d, const vint32m2_t v) {
  return vnclipu_wx_u8mf2(DemoteTo(Simd<uint16_t, N, 0>(), v), 0, Lanes(d));
}
template <size_t N>
HWY_API vuint8m1_t DemoteTo(Simd<uint8_t, N, 0> d, const vint32m4_t v) {
  return vnclipu_wx_u8m1(DemoteTo(Simd<uint16_t, N, 1>(), v), 0, Lanes(d));
}
template <size_t N>
HWY_API vuint8m2_t DemoteTo(Simd<uint8_t, N, 1> d, const vint32m8_t v) {
  return vnclipu_wx_u8m2(DemoteTo(Simd<uint16_t, N, 2>(), v), 0, Lanes(d));
}

HWY_API vuint8mf8_t U8FromU32(const vuint32mf2_t v) {
  const size_t avl = Lanes(ScalableTag<uint8_t, -3>());
  return vnclipu_wx_u8mf8(vnclipu_wx_u16mf4(v, 0, avl), 0, avl);
}
HWY_API vuint8mf4_t U8FromU32(const vuint32m1_t v) {
  const size_t avl = Lanes(ScalableTag<uint8_t, -2>());
  return vnclipu_wx_u8mf4(vnclipu_wx_u16mf2(v, 0, avl), 0, avl);
}
HWY_API vuint8mf2_t U8FromU32(const vuint32m2_t v) {
  const size_t avl = Lanes(ScalableTag<uint8_t, -1>());
  return vnclipu_wx_u8mf2(vnclipu_wx_u16m1(v, 0, avl), 0, avl);
}
HWY_API vuint8m1_t U8FromU32(const vuint32m4_t v) {
  const size_t avl = Lanes(ScalableTag<uint8_t, 0>());
  return vnclipu_wx_u8m1(vnclipu_wx_u16m2(v, 0, avl), 0, avl);
}
HWY_API vuint8m2_t U8FromU32(const vuint32m8_t v) {
  const size_t avl = Lanes(ScalableTag<uint8_t, 1>());
  return vnclipu_wx_u8m2(vnclipu_wx_u16m4(v, 0, avl), 0, avl);
}

// ------------------------------ Truncations

template <size_t N>
HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d,
                               const VFromD<Simd<uint64_t, N, 0>> v) {
  const size_t avl = Lanes(d);
  const vuint64m1_t v1 = vand(v, 0xFF, avl);
  const vuint32mf2_t v2 = vnclipu_wx_u32mf2(v1, 0, avl);
  const vuint16mf4_t v3 = vnclipu_wx_u16mf4(v2, 0, avl);
  return vnclipu_wx_u8mf8(v3, 0, avl);
}

template <size_t N>
HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d,
                               const VFromD<Simd<uint64_t, N, 1>> v) {
  const size_t avl = Lanes(d);
  const vuint64m2_t v1 = vand(v, 0xFF, avl);
  const vuint32m1_t v2 = vnclipu_wx_u32m1(v1, 0, avl);
  const vuint16mf2_t v3 = vnclipu_wx_u16mf2(v2, 0, avl);
  return vnclipu_wx_u8mf4(v3, 0, avl);
}

template <size_t N>
HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d,
                               const VFromD<Simd<uint64_t, N, 2>> v) {
  const size_t avl = Lanes(d);
  const vuint64m4_t v1 = vand(v, 0xFF, avl);
  const vuint32m2_t v2 = vnclipu_wx_u32m2(v1, 0, avl);
  const vuint16m1_t v3 = vnclipu_wx_u16m1(v2, 0, avl);
  return vnclipu_wx_u8mf2(v3, 0, avl);
}

template <size_t N>
HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d,
                              const VFromD<Simd<uint64_t, N, 3>> v) {
  const size_t avl = Lanes(d);
  const vuint64m8_t v1 = vand(v, 0xFF, avl);
  const vuint32m4_t v2 = vnclipu_wx_u32m4(v1, 0, avl);
  const vuint16m2_t v3 = vnclipu_wx_u16m2(v2, 0, avl);
  return vnclipu_wx_u8m1(v3, 0, avl);
}

template <size_t N>
HWY_API vuint16mf4_t TruncateTo(Simd<uint16_t, N, -2> d,
                                const VFromD<Simd<uint64_t, N, 0>> v) {
  const size_t avl = Lanes(d);
  const vuint64m1_t v1 = vand(v, 0xFFFF, avl);
  const vuint32mf2_t v2 = vnclipu_wx_u32mf2(v1, 0, avl);
  return vnclipu_wx_u16mf4(v2, 0, avl);
}

template <size_t N>
HWY_API vuint16mf2_t TruncateTo(Simd<uint16_t, N, -1> d,
                                const VFromD<Simd<uint64_t, N, 1>> v) {
  const size_t avl = Lanes(d);
  const vuint64m2_t v1 = vand(v, 0xFFFF, avl);
  const vuint32m1_t v2 = vnclipu_wx_u32m1(v1, 0, avl);
  return vnclipu_wx_u16mf2(v2, 0, avl);
}

template <size_t N>
HWY_API vuint16m1_t TruncateTo(Simd<uint16_t, N, 0> d,
                               const VFromD<Simd<uint64_t, N, 2>> v) {
  const size_t avl = Lanes(d);
  const vuint64m4_t v1 = vand(v, 0xFFFF, avl);
  const vuint32m2_t v2 = vnclipu_wx_u32m2(v1, 0, avl);
  return vnclipu_wx_u16m1(v2, 0, avl);
}

template <size_t N>
HWY_API vuint16m2_t TruncateTo(Simd<uint16_t, N, 1> d,
                               const VFromD<Simd<uint64_t, N, 3>> v) {
  const size_t avl = Lanes(d);
  const vuint64m8_t v1 = vand(v, 0xFFFF, avl);
  const vuint32m4_t v2 = vnclipu_wx_u32m4(v1, 0, avl);
  return vnclipu_wx_u16m2(v2, 0, avl);
}

template <size_t N>
HWY_API vuint32mf2_t TruncateTo(Simd<uint32_t, N, -1> d,
                                const VFromD<Simd<uint64_t, N, 0>> v) {
  const size_t avl = Lanes(d);
  const vuint64m1_t v1 = vand(v, 0xFFFFFFFFu, avl);
  return vnclipu_wx_u32mf2(v1, 0, avl);
}

template <size_t N>
HWY_API vuint32m1_t TruncateTo(Simd<uint32_t, N, 0> d,
                               const VFromD<Simd<uint64_t, N, 1>> v) {
  const size_t avl = Lanes(d);
  const vuint64m2_t v1 = vand(v, 0xFFFFFFFFu, avl);
  return vnclipu_wx_u32m1(v1, 0, avl);
}

template <size_t N>
HWY_API vuint32m2_t TruncateTo(Simd<uint32_t, N, 1> d,
                               const VFromD<Simd<uint64_t, N, 2>> v) {
  const size_t avl = Lanes(d);
  const vuint64m4_t v1 = vand(v, 0xFFFFFFFFu, avl);
  return vnclipu_wx_u32m2(v1, 0, avl);
}

template <size_t N>
HWY_API vuint32m4_t TruncateTo(Simd<uint32_t, N, 2> d,
                               const VFromD<Simd<uint64_t, N, 3>> v) {
  const size_t avl = Lanes(d);
  const vuint64m8_t v1 = vand(v, 0xFFFFFFFFu, avl);
  return vnclipu_wx_u32m4(v1, 0, avl);
}

template <size_t N>
HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d,
                               const VFromD<Simd<uint32_t, N, -1>> v) {
  const size_t avl = Lanes(d);
  const vuint32mf2_t v1 = vand(v, 0xFF, avl);
  const vuint16mf4_t v2 = vnclipu_wx_u16mf4(v1, 0, avl);
  return vnclipu_wx_u8mf8(v2, 0, avl);
}

template <size_t N>
HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d,
                               const VFromD<Simd<uint32_t, N, 0>> v) {
  const size_t avl = Lanes(d);
  const vuint32m1_t v1 = vand(v, 0xFF, avl);
  const vuint16mf2_t v2 = vnclipu_wx_u16mf2(v1, 0, avl);
  return vnclipu_wx_u8mf4(v2, 0, avl);
}

template <size_t N>
HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d,
                               const VFromD<Simd<uint32_t, N, 1>> v) {
  const size_t avl = Lanes(d);
  const vuint32m2_t v1 = vand(v, 0xFF, avl);
  const vuint16m1_t v2 = vnclipu_wx_u16m1(v1, 0, avl);
  return vnclipu_wx_u8mf2(v2, 0, avl);
}

template <size_t N>
HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d,
                              const VFromD<Simd<uint32_t, N, 2>> v) {
  const size_t avl = Lanes(d);
  const vuint32m4_t v1 = vand(v, 0xFF, avl);
  const vuint16m2_t v2 = vnclipu_wx_u16m2(v1, 0, avl);
  return vnclipu_wx_u8m1(v2, 0, avl);
}

template <size_t N>
HWY_API vuint8m2_t TruncateTo(Simd<uint8_t, N, 1> d,
                              const VFromD<Simd<uint32_t, N, 3>> v) {
  const size_t avl = Lanes(d);
  const vuint32m8_t v1 = vand(v, 0xFF, avl);
  const vuint16m4_t v2 = vnclipu_wx_u16m4(v1, 0, avl);
  return vnclipu_wx_u8m2(v2, 0, avl);
}

template <size_t N>
HWY_API vuint16mf4_t TruncateTo(Simd<uint16_t, N, -2> d,
                                const VFromD<Simd<uint32_t, N, -1>> v) {
  const size_t avl = Lanes(d);
  const vuint32mf2_t v1 = vand(v, 0xFFFF, avl);
  return vnclipu_wx_u16mf4(v1, 0, avl);
}

template <size_t N>
HWY_API vuint16mf2_t TruncateTo(Simd<uint16_t, N, -1> d,
                                const VFromD<Simd<uint32_t, N, 0>> v) {
  const size_t avl = Lanes(d);
  const vuint32m1_t v1 = vand(v, 0xFFFF, avl);
  return vnclipu_wx_u16mf2(v1, 0, avl);
}

template <size_t N>
HWY_API vuint16m1_t TruncateTo(Simd<uint16_t, N, 0> d,
                               const VFromD<Simd<uint32_t, N, 1>> v) {
  const size_t avl = Lanes(d);
  const vuint32m2_t v1 = vand(v, 0xFFFF, avl);
  return vnclipu_wx_u16m1(v1, 0, avl);
}

template <size_t N>
HWY_API vuint16m2_t TruncateTo(Simd<uint16_t, N, 1> d,
                               const VFromD<Simd<uint32_t, N, 2>> v) {
  const size_t avl = Lanes(d);
  const vuint32m4_t v1 = vand(v, 0xFFFF, avl);
  return vnclipu_wx_u16m2(v1, 0, avl);
}

template <size_t N>
HWY_API vuint16m4_t TruncateTo(Simd<uint16_t, N, 2> d,
                               const VFromD<Simd<uint32_t, N, 3>> v) {
  const size_t avl = Lanes(d);
  const vuint32m8_t v1 = vand(v, 0xFFFF, avl);
  return vnclipu_wx_u16m4(v1, 0, avl);
}

template <size_t N>
HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d,
                               const VFromD<Simd<uint16_t, N, -2>> v) {
  const size_t avl = Lanes(d);
  const vuint16mf4_t v1 = vand(v, 0xFF, avl);
  return vnclipu_wx_u8mf8(v1, 0, avl);
}

template <size_t N>
HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d,
                               const VFromD<Simd<uint16_t, N, -1>> v) {
  const size_t avl = Lanes(d);
  const vuint16mf2_t v1 = vand(v, 0xFF, avl);
  return vnclipu_wx_u8mf4(v1, 0, avl);
}

template <size_t N>
HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d,
                               const VFromD<Simd<uint16_t, N, 0>> v) {
  const size_t avl = Lanes(d);
  const vuint16m1_t v1 = vand(v, 0xFF, avl);
  return vnclipu_wx_u8mf2(v1, 0, avl);
}

template <size_t N>
HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d,
                              const VFromD<Simd<uint16_t, N, 1>> v) {
  const size_t avl = Lanes(d);
  const vuint16m2_t v1 = vand(v, 0xFF, avl);
  return vnclipu_wx_u8m1(v1, 0, avl);
}

template <size_t N>
HWY_API vuint8m2_t TruncateTo(Simd<uint8_t, N, 1> d,
                              const VFromD<Simd<uint16_t, N, 2>> v) {
  const size_t avl = Lanes(d);
  const vuint16m4_t v1 = vand(v, 0xFF, avl);
  return vnclipu_wx_u8m2(v1, 0, avl);
}

template <size_t N>
HWY_API vuint8m4_t TruncateTo(Simd<uint8_t, N, 2> d,
                              const VFromD<Simd<uint16_t, N, 3>> v) {
  const size_t avl = Lanes(d);
  const vuint16m8_t v1 = vand(v, 0xFF, avl);
  return vnclipu_wx_u8m4(v1, 0, avl);
}

// ------------------------------ DemoteTo I

HWY_RVV_FOREACH_I16(HWY_RVV_DEMOTE, DemoteTo, vnclip_wx_, _DEMOTE_VIRT)
HWY_RVV_FOREACH_I32(HWY_RVV_DEMOTE, DemoteTo, vnclip_wx_, _DEMOTE_VIRT)

template <size_t N>
HWY_API vint8mf8_t DemoteTo(Simd<int8_t, N, -3> d, const vint32mf2_t v) {
  return DemoteTo(d, DemoteTo(Simd<int16_t, N, -2>(), v));
}
template <size_t N>
HWY_API vint8mf4_t DemoteTo(Simd<int8_t, N, -2> d, const vint32m1_t v) {
  return DemoteTo(d, DemoteTo(Simd<int16_t, N, -1>(), v));
}
template <size_t N>
HWY_API vint8mf2_t DemoteTo(Simd<int8_t, N, -1> d, const vint32m2_t v) {
  return DemoteTo(d, DemoteTo(Simd<int16_t, N, 0>(), v));
}
template <size_t N>
HWY_API vint8m1_t DemoteTo(Simd<int8_t, N, 0> d, const vint32m4_t v) {
  return DemoteTo(d, DemoteTo(Simd<int16_t, N, 1>(), v));
}
template <size_t N>
HWY_API vint8m2_t DemoteTo(Simd<int8_t, N, 1> d, const vint32m8_t v) {
  return DemoteTo(d, DemoteTo(Simd<int16_t, N, 2>(), v));
}

#undef HWY_RVV_DEMOTE

// ------------------------------ DemoteTo F

// SEW is for the source so we can use _DEMOTE.
#define HWY_RVV_DEMOTE_F(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,    \
                         SHIFT, MLEN, NAME, OP)                              \
  template <size_t N>                                                        \
  HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME(                                 \
      HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \
    return OP##SEWH##LMULH(v, Lanes(d));                                     \
  }

#if HWY_HAVE_FLOAT16
HWY_RVV_FOREACH_F32(HWY_RVV_DEMOTE_F, DemoteTo, vfncvt_rod_f_f_w_f,
                    _DEMOTE_VIRT)
#endif
HWY_RVV_FOREACH_F64(HWY_RVV_DEMOTE_F, DemoteTo, vfncvt_rod_f_f_w_f,
                    _DEMOTE_VIRT)
#undef HWY_RVV_DEMOTE_F

// TODO(janwas): add BASE2 arg to allow generating this via DEMOTE_F.
template <size_t N>
HWY_API vint32mf2_t DemoteTo(Simd<int32_t, N, -2> d, const vfloat64m1_t v) {
  return vfncvt_rtz_x_f_w_i32mf2(v, Lanes(d));
}
template <size_t N>
HWY_API vint32mf2_t DemoteTo(Simd<int32_t, N, -1> d, const vfloat64m1_t v) {
  return vfncvt_rtz_x_f_w_i32mf2(v, Lanes(d));
}
template <size_t N>
HWY_API vint32m1_t DemoteTo(Simd<int32_t, N, 0> d, const vfloat64m2_t v) {
  return vfncvt_rtz_x_f_w_i32m1(v, Lanes(d));
}
template <size_t N>
HWY_API vint32m2_t DemoteTo(Simd<int32_t, N, 1> d, const vfloat64m4_t v) {
  return vfncvt_rtz_x_f_w_i32m2(v, Lanes(d));
}
template <size_t N>
HWY_API vint32m4_t DemoteTo(Simd<int32_t, N, 2> d, const vfloat64m8_t v) {
  return vfncvt_rtz_x_f_w_i32m4(v, Lanes(d));
}

template <size_t N, int kPow2>
HWY_API VFromD<Simd<uint16_t, N, kPow2>> DemoteTo(
    Simd<bfloat16_t, N, kPow2> d, VFromD<Simd<float, N, kPow2 + 1>> v) {
  const RebindToUnsigned<decltype(d)> du16;
  const Rebind<uint32_t, decltype(d)> du32;
  return detail::DemoteToShr16(du16, BitCast(du32, v));
}

// ------------------------------ ConvertTo F

#define HWY_RVV_CONVERT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,       \
                        SHIFT, MLEN, NAME, OP)                                 \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) ConvertTo(                                \
      HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_V(int, SEW, LMUL) v) {         \
    return vfcvt_f_x_v_f##SEW##LMUL(v, Lanes(d));                              \
  }                                                                            \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) ConvertTo(                                \
      HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_V(uint, SEW, LMUL) v) {\
    return vfcvt_f_xu_v_f##SEW##LMUL(v, Lanes(d));                             \
  }                                                                            \
  /* Truncates (rounds toward zero). */                                        \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(int, SEW, LMUL) ConvertTo(HWY_RVV_D(int, SEW, N, SHIFT) d, \
                                              HWY_RVV_V(BASE, SEW, LMUL) v) {  \
    return vfcvt_rtz_x_f_v_i##SEW##LMUL(v, Lanes(d));                          \
  }                                                                            \
// API only requires f32 but we provide f64 for internal use.
HWY_RVV_FOREACH_F(HWY_RVV_CONVERT, _, _, _ALL_VIRT)
#undef HWY_RVV_CONVERT

// Uses default rounding mode. Must be separate because there is no D arg.
#define HWY_RVV_NEAREST(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,       \
                        SHIFT, MLEN, NAME, OP)                                 \
  HWY_API HWY_RVV_V(int, SEW, LMUL) NearestInt(HWY_RVV_V(BASE, SEW, LMUL) v) { \
    return vfcvt_x_f_v_i##SEW##LMUL(v, HWY_RVV_AVL(SEW, SHIFT));               \
  }
HWY_RVV_FOREACH_F(HWY_RVV_NEAREST, _, _, _ALL)
#undef HWY_RVV_NEAREST

// ================================================== COMBINE

namespace detail {

// For x86-compatible behaviour mandated by Highway API: TableLookupBytes
// offsets are implicitly relative to the start of their 128-bit block.
template <typename T, size_t N, int kPow2>
size_t LanesPerBlock(Simd<T, N, kPow2> d) {
  size_t lpb = 16 / sizeof(T);
  if (IsFull(d)) return lpb;
  // Also honor the user-specified (constexpr) N limit.
  lpb = HWY_MIN(lpb, N);
  // No fraction, we're done.
  if (kPow2 >= 0) return lpb;
  // Fractional LMUL: Lanes(d) may be smaller than lpb, so honor that.
  return HWY_MIN(lpb, Lanes(d));
}

template <class D, class V>
HWY_INLINE V OffsetsOf128BitBlocks(const D d, const V iota0) {
  using T = MakeUnsigned<TFromD<D>>;
  return AndS(iota0, static_cast<T>(~(LanesPerBlock(d) - 1)));
}

template <size_t kLanes, class D>
HWY_INLINE MFromD<D> FirstNPerBlock(D /* tag */) {
  const RebindToUnsigned<D> du;
  const RebindToSigned<D> di;
  using TU = TFromD<decltype(du)>;
  const auto idx_mod = AndS(Iota0(du), static_cast<TU>(LanesPerBlock(du) - 1));
  return LtS(BitCast(di, idx_mod), static_cast<TFromD<decltype(di)>>(kLanes));
}

// vector = f(vector, vector, size_t)
#define HWY_RVV_SLIDE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                          \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) dst, HWY_RVV_V(BASE, SEW, LMUL) src,    \
           size_t lanes) {                                                    \
    return v##OP##_vx_##CHAR##SEW##LMUL(dst, src, lanes,                      \
                                        HWY_RVV_AVL(SEW, SHIFT));             \
  }

HWY_RVV_FOREACH(HWY_RVV_SLIDE, SlideUp, slideup, _ALL)
HWY_RVV_FOREACH(HWY_RVV_SLIDE, SlideDown, slidedown, _ALL)

#undef HWY_RVV_SLIDE

}  // namespace detail

// ------------------------------ ConcatUpperLower
template <class D, class V>
HWY_API V ConcatUpperLower(D d, const V hi, const V lo) {
  return IfThenElse(FirstN(d, Lanes(d) / 2), lo, hi);
}

// ------------------------------ ConcatLowerLower
template <class D, class V>
HWY_API V ConcatLowerLower(D d, const V hi, const V lo) {
  return detail::SlideUp(lo, hi, Lanes(d) / 2);
}

// ------------------------------ ConcatUpperUpper
template <class D, class V>
HWY_API V ConcatUpperUpper(D d, const V hi, const V lo) {
  // Move upper half into lower
  const auto lo_down = detail::SlideDown(lo, lo, Lanes(d) / 2);
  return ConcatUpperLower(d, hi, lo_down);
}

// ------------------------------ ConcatLowerUpper
template <class D, class V>
HWY_API V ConcatLowerUpper(D d, const V hi, const V lo) {
  // Move half of both inputs to the other half
  const auto hi_up = detail::SlideUp(hi, hi, Lanes(d) / 2);
  const auto lo_down = detail::SlideDown(lo, lo, Lanes(d) / 2);
  return ConcatUpperLower(d, hi_up, lo_down);
}

// ------------------------------ Combine
template <class D2, class V>
HWY_API VFromD<D2> Combine(D2 d2, const V hi, const V lo) {
  return detail::SlideUp(detail::Ext(d2, lo), detail::Ext(d2, hi),
                         Lanes(d2) / 2);
}

// ------------------------------ ZeroExtendVector

template <class D2, class V>
HWY_API VFromD<D2> ZeroExtendVector(D2 d2, const V lo) {
  return Combine(d2, Xor(lo, lo), lo);
}

// ------------------------------ Lower/UpperHalf

namespace detail {

// RVV may only support LMUL >= SEW/64; returns whether that holds for D. Note
// that SEW = sizeof(T)*8 and LMUL = 1 << Pow2().
template <class D>
constexpr bool IsSupportedLMUL(D d) {
  return (size_t{1} << (Pow2(d) + 3)) >= sizeof(TFromD<D>);
}

}  // namespace detail

// If IsSupportedLMUL, just 'truncate' i.e. halve LMUL.
template <class DH, hwy::EnableIf<detail::IsSupportedLMUL(DH())>* = nullptr>
HWY_API VFromD<DH> LowerHalf(const DH /* tag */, const VFromD<Twice<DH>> v) {
  return detail::Trunc(v);
}

// Otherwise, there is no corresponding intrinsic type (e.g. vuint64mf2_t), and
// the hardware may set "vill" if we attempt such an LMUL. However, the V
// extension on application processors requires Zvl128b, i.e. VLEN >= 128, so it
// still makes sense to have half of an SEW=64 vector. We instead just return
// the vector, and rely on the kPow2 in DH to halve the return value of Lanes().
template <class DH, class V,
          hwy::EnableIf<!detail::IsSupportedLMUL(DH())>* = nullptr>
HWY_API V LowerHalf(const DH /* tag */, const V v) {
  return v;
}

// Same, but without D arg
template <class V>
HWY_API VFromD<Half<DFromV<V>>> LowerHalf(const V v) {
  return LowerHalf(Half<DFromV<V>>(), v);
}

template <class DH>
HWY_API VFromD<DH> UpperHalf(const DH d2, const VFromD<Twice<DH>> v) {
  return LowerHalf(d2, detail::SlideDown(v, v, Lanes(d2)));
}

// ================================================== SWIZZLE

namespace detail {
// Special instruction for 1 lane is presumably faster?
#define HWY_RVV_SLIDE1(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) {      \
    return v##OP##_##CHAR##SEW##LMUL(v, 0, HWY_RVV_AVL(SEW, SHIFT));           \
  }

HWY_RVV_FOREACH_UI3264(HWY_RVV_SLIDE1, Slide1Up, slide1up_vx, _ALL)
HWY_RVV_FOREACH_F3264(HWY_RVV_SLIDE1, Slide1Up, fslide1up_vf, _ALL)
HWY_RVV_FOREACH_UI3264(HWY_RVV_SLIDE1, Slide1Down, slide1down_vx, _ALL)
HWY_RVV_FOREACH_F3264(HWY_RVV_SLIDE1, Slide1Down, fslide1down_vf, _ALL)
#undef HWY_RVV_SLIDE1
}  // namespace detail

// ------------------------------ GetLane

#define HWY_RVV_GET_LANE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                         SHIFT, MLEN, NAME, OP)                           \
  HWY_API HWY_RVV_T(BASE, SEW) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) {       \
    return v##OP##_s_##CHAR##SEW##LMUL##_##CHAR##SEW(v); /* no AVL */     \
  }

HWY_RVV_FOREACH_UI(HWY_RVV_GET_LANE, GetLane, mv_x, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_GET_LANE, GetLane, fmv_f, _ALL)
#undef HWY_RVV_GET_LANE

// ------------------------------ ExtractLane
template <class V>
HWY_API TFromV<V> ExtractLane(const V v, size_t i) {
  return GetLane(detail::SlideDown(v, v, i));
}

// ------------------------------ InsertLane

template <class V, HWY_IF_NOT_LANE_SIZE_V(V, 1)>
HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) {
  const DFromV<V> d;
  const RebindToUnsigned<decltype(d)> du;  // Iota0 is unsigned only
  using TU = TFromD<decltype(du)>;
  const auto is_i = detail::EqS(detail::Iota0(du), static_cast<TU>(i));
  return IfThenElse(RebindMask(d, is_i), Set(d, t), v);
}

namespace detail {
HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGM, SetOnlyFirst, sof)
}  // namespace detail

// For 8-bit lanes, Iota0 might overflow.
template <class V, HWY_IF_LANE_SIZE_V(V, 1)>
HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) {
  const DFromV<V> d;
  const auto zero = Zero(d);
  const auto one = Set(d, 1);
  const auto ge_i = Eq(detail::SlideUp(zero, one, i), one);
  const auto is_i = detail::SetOnlyFirst(ge_i);
  return IfThenElse(RebindMask(d, is_i), Set(d, t), v);
}

// ------------------------------ OddEven
template <class V>
HWY_API V OddEven(const V a, const V b) {
  const RebindToUnsigned<DFromV<V>> du;  // Iota0 is unsigned only
  const auto is_even = detail::EqS(detail::AndS(detail::Iota0(du), 1), 0);
  return IfThenElse(is_even, b, a);
}

// ------------------------------ DupEven (OddEven)
template <class V>
HWY_API V DupEven(const V v) {
  const V up = detail::Slide1Up(v);
  return OddEven(up, v);
}

// ------------------------------ DupOdd (OddEven)
template <class V>
HWY_API V DupOdd(const V v) {
  const V down = detail::Slide1Down(v);
  return OddEven(v, down);
}

// ------------------------------ OddEvenBlocks
template <class V>
HWY_API V OddEvenBlocks(const V a, const V b) {
  const RebindToUnsigned<DFromV<V>> du;  // Iota0 is unsigned only
  constexpr size_t kShift = CeilLog2(16 / sizeof(TFromV<V>));
  const auto idx_block = ShiftRight<kShift>(detail::Iota0(du));
  const auto is_even = detail::EqS(detail::AndS(idx_block, 1), 0);
  return IfThenElse(is_even, b, a);
}

// ------------------------------ SwapAdjacentBlocks

template <class V>
HWY_API V SwapAdjacentBlocks(const V v) {
  const DFromV<V> d;
  const size_t lpb = detail::LanesPerBlock(d);
  const V down = detail::SlideDown(v, v, lpb);
  const V up = detail::SlideUp(v, v, lpb);
  return OddEvenBlocks(up, down);
}

// ------------------------------ TableLookupLanes

template <class D, class VI>
HWY_API VFromD<RebindToUnsigned<D>> IndicesFromVec(D d, VI vec) {
  static_assert(sizeof(TFromD<D>) == sizeof(TFromV<VI>), "Index != lane");
  const RebindToUnsigned<decltype(d)> du;  // instead of <D>: avoids unused d.
  const auto indices = BitCast(du, vec);
#if HWY_IS_DEBUG_BUILD
  HWY_DASSERT(AllTrue(du, detail::LtS(indices, Lanes(d))));
#endif
  return indices;
}

template <class D, typename TI>
HWY_API VFromD<RebindToUnsigned<D>> SetTableIndices(D d, const TI* idx) {
  static_assert(sizeof(TFromD<D>) == sizeof(TI), "Index size must match lane");
  return IndicesFromVec(d, LoadU(Rebind<TI, D>(), idx));
}

// <32bit are not part of Highway API, but used in Broadcast. This limits VLMAX
// to 2048! We could instead use vrgatherei16.
#define HWY_RVV_TABLE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                      MLEN, NAME, OP)                                         \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                          \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(uint, SEW, LMUL) idx) {    \
    return v##OP##_vv_##CHAR##SEW##LMUL(v, idx, HWY_RVV_AVL(SEW, SHIFT));     \
  }

HWY_RVV_FOREACH(HWY_RVV_TABLE, TableLookupLanes, rgather, _ALL)
#undef HWY_RVV_TABLE

// ------------------------------ ConcatOdd (TableLookupLanes)
template <class D, class V>
HWY_API V ConcatOdd(D d, const V hi, const V lo) {
  const RebindToUnsigned<decltype(d)> du;  // Iota0 is unsigned only
  const auto iota = detail::Iota0(du);
  const auto idx = detail::AddS(Add(iota, iota), 1);
  const auto lo_odd = TableLookupLanes(lo, idx);
  const auto hi_odd = TableLookupLanes(hi, idx);
  return detail::SlideUp(lo_odd, hi_odd, Lanes(d) / 2);
}

// ------------------------------ ConcatEven (TableLookupLanes)
template <class D, class V>
HWY_API V ConcatEven(D d, const V hi, const V lo) {
  const RebindToUnsigned<decltype(d)> du;  // Iota0 is unsigned only
  const auto iota = detail::Iota0(du);
  const auto idx = Add(iota, iota);
  const auto lo_even = TableLookupLanes(lo, idx);
  const auto hi_even = TableLookupLanes(hi, idx);
  return detail::SlideUp(lo_even, hi_even, Lanes(d) / 2);
}

// ------------------------------ Reverse (TableLookupLanes)
template <class D>
HWY_API VFromD<D> Reverse(D /* tag */, VFromD<D> v) {
  const RebindToUnsigned<D> du;
  using TU = TFromD<decltype(du)>;
  const size_t N = Lanes(du);
  const auto idx =
      detail::ReverseSubS(detail::Iota0(du), static_cast<TU>(N - 1));
  return TableLookupLanes(v, idx);
}

// ------------------------------ Reverse2 (RotateRight, OddEven)

// Shifting and adding requires fewer instructions than blending, but casting to
// u32 only works for LMUL in [1/2, 8].
template <class D, HWY_IF_LANE_SIZE_D(D, 2), HWY_RVV_IF_POW2_IN(D, -1, 3)>
HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
  const Repartition<uint32_t, D> du32;
  return BitCast(d, RotateRight<16>(BitCast(du32, v)));
}
// For LMUL < 1/2, we can extend and then truncate.
template <class D, HWY_IF_LANE_SIZE_D(D, 2), HWY_RVV_IF_POW2_IN(D, -3, -2)>
HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
  const Twice<decltype(d)> d2;
  const Twice<decltype(d2)> d4;
  const Repartition<uint32_t, decltype(d4)> du32;
  const auto vx = detail::Ext(d4, detail::Ext(d2, v));
  const auto rx = BitCast(d4, RotateRight<16>(BitCast(du32, vx)));
  return detail::Trunc(detail::Trunc(rx));
}

// Shifting and adding requires fewer instructions than blending, but casting to
// u64 does not work for LMUL < 1.
template <class D, HWY_IF_LANE_SIZE_D(D, 4), HWY_RVV_IF_POW2_IN(D, 0, 3)>
HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
  const Repartition<uint64_t, decltype(d)> du64;
  return BitCast(d, RotateRight<32>(BitCast(du64, v)));
}

// For fractions, we can extend and then truncate.
template <class D, HWY_IF_LANE_SIZE_D(D, 4), HWY_RVV_IF_POW2_IN(D, -2, -1)>
HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
  const Twice<decltype(d)> d2;
  const Twice<decltype(d2)> d4;
  const Repartition<uint64_t, decltype(d4)> du64;
  const auto vx = detail::Ext(d4, detail::Ext(d2, v));
  const auto rx = BitCast(d4, RotateRight<32>(BitCast(du64, vx)));
  return detail::Trunc(detail::Trunc(rx));
}

template <class D, class V = VFromD<D>, HWY_IF_LANE_SIZE_D(D, 8)>
HWY_API V Reverse2(D /* tag */, const V v) {
  const V up = detail::Slide1Up(v);
  const V down = detail::Slide1Down(v);
  return OddEven(up, down);
}

// ------------------------------ Reverse4 (TableLookupLanes)

template <class D>
HWY_API VFromD<D> Reverse4(D d, const VFromD<D> v) {
  const RebindToUnsigned<D> du;
  const auto idx = detail::XorS(detail::Iota0(du), 3);
  return BitCast(d, TableLookupLanes(BitCast(du, v), idx));
}

// ------------------------------ Reverse8 (TableLookupLanes)

template <class D>
HWY_API VFromD<D> Reverse8(D d, const VFromD<D> v) {
  const RebindToUnsigned<D> du;
  const auto idx = detail::XorS(detail::Iota0(du), 7);
  return BitCast(d, TableLookupLanes(BitCast(du, v), idx));
}

// ------------------------------ ReverseBlocks (Reverse, Shuffle01)
template <class D, class V = VFromD<D>>
HWY_API V ReverseBlocks(D d, V v) {
  const Repartition<uint64_t, D> du64;
  const size_t N = Lanes(du64);
  const auto rev =
      detail::ReverseSubS(detail::Iota0(du64), static_cast<uint64_t>(N - 1));
  // Swap lo/hi u64 within each block
  const auto idx = detail::XorS(rev, 1);
  return BitCast(d, TableLookupLanes(BitCast(du64, v), idx));
}

// ------------------------------ Compress

// RVV supports all lane types natively.
#ifdef HWY_NATIVE_COMPRESS8
#undef HWY_NATIVE_COMPRESS8
#else
#define HWY_NATIVE_COMPRESS8
#endif

template <typename T>
struct CompressIsPartition {
  enum { value = 0 };
};

#define HWY_RVV_COMPRESS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,     \
                         SHIFT, MLEN, NAME, OP)                               \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                          \
      NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_M(MLEN) mask) {              \
    return v##OP##_vm_##CHAR##SEW##LMUL(v, v, mask, HWY_RVV_AVL(SEW, SHIFT)); \
  }

HWY_RVV_FOREACH(HWY_RVV_COMPRESS, Compress, compress, _ALL)
#undef HWY_RVV_COMPRESS

// ------------------------------ CompressNot
template <class V, class M>
HWY_API V CompressNot(V v, const M mask) {
  return Compress(v, Not(mask));
}

// ------------------------------ CompressBlocksNot
template <class V, class M>
HWY_API V CompressBlocksNot(V v, const M mask) {
  return CompressNot(v, mask);
}

// ------------------------------ CompressStore
template <class V, class M, class D>
HWY_API size_t CompressStore(const V v, const M mask, const D d,
                             TFromD<D>* HWY_RESTRICT unaligned) {
  StoreU(Compress(v, mask), d, unaligned);
  return CountTrue(d, mask);
}

// ------------------------------ CompressBlendedStore
template <class V, class M, class D>
HWY_API size_t CompressBlendedStore(const V v, const M mask, const D d,
                                    TFromD<D>* HWY_RESTRICT unaligned) {
  const size_t count = CountTrue(d, mask);
  detail::StoreN(count, Compress(v, mask), d, unaligned);
  return count;
}

// ================================================== BLOCKWISE

// ------------------------------ CombineShiftRightBytes
template <size_t kBytes, class D, class V = VFromD<D>>
HWY_API V CombineShiftRightBytes(const D d, const V hi, V lo) {
  const Repartition<uint8_t, decltype(d)> d8;
  const auto hi8 = BitCast(d8, hi);
  const auto lo8 = BitCast(d8, lo);
  const auto hi_up = detail::SlideUp(hi8, hi8, 16 - kBytes);
  const auto lo_down = detail::SlideDown(lo8, lo8, kBytes);
  const auto is_lo = detail::FirstNPerBlock<16 - kBytes>(d8);
  return BitCast(d, IfThenElse(is_lo, lo_down, hi_up));
}

// ------------------------------ CombineShiftRightLanes
template <size_t kLanes, class D, class V = VFromD<D>>
HWY_API V CombineShiftRightLanes(const D d, const V hi, V lo) {
  constexpr size_t kLanesUp = 16 / sizeof(TFromV<V>) - kLanes;
  const auto hi_up = detail::SlideUp(hi, hi, kLanesUp);
  const auto lo_down = detail::SlideDown(lo, lo, kLanes);
  const auto is_lo = detail::FirstNPerBlock<kLanesUp>(d);
  return IfThenElse(is_lo, lo_down, hi_up);
}

// ------------------------------ Shuffle2301 (ShiftLeft)
template <class V>
HWY_API V Shuffle2301(const V v) {
  const DFromV<V> d;
  static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
  const Repartition<uint64_t, decltype(d)> du64;
  const auto v64 = BitCast(du64, v);
  return BitCast(d, Or(ShiftRight<32>(v64), ShiftLeft<32>(v64)));
}

// ------------------------------ Shuffle2103
template <class V>
HWY_API V Shuffle2103(const V v) {
  const DFromV<V> d;
  static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
  return CombineShiftRightLanes<3>(d, v, v);
}

// ------------------------------ Shuffle0321
template <class V>
HWY_API V Shuffle0321(const V v) {
  const DFromV<V> d;
  static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
  return CombineShiftRightLanes<1>(d, v, v);
}

// ------------------------------ Shuffle1032
template <class V>
HWY_API V Shuffle1032(const V v) {
  const DFromV<V> d;
  static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
  return CombineShiftRightLanes<2>(d, v, v);
}

// ------------------------------ Shuffle01
template <class V>
HWY_API V Shuffle01(const V v) {
  const DFromV<V> d;
  static_assert(sizeof(TFromD<decltype(d)>) == 8, "Defined for 64-bit types");
  return CombineShiftRightLanes<1>(d, v, v);
}

// ------------------------------ Shuffle0123
template <class V>
HWY_API V Shuffle0123(const V v) {
  return Shuffle2301(Shuffle1032(v));
}

// ------------------------------ TableLookupBytes

// Extends or truncates a vector to match the given d.
namespace detail {

template <typename T, size_t N, int kPow2>
HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 3>> v)
    -> VFromD<decltype(d)> {
  const Simd<T, N, kPow2 - 1> dh;
  const Simd<T, N, kPow2 - 2> dhh;
  return Ext(d, Ext(dh, Ext(dhh, v)));
}
template <typename T, size_t N, int kPow2>
HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 2>> v)
    -> VFromD<decltype(d)> {
  const Simd<T, N, kPow2 - 1> dh;
  return Ext(d, Ext(dh, v));
}
template <typename T, size_t N, int kPow2>
HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 1>> v)
    -> VFromD<decltype(d)> {
  return Ext(d, v);
}

template <typename T, size_t N, int kPow2>
HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<decltype(d)> v)
    -> VFromD<decltype(d)> {
  return v;
}

template <typename T, size_t N, int kPow2>
HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 1>> v)
    -> VFromD<decltype(d)> {
  return Trunc(v);
}
template <typename T, size_t N, int kPow2>
HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 2>> v)
    -> VFromD<decltype(d)> {
  return Trunc(Trunc(v));
}
template <typename T, size_t N, int kPow2>
HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 3>> v)
    -> VFromD<decltype(d)> {
  return Trunc(Trunc(Trunc(v)));
}

}  // namespace detail

template <class VT, class VI>
HWY_API VI TableLookupBytes(const VT vt, const VI vi) {
  const DFromV<VT> dt;  // T=table, I=index.
  const DFromV<VI> di;
  const Repartition<uint8_t, decltype(dt)> dt8;
  const Repartition<uint8_t, decltype(di)> di8;
  // Required for producing half-vectors with table lookups from a full vector.
  // If we instead run at the LMUL of the index vector, lookups into the table
  // would be truncated. Thus we run at the larger of the two LMULs and truncate
  // the result vector to the original index LMUL.
  constexpr int kPow2T = Pow2(dt8);
  constexpr int kPow2I = Pow2(di8);
  const Simd<uint8_t, MaxLanes(di8), HWY_MAX(kPow2T, kPow2I)> dm8;  // m=max
  const auto vmt = detail::ChangeLMUL(dm8, BitCast(dt8, vt));
  const auto vmi = detail::ChangeLMUL(dm8, BitCast(di8, vi));
  auto offsets = detail::OffsetsOf128BitBlocks(dm8, detail::Iota0(dm8));
  // If the table is shorter, wrap around offsets so they do not reference
  // undefined lanes in the newly extended vmt.
  if (kPow2T < kPow2I) {
    offsets = detail::AndS(offsets, static_cast<uint8_t>(Lanes(dt8) - 1));
  }
  const auto out = TableLookupLanes(vmt, Add(vmi, offsets));
  return BitCast(di, detail::ChangeLMUL(di8, out));
}

template <class VT, class VI>
HWY_API VI TableLookupBytesOr0(const VT vt, const VI idx) {
  const DFromV<VI> di;
  const Repartition<int8_t, decltype(di)> di8;
  const auto idx8 = BitCast(di8, idx);
  const auto lookup = TableLookupBytes(vt, idx8);
  return BitCast(di, IfThenZeroElse(detail::LtS(idx8, 0), lookup));
}

// ------------------------------ Broadcast
template <int kLane, class V>
HWY_API V Broadcast(const V v) {
  const DFromV<V> d;
  HWY_DASSERT(0 <= kLane && kLane < detail::LanesPerBlock(d));
  auto idx = detail::OffsetsOf128BitBlocks(d, detail::Iota0(d));
  if (kLane != 0) {
    idx = detail::AddS(idx, kLane);
  }
  return TableLookupLanes(v, idx);
}

// ------------------------------ ShiftLeftLanes

template <size_t kLanes, class D, class V = VFromD<D>>
HWY_API V ShiftLeftLanes(const D d, const V v) {
  const RebindToSigned<decltype(d)> di;
  using TI = TFromD<decltype(di)>;
  const auto shifted = detail::SlideUp(v, v, kLanes);
  // Match x86 semantics by zeroing lower lanes in 128-bit blocks
  const auto idx_mod =
      detail::AndS(BitCast(di, detail::Iota0(di)),
                   static_cast<TI>(detail::LanesPerBlock(di) - 1));
  const auto clear = detail::LtS(idx_mod, static_cast<TI>(kLanes));
  return IfThenZeroElse(clear, shifted);
}

template <size_t kLanes, class V>
HWY_API V ShiftLeftLanes(const V v) {
  return ShiftLeftLanes<kLanes>(DFromV<V>(), v);
}

// ------------------------------ ShiftLeftBytes

template <int kBytes, class D>
HWY_API VFromD<D> ShiftLeftBytes(D d, const VFromD<D> v) {
  const Repartition<uint8_t, decltype(d)> d8;
  return BitCast(d, ShiftLeftLanes<kBytes>(BitCast(d8, v)));
}

template <int kBytes, class V>
HWY_API V ShiftLeftBytes(const V v) {
  return ShiftLeftBytes<kBytes>(DFromV<V>(), v);
}

// ------------------------------ ShiftRightLanes
template <size_t kLanes, typename T, size_t N, int kPow2,
          class V = VFromD<Simd<T, N, kPow2>>>
HWY_API V ShiftRightLanes(const Simd<T, N, kPow2> d, V v) {
  const RebindToSigned<decltype(d)> di;
  using TI = TFromD<decltype(di)>;
  // For partial vectors, clear upper lanes so we shift in zeros.
  if (N <= 16 / sizeof(T)) {
    v = IfThenElseZero(FirstN(d, N), v);
  }

  const auto shifted = detail::SlideDown(v, v, kLanes);
  // Match x86 semantics by zeroing upper lanes in 128-bit blocks
  const size_t lpb = detail::LanesPerBlock(di);
  const auto idx_mod =
      detail::AndS(BitCast(di, detail::Iota0(di)), static_cast<TI>(lpb - 1));
  const auto keep = detail::LtS(idx_mod, static_cast<TI>(lpb - kLanes));
  return IfThenElseZero(keep, shifted);
}

// ------------------------------ ShiftRightBytes
template <int kBytes, class D, class V = VFromD<D>>
HWY_API V ShiftRightBytes(const D d, const V v) {
  const Repartition<uint8_t, decltype(d)> d8;
  return BitCast(d, ShiftRightLanes<kBytes>(d8, BitCast(d8, v)));
}

// ------------------------------ InterleaveLower

template <class D, class V>
HWY_API V InterleaveLower(D d, const V a, const V b) {
  static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch");
  const RebindToUnsigned<decltype(d)> du;
  using TU = TFromD<decltype(du)>;
  const auto i = detail::Iota0(du);
  const auto idx_mod = ShiftRight<1>(
      detail::AndS(i, static_cast<TU>(detail::LanesPerBlock(du) - 1)));
  const auto idx = Add(idx_mod, detail::OffsetsOf128BitBlocks(d, i));
  const auto is_even = detail::EqS(detail::AndS(i, 1), 0u);
  return IfThenElse(is_even, TableLookupLanes(a, idx),
                    TableLookupLanes(b, idx));
}

template <class V>
HWY_API V InterleaveLower(const V a, const V b) {
  return InterleaveLower(DFromV<V>(), a, b);
}

// ------------------------------ InterleaveUpper

template <class D, class V>
HWY_API V InterleaveUpper(const D d, const V a, const V b) {
  static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch");
  const RebindToUnsigned<decltype(d)> du;
  using TU = TFromD<decltype(du)>;
  const size_t lpb = detail::LanesPerBlock(du);
  const auto i = detail::Iota0(du);
  const auto idx_mod = ShiftRight<1>(detail::AndS(i, static_cast<TU>(lpb - 1)));
  const auto idx_lower = Add(idx_mod, detail::OffsetsOf128BitBlocks(d, i));
  const auto idx = detail::AddS(idx_lower, static_cast<TU>(lpb / 2));
  const auto is_even = detail::EqS(detail::AndS(i, 1), 0u);
  return IfThenElse(is_even, TableLookupLanes(a, idx),
                    TableLookupLanes(b, idx));
}

// ------------------------------ ZipLower

template <class V, class DW = RepartitionToWide<DFromV<V>>>
HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
  const RepartitionToNarrow<DW> dn;
  static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
  return BitCast(dw, InterleaveLower(dn, a, b));
}

template <class V, class DW = RepartitionToWide<DFromV<V>>>
HWY_API VFromD<DW> ZipLower(V a, V b) {
  return BitCast(DW(), InterleaveLower(a, b));
}

// ------------------------------ ZipUpper
template <class DW, class V>
HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
  const RepartitionToNarrow<DW> dn;
  static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
  return BitCast(dw, InterleaveUpper(dn, a, b));
}

// ================================================== REDUCE

// vector = f(vector, zero_m1)
#define HWY_RVV_REDUCE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
                       MLEN, NAME, OP)                                         \
  template <class D>                                                           \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL)                                           \
      NAME(D d, HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, m1) v0) {   \
    return Set(d, GetLane(v##OP##_vs_##CHAR##SEW##LMUL##_##CHAR##SEW##m1(      \
                      v0, v, v0, Lanes(d))));                                  \
  }

// ------------------------------ SumOfLanes

namespace detail {
HWY_RVV_FOREACH_UI(HWY_RVV_REDUCE, RedSum, redsum, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedSum, fredusum, _ALL)
}  // namespace detail

template <class D>
HWY_API VFromD<D> SumOfLanes(D d, const VFromD<D> v) {
  const auto v0 = Zero(ScalableTag<TFromD<D>>());  // always m1
  return detail::RedSum(d, v, v0);
}

// ------------------------------ MinOfLanes
namespace detail {
HWY_RVV_FOREACH_U(HWY_RVV_REDUCE, RedMin, redminu, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_REDUCE, RedMin, redmin, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedMin, fredmin, _ALL)
}  // namespace detail

template <class D>
HWY_API VFromD<D> MinOfLanes(D d, const VFromD<D> v) {
  using T = TFromD<D>;
  const ScalableTag<T> d1;  // always m1
  const auto neutral = Set(d1, HighestValue<T>());
  return detail::RedMin(d, v, neutral);
}

// ------------------------------ MaxOfLanes
namespace detail {
HWY_RVV_FOREACH_U(HWY_RVV_REDUCE, RedMax, redmaxu, _ALL)
HWY_RVV_FOREACH_I(HWY_RVV_REDUCE, RedMax, redmax, _ALL)
HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedMax, fredmax, _ALL)
}  // namespace detail

template <class D>
HWY_API VFromD<D> MaxOfLanes(D d, const VFromD<D> v) {
  using T = TFromD<D>;
  const ScalableTag<T> d1;  // always m1
  const auto neutral = Set(d1, LowestValue<T>());
  return detail::RedMax(d, v, neutral);
}

#undef HWY_RVV_REDUCE

// ================================================== Ops with dependencies

// ------------------------------ PopulationCount (ShiftRight)

// Handles LMUL >= 2 or capped vectors, which generic_ops-inl cannot.
template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 1),
          hwy::EnableIf<Pow2(D()) < 1 || MaxLanes(D()) < 16>* = nullptr>
HWY_API V PopulationCount(V v) {
  // See https://arxiv.org/pdf/1611.07612.pdf, Figure 3
  v = Sub(v, detail::AndS(ShiftRight<1>(v), 0x55));
  v = Add(detail::AndS(ShiftRight<2>(v), 0x33), detail::AndS(v, 0x33));
  return detail::AndS(Add(v, ShiftRight<4>(v)), 0x0F);
}

// ------------------------------ LoadDup128

template <class D>
HWY_API VFromD<D> LoadDup128(D d, const TFromD<D>* const HWY_RESTRICT p) {
  const VFromD<D> loaded = Load(d, p);
  // idx must be unsigned for TableLookupLanes.
  using TU = MakeUnsigned<TFromD<D>>;
  const TU mask = static_cast<TU>(detail::LanesPerBlock(d) - 1);
  // Broadcast the first block.
  const VFromD<RebindToUnsigned<D>> idx = detail::AndS(detail::Iota0(d), mask);
  return TableLookupLanes(loaded, idx);
}

// ------------------------------ LoadMaskBits

// Support all combinations of T and SHIFT(LMUL) without explicit overloads for
// each. First overload for MLEN=1..64.
namespace detail {

// Maps D to MLEN (wrapped in SizeTag), such that #mask_bits = VLEN/MLEN. MLEN
// increases with lane size and decreases for increasing LMUL. Cap at 64, the
// largest supported by HWY_RVV_FOREACH_B (and intrinsics), for virtual LMUL
// e.g. vuint16mf8_t: (8*2 << 3) == 128.
template <class D>
using MaskTag = hwy::SizeTag<HWY_MIN(
    64, detail::ScaleByPower(8 * sizeof(TFromD<D>), -Pow2(D())))>;

#define HWY_RVV_LOAD_MASK_BITS(SEW, SHIFT, MLEN, NAME, OP)                \
  HWY_INLINE HWY_RVV_M(MLEN)                                              \
      NAME(hwy::SizeTag<MLEN> /* tag */, const uint8_t* bits, size_t N) { \
    return OP##_v_b##MLEN(bits, N);                                       \
  }
HWY_RVV_FOREACH_B(HWY_RVV_LOAD_MASK_BITS, LoadMaskBits, vlm)
#undef HWY_RVV_LOAD_MASK_BITS
}  // namespace detail

template <class D, class MT = detail::MaskTag<D>>
HWY_API auto LoadMaskBits(D d, const uint8_t* bits)
    -> decltype(detail::LoadMaskBits(MT(), bits, Lanes(d))) {
  return detail::LoadMaskBits(MT(), bits, Lanes(d));
}

// ------------------------------ StoreMaskBits
#define HWY_RVV_STORE_MASK_BITS(SEW, SHIFT, MLEN, NAME, OP)               \
  template <class D>                                                      \
  HWY_API size_t NAME(D d, HWY_RVV_M(MLEN) m, uint8_t* bits) {            \
    const size_t N = Lanes(d);                                            \
    OP##_v_b##MLEN(bits, m, N);                                           \
    /* Non-full byte, need to clear the undefined upper bits. */          \
    /* Use MaxLanes and sizeof(T) to move some checks to compile-time. */ \
    constexpr bool kLessThan8 =                                           \
        detail::ScaleByPower(16 / sizeof(TFromD<D>), Pow2(d)) < 8;        \
    if (MaxLanes(d) < 8 || (kLessThan8 && N < 8)) {                       \
      const int mask = (1 << N) - 1;                                      \
      bits[0] = static_cast<uint8_t>(bits[0] & mask);                     \
    }                                                                     \
    return (N + 7) / 8;                                                   \
  }
HWY_RVV_FOREACH_B(HWY_RVV_STORE_MASK_BITS, StoreMaskBits, vsm)
#undef HWY_RVV_STORE_MASK_BITS

// ------------------------------ CompressBits, CompressBitsStore (LoadMaskBits)

template <class V>
HWY_INLINE V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) {
  return Compress(v, LoadMaskBits(DFromV<V>(), bits));
}

template <class D>
HWY_API size_t CompressBitsStore(VFromD<D> v, const uint8_t* HWY_RESTRICT bits,
                                 D d, TFromD<D>* HWY_RESTRICT unaligned) {
  return CompressStore(v, LoadMaskBits(d, bits), d, unaligned);
}

// ------------------------------ FirstN (Iota0, Lt, RebindMask, SlideUp)

// Disallow for 8-bit because Iota is likely to overflow.
template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 1)>
HWY_API MFromD<D> FirstN(const D d, const size_t n) {
  const RebindToSigned<D> di;
  using TI = TFromD<decltype(di)>;
  return RebindMask(
      d, detail::LtS(BitCast(di, detail::Iota0(d)), static_cast<TI>(n)));
}

template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
HWY_API MFromD<D> FirstN(const D d, const size_t n) {
  const auto zero = Zero(d);
  const auto one = Set(d, 1);
  return Eq(detail::SlideUp(one, zero, n), one);
}

// ------------------------------ Neg (Sub)

template <class V, HWY_IF_SIGNED_V(V)>
HWY_API V Neg(const V v) {
  return detail::ReverseSubS(v, 0);
}

// vector = f(vector), but argument is repeated
#define HWY_RVV_RETV_ARGV2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
                           SHIFT, MLEN, NAME, OP)                           \
  HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) {   \
    return v##OP##_vv_##CHAR##SEW##LMUL(v, v, HWY_RVV_AVL(SEW, SHIFT));     \
  }

HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV2, Neg, fsgnjn, _ALL)

// ------------------------------ Abs (Max, Neg)

template <class V, HWY_IF_SIGNED_V(V)>
HWY_API V Abs(const V v) {
  return Max(v, Neg(v));
}

HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV2, Abs, fsgnjx, _ALL)

#undef HWY_RVV_RETV_ARGV2

// ------------------------------ AbsDiff (Abs, Sub)
template <class V>
HWY_API V AbsDiff(const V a, const V b) {
  return Abs(Sub(a, b));
}

// ------------------------------ Round  (NearestInt, ConvertTo, CopySign)

// IEEE-754 roundToIntegralTiesToEven returns floating-point, but we do not have
// a dedicated instruction for that. Rounding to integer and converting back to
// float is correct except when the input magnitude is large, in which case the
// input was already an integer (because mantissa >> exponent is zero).

namespace detail {
enum RoundingModes { kNear, kTrunc, kDown, kUp };

template <class V>
HWY_INLINE auto UseInt(const V v) -> decltype(MaskFromVec(v)) {
  return detail::LtS(Abs(v), MantissaEnd<TFromV<V>>());
}

}  // namespace detail

template <class V>
HWY_API V Round(const V v) {
  const DFromV<V> df;

  const auto integer = NearestInt(v);  // round using current mode
  const auto int_f = ConvertTo(df, integer);

  return IfThenElse(detail::UseInt(v), CopySign(int_f, v), v);
}

// ------------------------------ Trunc (ConvertTo)
template <class V>
HWY_API V Trunc(const V v) {
  const DFromV<V> df;
  const RebindToSigned<decltype(df)> di;

  const auto integer = ConvertTo(di, v);  // round toward 0
  const auto int_f = ConvertTo(df, integer);

  return IfThenElse(detail::UseInt(v), CopySign(int_f, v), v);
}

// ------------------------------ Ceil
template <class V>
HWY_API V Ceil(const V v) {
  asm volatile("fsrm %0" ::"r"(detail::kUp));
  const auto ret = Round(v);
  asm volatile("fsrm %0" ::"r"(detail::kNear));
  return ret;
}

// ------------------------------ Floor
template <class V>
HWY_API V Floor(const V v) {
  asm volatile("fsrm %0" ::"r"(detail::kDown));
  const auto ret = Round(v);
  asm volatile("fsrm %0" ::"r"(detail::kNear));
  return ret;
}

// ------------------------------ Floating-point classification (Ne)

// vfclass does not help because it would require 3 instructions (to AND and
// then compare the bits), whereas these are just 1-3 integer instructions.

template <class V>
HWY_API MFromD<DFromV<V>> IsNaN(const V v) {
  return Ne(v, v);
}

template <class V, class D = DFromV<V>>
HWY_API MFromD<D> IsInf(const V v) {
  const D d;
  const RebindToSigned<decltype(d)> di;
  using T = TFromD<D>;
  const VFromD<decltype(di)> vi = BitCast(di, v);
  // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
  return RebindMask(d, detail::EqS(Add(vi, vi), hwy::MaxExponentTimes2<T>()));
}

// Returns whether normal/subnormal/zero.
template <class V, class D = DFromV<V>>
HWY_API MFromD<D> IsFinite(const V v) {
  const D d;
  const RebindToUnsigned<decltype(d)> du;
  const RebindToSigned<decltype(d)> di;  // cheaper than unsigned comparison
  using T = TFromD<D>;
  const VFromD<decltype(du)> vu = BitCast(du, v);
  // 'Shift left' to clear the sign bit, then right so we can compare with the
  // max exponent (cannot compare with MaxExponentTimes2 directly because it is
  // negative and non-negative floats would be greater).
  const VFromD<decltype(di)> exp =
      BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
  return RebindMask(d, detail::LtS(exp, hwy::MaxExponentField<T>()));
}

// ------------------------------ Iota (ConvertTo)

template <class D, HWY_IF_UNSIGNED_D(D)>
HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
  return detail::AddS(detail::Iota0(d), first);
}

template <class D, HWY_IF_SIGNED_D(D)>
HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
  const RebindToUnsigned<D> du;
  return detail::AddS(BitCast(d, detail::Iota0(du)), first);
}

template <class D, HWY_IF_FLOAT_D(D)>
HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
  const RebindToUnsigned<D> du;
  const RebindToSigned<D> di;
  return detail::AddS(ConvertTo(d, BitCast(di, detail::Iota0(du))), first);
}

// ------------------------------ MulEven/Odd (Mul, OddEven)

template <class V, HWY_IF_LANE_SIZE_V(V, 4), class D = DFromV<V>,
          class DW = RepartitionToWide<D>>
HWY_API VFromD<DW> MulEven(const V a, const V b) {
  const auto lo = Mul(a, b);
  const auto hi = detail::MulHigh(a, b);
  return BitCast(DW(), OddEven(detail::Slide1Up(hi), lo));
}

// There is no 64x64 vwmul.
template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
HWY_INLINE V MulEven(const V a, const V b) {
  const auto lo = Mul(a, b);
  const auto hi = detail::MulHigh(a, b);
  return OddEven(detail::Slide1Up(hi), lo);
}

template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
HWY_INLINE V MulOdd(const V a, const V b) {
  const auto lo = Mul(a, b);
  const auto hi = detail::MulHigh(a, b);
  return OddEven(hi, detail::Slide1Down(lo));
}

// ------------------------------ ReorderDemote2To (OddEven, Combine)

template <size_t N, int kPow2>
HWY_API VFromD<Simd<uint16_t, N, kPow2>> ReorderDemote2To(
    Simd<bfloat16_t, N, kPow2> dbf16,
    VFromD<RepartitionToWide<decltype(dbf16)>> a,
    VFromD<RepartitionToWide<decltype(dbf16)>> b) {
  const RebindToUnsigned<decltype(dbf16)> du16;
  const RebindToUnsigned<DFromV<decltype(a)>> du32;
  const VFromD<decltype(du32)> b_in_even = ShiftRight<16>(BitCast(du32, b));
  return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
}

// If LMUL is not the max, Combine first to avoid another DemoteTo.
template <size_t N, int kPow2, hwy::EnableIf<(kPow2 < 3)>* = nullptr,
          class D32 = RepartitionToWide<Simd<int16_t, N, kPow2>>>
HWY_API VFromD<Simd<int16_t, N, kPow2>> ReorderDemote2To(
    Simd<int16_t, N, kPow2> d16, VFromD<D32> a, VFromD<D32> b) {
  const Twice<D32> d32t;
  const VFromD<decltype(d32t)> ab = Combine(d32t, a, b);
  return DemoteTo(d16, ab);
}

// Max LMUL: must DemoteTo first, then Combine.
template <size_t N, class V32 = VFromD<RepartitionToWide<Simd<int16_t, N, 3>>>>
HWY_API VFromD<Simd<int16_t, N, 3>> ReorderDemote2To(Simd<int16_t, N, 3> d16,
                                                     V32 a, V32 b) {
  const Half<decltype(d16)> d16h;
  const VFromD<decltype(d16h)> a16 = DemoteTo(d16h, a);
  const VFromD<decltype(d16h)> b16 = DemoteTo(d16h, b);
  return Combine(d16, a16, b16);
}

// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)

namespace detail {

// Non-overloaded wrapper function so we can define DF32 in template args.
template <
    size_t N, int kPow2, class DF32 = Simd<float, N, kPow2>,
    class VF32 = VFromD<DF32>,
    class DU16 = RepartitionToNarrow<RebindToUnsigned<Simd<float, N, kPow2>>>>
HWY_API VF32 ReorderWidenMulAccumulateBF16(Simd<float, N, kPow2> df32,
                                           VFromD<DU16> a, VFromD<DU16> b,
                                           const VF32 sum0, VF32& sum1) {
  const RebindToUnsigned<DF32> du32;
  using VU32 = VFromD<decltype(du32)>;
  const VU32 odd = Set(du32, 0xFFFF0000u);  // bfloat16 is the upper half of f32
  // Using shift/and instead of Zip leads to the odd/even order that
  // RearrangeToOddPlusEven prefers.
  const VU32 ae = ShiftLeft<16>(BitCast(du32, a));
  const VU32 ao = And(BitCast(du32, a), odd);
  const VU32 be = ShiftLeft<16>(BitCast(du32, b));
  const VU32 bo = And(BitCast(du32, b), odd);
  sum1 = MulAdd(BitCast(df32, ao), BitCast(df32, bo), sum1);
  return MulAdd(BitCast(df32, ae), BitCast(df32, be), sum0);
}

#define HWY_RVV_WIDEN_MACC(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH,    \
                           SHIFT, MLEN, NAME, OP)                              \
  template <size_t N>                                                          \
  HWY_API HWY_RVV_V(BASE, SEWD, LMULD) NAME(                                   \
      HWY_RVV_D(BASE, SEWD, N, SHIFT + 1) d, HWY_RVV_V(BASE, SEWD, LMULD) sum, \
      HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) {            \
    return OP##CHAR##SEWD##LMULD(sum, a, b, Lanes(d));                         \
  }

HWY_RVV_FOREACH_I16(HWY_RVV_WIDEN_MACC, WidenMulAcc, vwmacc_vv_, _EXT_VIRT)
#undef HWY_RVV_WIDEN_MACC

// If LMUL is not the max, we can WidenMul first (3 instructions).
template <size_t N, int kPow2, hwy::EnableIf<(kPow2 < 3)>* = nullptr,
          class D32 = Simd<int32_t, N, kPow2>, class V32 = VFromD<D32>,
          class D16 = RepartitionToNarrow<D32>>
HWY_API VFromD<D32> ReorderWidenMulAccumulateI16(Simd<int32_t, N, kPow2> d32,
                                                 VFromD<D16> a, VFromD<D16> b,
                                                 const V32 sum0, V32& sum1) {
  const Twice<decltype(d32)> d32t;
  using V32T = VFromD<decltype(d32t)>;
  V32T sum = Combine(d32t, sum1, sum0);
  sum = detail::WidenMulAcc(d32t, sum, a, b);
  sum1 = UpperHalf(d32, sum);
  return LowerHalf(d32, sum);
}

// Max LMUL: must LowerHalf first (4 instructions).
template <size_t N, class D32 = Simd<int32_t, N, 3>, class V32 = VFromD<D32>,
          class D16 = RepartitionToNarrow<D32>>
HWY_API VFromD<D32> ReorderWidenMulAccumulateI16(Simd<int32_t, N, 3> d32,
                                                 VFromD<D16> a, VFromD<D16> b,
                                                 const V32 sum0, V32& sum1) {
  const Half<D16> d16h;
  using V16H = VFromD<decltype(d16h)>;
  const V16H a0 = LowerHalf(d16h, a);
  const V16H a1 = UpperHalf(d16h, a);
  const V16H b0 = LowerHalf(d16h, b);
  const V16H b1 = UpperHalf(d16h, b);
  sum1 = detail::WidenMulAcc(d32, sum1, a1, b1);
  return detail::WidenMulAcc(d32, sum0, a0, b0);
}

}  // namespace detail

template <size_t N, int kPow2, class VN, class VW>
HWY_API VW ReorderWidenMulAccumulate(Simd<float, N, kPow2> d32, VN a, VN b,
                                     const VW sum0, VW& sum1) {
  return detail::ReorderWidenMulAccumulateBF16(d32, a, b, sum0, sum1);
}

template <size_t N, int kPow2, class VN, class VW>
HWY_API VW ReorderWidenMulAccumulate(Simd<int32_t, N, kPow2> d32, VN a, VN b,
                                     const VW sum0, VW& sum1) {
  return detail::ReorderWidenMulAccumulateI16(d32, a, b, sum0, sum1);
}

// ------------------------------ RearrangeToOddPlusEven

template <class VW, HWY_IF_SIGNED_V(VW)>  // vint32_t*
HWY_API VW RearrangeToOddPlusEven(const VW sum0, const VW sum1) {
  // vwmacc doubles LMUL, so we require a pairwise sum here. This op is
  // expected to be less frequent than ReorderWidenMulAccumulate, hence it's
  // preferable to do the extra work here rather than do manual odd/even
  // extraction there.
  const DFromV<VW> di32;
  const RebindToUnsigned<decltype(di32)> du32;
  const Twice<decltype(di32)> di32x2;
  const RepartitionToWide<decltype(di32x2)> di64x2;
  const RebindToUnsigned<decltype(di64x2)> du64x2;
  const auto combined = BitCast(di64x2, Combine(di32x2, sum1, sum0));
  // Isolate odd/even int32 in int64 lanes.
  const auto even = ShiftRight<32>(ShiftLeft<32>(combined));  // sign extend
  const auto odd = ShiftRight<32>(combined);
  return BitCast(di32, TruncateTo(du32, BitCast(du64x2, Add(even, odd))));
}

// For max LMUL, we cannot Combine again and instead manually unroll.
HWY_API vint32m8_t RearrangeToOddPlusEven(vint32m8_t sum0, vint32m8_t sum1) {
  const DFromV<vint32m8_t> d;
  const Half<decltype(d)> dh;
  const vint32m4_t lo =
      RearrangeToOddPlusEven(LowerHalf(sum0), UpperHalf(dh, sum0));
  const vint32m4_t hi =
      RearrangeToOddPlusEven(LowerHalf(sum1), UpperHalf(dh, sum1));
  return Combine(d, hi, lo);
}

template <class VW, HWY_IF_FLOAT_V(VW)>  // vfloat*
HWY_API VW RearrangeToOddPlusEven(const VW sum0, const VW sum1) {
  return Add(sum0, sum1);  // invariant already holds
}

// ------------------------------ Lt128
template <class D>
HWY_INLINE MFromD<D> Lt128(D d, const VFromD<D> a, const VFromD<D> b) {
  static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
                "D must be u64");
  // Truth table of Eq and Compare for Hi and Lo u64.
  // (removed lines with (=H && cH) or (=L && cL) - cannot both be true)
  // =H =L cH cL  | out = cH | (=H & cL)
  //  0  0  0  0  |  0
  //  0  0  0  1  |  0
  //  0  0  1  0  |  1
  //  0  0  1  1  |  1
  //  0  1  0  0  |  0
  //  0  1  0  1  |  0
  //  0  1  1  0  |  1
  //  1  0  0  0  |  0
  //  1  0  0  1  |  1
  //  1  1  0  0  |  0
  const VFromD<D> eqHL = VecFromMask(d, Eq(a, b));
  const VFromD<D> ltHL = VecFromMask(d, Lt(a, b));
  // Shift leftward so L can influence H.
  const VFromD<D> ltLx = detail::Slide1Up(ltHL);
  const VFromD<D> vecHx = OrAnd(ltHL, eqHL, ltLx);
  // Replicate H to its neighbor.
  return MaskFromVec(OddEven(vecHx, detail::Slide1Down(vecHx)));
}

// ------------------------------ Lt128Upper
template <class D>
HWY_INLINE MFromD<D> Lt128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
  static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
                "D must be u64");
  const VFromD<D> ltHL = VecFromMask(d, Lt(a, b));
  // Replicate H to its neighbor.
  return MaskFromVec(OddEven(ltHL, detail::Slide1Down(ltHL)));
}

// ------------------------------ Eq128
template <class D>
HWY_INLINE MFromD<D> Eq128(D d, const VFromD<D> a, const VFromD<D> b) {
  static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
                "D must be u64");
  const VFromD<D> eqHL = VecFromMask(d, Eq(a, b));
  const VFromD<D> eqLH = Reverse2(d, eqHL);
  return MaskFromVec(And(eqHL, eqLH));
}

// ------------------------------ Eq128Upper
template <class D>
HWY_INLINE MFromD<D> Eq128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
  static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
                "D must be u64");
  const VFromD<D> eqHL = VecFromMask(d, Eq(a, b));
  // Replicate H to its neighbor.
  return MaskFromVec(OddEven(eqHL, detail::Slide1Down(eqHL)));
}

// ------------------------------ Ne128
template <class D>
HWY_INLINE MFromD<D> Ne128(D d, const VFromD<D> a, const VFromD<D> b) {
  static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
                "D must be u64");
  const VFromD<D> neHL = VecFromMask(d, Ne(a, b));
  const VFromD<D> neLH = Reverse2(d, neHL);
  return MaskFromVec(Or(neHL, neLH));
}

// ------------------------------ Ne128Upper
template <class D>
HWY_INLINE MFromD<D> Ne128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
  static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
                "D must be u64");
  const VFromD<D> neHL = VecFromMask(d, Ne(a, b));
  // Replicate H to its neighbor.
  return MaskFromVec(OddEven(neHL, detail::Slide1Down(neHL)));
}

// ------------------------------ Min128, Max128 (Lt128)

template <class D>
HWY_INLINE VFromD<D> Min128(D /* tag */, const VFromD<D> a, const VFromD<D> b) {
  const VFromD<D> aXH = detail::Slide1Down(a);
  const VFromD<D> bXH = detail::Slide1Down(b);
  const VFromD<D> minHL = Min(a, b);
  const MFromD<D> ltXH = Lt(aXH, bXH);
  const MFromD<D> eqXH = Eq(aXH, bXH);
  // If the upper lane is the decider, take lo from the same reg.
  const VFromD<D> lo = IfThenElse(ltXH, a, b);
  // The upper lane is just minHL; if they are equal, we also need to use the
  // actual min of the lower lanes.
  return OddEven(minHL, IfThenElse(eqXH, minHL, lo));
}

template <class D>
HWY_INLINE VFromD<D> Max128(D /* tag */, const VFromD<D> a, const VFromD<D> b) {
  const VFromD<D> aXH = detail::Slide1Down(a);
  const VFromD<D> bXH = detail::Slide1Down(b);
  const VFromD<D> maxHL = Max(a, b);
  const MFromD<D> ltXH = Lt(aXH, bXH);
  const MFromD<D> eqXH = Eq(aXH, bXH);
  // If the upper lane is the decider, take lo from the same reg.
  const VFromD<D> lo = IfThenElse(ltXH, b, a);
  // The upper lane is just maxHL; if they are equal, we also need to use the
  // actual min of the lower lanes.
  return OddEven(maxHL, IfThenElse(eqXH, maxHL, lo));
}

template <class D>
HWY_INLINE VFromD<D> Min128Upper(D d, VFromD<D> a, VFromD<D> b) {
  return IfThenElse(Lt128Upper(d, a, b), a, b);
}

template <class D>
HWY_INLINE VFromD<D> Max128Upper(D d, VFromD<D> a, VFromD<D> b) {
  return IfThenElse(Lt128Upper(d, b, a), a, b);
}

// ================================================== END MACROS
namespace detail {  // for code folding
#undef HWY_RVV_AVL
#undef HWY_RVV_D
#undef HWY_RVV_FOREACH
#undef HWY_RVV_FOREACH_08_ALL
#undef HWY_RVV_FOREACH_08_ALL_VIRT
#undef HWY_RVV_FOREACH_08_DEMOTE
#undef HWY_RVV_FOREACH_08_DEMOTE_VIRT
#undef HWY_RVV_FOREACH_08_EXT
#undef HWY_RVV_FOREACH_08_EXT_VIRT
#undef HWY_RVV_FOREACH_08_TRUNC
#undef HWY_RVV_FOREACH_08_VIRT
#undef HWY_RVV_FOREACH_16_ALL
#undef HWY_RVV_FOREACH_16_ALL_VIRT
#undef HWY_RVV_FOREACH_16_DEMOTE
#undef HWY_RVV_FOREACH_16_DEMOTE_VIRT
#undef HWY_RVV_FOREACH_16_EXT
#undef HWY_RVV_FOREACH_16_EXT_VIRT
#undef HWY_RVV_FOREACH_16_TRUNC
#undef HWY_RVV_FOREACH_16_VIRT
#undef HWY_RVV_FOREACH_32_ALL
#undef HWY_RVV_FOREACH_32_ALL_VIRT
#undef HWY_RVV_FOREACH_32_DEMOTE
#undef HWY_RVV_FOREACH_32_DEMOTE_VIRT
#undef HWY_RVV_FOREACH_32_EXT
#undef HWY_RVV_FOREACH_32_EXT_VIRT
#undef HWY_RVV_FOREACH_32_TRUNC
#undef HWY_RVV_FOREACH_32_VIRT
#undef HWY_RVV_FOREACH_64_ALL
#undef HWY_RVV_FOREACH_64_ALL_VIRT
#undef HWY_RVV_FOREACH_64_DEMOTE
#undef HWY_RVV_FOREACH_64_DEMOTE_VIRT
#undef HWY_RVV_FOREACH_64_EXT
#undef HWY_RVV_FOREACH_64_EXT_VIRT
#undef HWY_RVV_FOREACH_64_TRUNC
#undef HWY_RVV_FOREACH_64_VIRT
#undef HWY_RVV_FOREACH_B
#undef HWY_RVV_FOREACH_F
#undef HWY_RVV_FOREACH_F16
#undef HWY_RVV_FOREACH_F32
#undef HWY_RVV_FOREACH_F3264
#undef HWY_RVV_FOREACH_F64
#undef HWY_RVV_FOREACH_I
#undef HWY_RVV_FOREACH_I08
#undef HWY_RVV_FOREACH_I16
#undef HWY_RVV_FOREACH_I163264
#undef HWY_RVV_FOREACH_I32
#undef HWY_RVV_FOREACH_I64
#undef HWY_RVV_FOREACH_U
#undef HWY_RVV_FOREACH_U08
#undef HWY_RVV_FOREACH_U16
#undef HWY_RVV_FOREACH_U163264
#undef HWY_RVV_FOREACH_U32
#undef HWY_RVV_FOREACH_U64
#undef HWY_RVV_FOREACH_UI
#undef HWY_RVV_FOREACH_UI08
#undef HWY_RVV_FOREACH_UI16
#undef HWY_RVV_FOREACH_UI163264
#undef HWY_RVV_FOREACH_UI32
#undef HWY_RVV_FOREACH_UI3264
#undef HWY_RVV_FOREACH_UI64
#undef HWY_RVV_M
#undef HWY_RVV_RETM_ARGM
#undef HWY_RVV_RETV_ARGV
#undef HWY_RVV_RETV_ARGVS
#undef HWY_RVV_RETV_ARGVV
#undef HWY_RVV_T
#undef HWY_RVV_V
}  // namespace detail
// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace hwy
HWY_AFTER_NAMESPACE();