summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_ans.cc
blob: 4249426bc92856f3dfdd2282a7a8b1bd78c725db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jxl/enc_ans.h"

#include <stdint.h>

#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include <numeric>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>

#include "lib/jxl/ans_common.h"
#include "lib/jxl/base/bits.h"
#include "lib/jxl/dec_ans.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_cluster.h"
#include "lib/jxl/enc_context_map.h"
#include "lib/jxl/enc_fields.h"
#include "lib/jxl/enc_huffman.h"
#include "lib/jxl/fast_math-inl.h"
#include "lib/jxl/fields.h"

namespace jxl {

namespace {

bool ans_fuzzer_friendly_ = false;

static const int kMaxNumSymbolsForSmallCode = 4;

void ANSBuildInfoTable(const ANSHistBin* counts, const AliasTable::Entry* table,
                       size_t alphabet_size, size_t log_alpha_size,
                       ANSEncSymbolInfo* info) {
  size_t log_entry_size = ANS_LOG_TAB_SIZE - log_alpha_size;
  size_t entry_size_minus_1 = (1 << log_entry_size) - 1;
  // create valid alias table for empty streams.
  for (size_t s = 0; s < std::max<size_t>(1, alphabet_size); ++s) {
    const ANSHistBin freq = s == alphabet_size ? ANS_TAB_SIZE : counts[s];
    info[s].freq_ = static_cast<uint16_t>(freq);
#ifdef USE_MULT_BY_RECIPROCAL
    if (freq != 0) {
      info[s].ifreq_ =
          ((1ull << RECIPROCAL_PRECISION) + info[s].freq_ - 1) / info[s].freq_;
    } else {
      info[s].ifreq_ = 1;  // shouldn't matter (symbol shouldn't occur), but...
    }
#endif
    info[s].reverse_map_.resize(freq);
  }
  for (int i = 0; i < ANS_TAB_SIZE; i++) {
    AliasTable::Symbol s =
        AliasTable::Lookup(table, i, log_entry_size, entry_size_minus_1);
    info[s.value].reverse_map_[s.offset] = i;
  }
}

float EstimateDataBits(const ANSHistBin* histogram, const ANSHistBin* counts,
                       size_t len) {
  float sum = 0.0f;
  int total_histogram = 0;
  int total_counts = 0;
  for (size_t i = 0; i < len; ++i) {
    total_histogram += histogram[i];
    total_counts += counts[i];
    if (histogram[i] > 0) {
      JXL_ASSERT(counts[i] > 0);
      // += histogram[i] * -log(counts[i]/total_counts)
      sum += histogram[i] *
             std::max(0.0f, ANS_LOG_TAB_SIZE - FastLog2f(counts[i]));
    }
  }
  if (total_histogram > 0) {
    // Used only in assert.
    (void)total_counts;
    JXL_ASSERT(total_counts == ANS_TAB_SIZE);
  }
  return sum;
}

float EstimateDataBitsFlat(const ANSHistBin* histogram, size_t len) {
  const float flat_bits = std::max(FastLog2f(len), 0.0f);
  float total_histogram = 0;
  for (size_t i = 0; i < len; ++i) {
    total_histogram += histogram[i];
  }
  return total_histogram * flat_bits;
}

// Static Huffman code for encoding logcounts. The last symbol is used as RLE
// sequence.
static const uint8_t kLogCountBitLengths[ANS_LOG_TAB_SIZE + 2] = {
    5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 6, 7, 7,
};
static const uint8_t kLogCountSymbols[ANS_LOG_TAB_SIZE + 2] = {
    17, 11, 15, 3, 9, 7, 4, 2, 5, 6, 0, 33, 1, 65,
};

// Returns the difference between largest count that can be represented and is
// smaller than "count" and smallest representable count larger than "count".
static int SmallestIncrement(uint32_t count, uint32_t shift) {
  int bits = count == 0 ? -1 : FloorLog2Nonzero(count);
  int drop_bits = bits - GetPopulationCountPrecision(bits, shift);
  return drop_bits < 0 ? 1 : (1 << drop_bits);
}

template <bool minimize_error_of_sum>
bool RebalanceHistogram(const float* targets, int max_symbol, int table_size,
                        uint32_t shift, int* omit_pos, ANSHistBin* counts) {
  int sum = 0;
  float sum_nonrounded = 0.0;
  int remainder_pos = 0;  // if all of them are handled in first loop
  int remainder_log = -1;
  for (int n = 0; n < max_symbol; ++n) {
    if (targets[n] > 0 && targets[n] < 1.0f) {
      counts[n] = 1;
      sum_nonrounded += targets[n];
      sum += counts[n];
    }
  }
  const float discount_ratio =
      (table_size - sum) / (table_size - sum_nonrounded);
  JXL_ASSERT(discount_ratio > 0);
  JXL_ASSERT(discount_ratio <= 1.0f);
  // Invariant for minimize_error_of_sum == true:
  // abs(sum - sum_nonrounded)
  //   <= SmallestIncrement(max(targets[])) + max_symbol
  for (int n = 0; n < max_symbol; ++n) {
    if (targets[n] >= 1.0f) {
      sum_nonrounded += targets[n];
      counts[n] =
          static_cast<ANSHistBin>(targets[n] * discount_ratio);  // truncate
      if (counts[n] == 0) counts[n] = 1;
      if (counts[n] == table_size) counts[n] = table_size - 1;
      // Round the count to the closest nonzero multiple of SmallestIncrement
      // (when minimize_error_of_sum is false) or one of two closest so as to
      // keep the sum as close as possible to sum_nonrounded.
      int inc = SmallestIncrement(counts[n], shift);
      counts[n] -= counts[n] & (inc - 1);
      // TODO(robryk): Should we rescale targets[n]?
      const float target =
          minimize_error_of_sum ? (sum_nonrounded - sum) : targets[n];
      if (counts[n] == 0 ||
          (target > counts[n] + inc / 2 && counts[n] + inc < table_size)) {
        counts[n] += inc;
      }
      sum += counts[n];
      const int count_log = FloorLog2Nonzero(static_cast<uint32_t>(counts[n]));
      if (count_log > remainder_log) {
        remainder_pos = n;
        remainder_log = count_log;
      }
    }
  }
  JXL_ASSERT(remainder_pos != -1);
  // NOTE: This is the only place where counts could go negative. We could
  // detect that, return false and make ANSHistBin uint32_t.
  counts[remainder_pos] -= sum - table_size;
  *omit_pos = remainder_pos;
  return counts[remainder_pos] > 0;
}

Status NormalizeCounts(ANSHistBin* counts, int* omit_pos, const int length,
                       const int precision_bits, uint32_t shift,
                       int* num_symbols, int* symbols) {
  const int32_t table_size = 1 << precision_bits;  // target sum / table size
  uint64_t total = 0;
  int max_symbol = 0;
  int symbol_count = 0;
  for (int n = 0; n < length; ++n) {
    total += counts[n];
    if (counts[n] > 0) {
      if (symbol_count < kMaxNumSymbolsForSmallCode) {
        symbols[symbol_count] = n;
      }
      ++symbol_count;
      max_symbol = n + 1;
    }
  }
  *num_symbols = symbol_count;
  if (symbol_count == 0) {
    return true;
  }
  if (symbol_count == 1) {
    counts[symbols[0]] = table_size;
    return true;
  }
  if (symbol_count > table_size)
    return JXL_FAILURE("Too many entries in an ANS histogram");

  const float norm = 1.f * table_size / total;
  std::vector<float> targets(max_symbol);
  for (size_t n = 0; n < targets.size(); ++n) {
    targets[n] = norm * counts[n];
  }
  if (!RebalanceHistogram<false>(&targets[0], max_symbol, table_size, shift,
                                 omit_pos, counts)) {
    // Use an alternative rebalancing mechanism if the one above failed
    // to create a histogram that is positive wherever the original one was.
    if (!RebalanceHistogram<true>(&targets[0], max_symbol, table_size, shift,
                                  omit_pos, counts)) {
      return JXL_FAILURE("Logic error: couldn't rebalance a histogram");
    }
  }
  return true;
}

struct SizeWriter {
  size_t size = 0;
  void Write(size_t num, size_t bits) { size += num; }
};

template <typename Writer>
void StoreVarLenUint8(size_t n, Writer* writer) {
  JXL_DASSERT(n <= 255);
  if (n == 0) {
    writer->Write(1, 0);
  } else {
    writer->Write(1, 1);
    size_t nbits = FloorLog2Nonzero(n);
    writer->Write(3, nbits);
    writer->Write(nbits, n - (1ULL << nbits));
  }
}

template <typename Writer>
void StoreVarLenUint16(size_t n, Writer* writer) {
  JXL_DASSERT(n <= 65535);
  if (n == 0) {
    writer->Write(1, 0);
  } else {
    writer->Write(1, 1);
    size_t nbits = FloorLog2Nonzero(n);
    writer->Write(4, nbits);
    writer->Write(nbits, n - (1ULL << nbits));
  }
}

template <typename Writer>
bool EncodeCounts(const ANSHistBin* counts, const int alphabet_size,
                  const int omit_pos, const int num_symbols, uint32_t shift,
                  const int* symbols, Writer* writer) {
  bool ok = true;
  if (num_symbols <= 2) {
    // Small tree marker to encode 1-2 symbols.
    writer->Write(1, 1);
    if (num_symbols == 0) {
      writer->Write(1, 0);
      StoreVarLenUint8(0, writer);
    } else {
      writer->Write(1, num_symbols - 1);
      for (int i = 0; i < num_symbols; ++i) {
        StoreVarLenUint8(symbols[i], writer);
      }
    }
    if (num_symbols == 2) {
      writer->Write(ANS_LOG_TAB_SIZE, counts[symbols[0]]);
    }
  } else {
    // Mark non-small tree.
    writer->Write(1, 0);
    // Mark non-flat histogram.
    writer->Write(1, 0);

    // Precompute sequences for RLE encoding. Contains the number of identical
    // values starting at a given index. Only contains the value at the first
    // element of the series.
    std::vector<uint32_t> same(alphabet_size, 0);
    int last = 0;
    for (int i = 1; i < alphabet_size; i++) {
      // Store the sequence length once different symbol reached, or we're at
      // the end, or the length is longer than we can encode, or we are at
      // the omit_pos. We don't support including the omit_pos in an RLE
      // sequence because this value may use a different amount of log2 bits
      // than standard, it is too complex to handle in the decoder.
      if (counts[i] != counts[last] || i + 1 == alphabet_size ||
          (i - last) >= 255 || i == omit_pos || i == omit_pos + 1) {
        same[last] = (i - last);
        last = i + 1;
      }
    }

    int length = 0;
    std::vector<int> logcounts(alphabet_size);
    int omit_log = 0;
    for (int i = 0; i < alphabet_size; ++i) {
      JXL_ASSERT(counts[i] <= ANS_TAB_SIZE);
      JXL_ASSERT(counts[i] >= 0);
      if (i == omit_pos) {
        length = i + 1;
      } else if (counts[i] > 0) {
        logcounts[i] = FloorLog2Nonzero(static_cast<uint32_t>(counts[i])) + 1;
        length = i + 1;
        if (i < omit_pos) {
          omit_log = std::max(omit_log, logcounts[i] + 1);
        } else {
          omit_log = std::max(omit_log, logcounts[i]);
        }
      }
    }
    logcounts[omit_pos] = omit_log;

    // Elias gamma-like code for shift. Only difference is that if the number
    // of bits to be encoded is equal to FloorLog2(ANS_LOG_TAB_SIZE+1), we skip
    // the terminating 0 in unary coding.
    int upper_bound_log = FloorLog2Nonzero(ANS_LOG_TAB_SIZE + 1);
    int log = FloorLog2Nonzero(shift + 1);
    writer->Write(log, (1 << log) - 1);
    if (log != upper_bound_log) writer->Write(1, 0);
    writer->Write(log, ((1 << log) - 1) & (shift + 1));

    // Since num_symbols >= 3, we know that length >= 3, therefore we encode
    // length - 3.
    if (length - 3 > 255) {
      // Pretend that everything is OK, but complain about correctness later.
      StoreVarLenUint8(255, writer);
      ok = false;
    } else {
      StoreVarLenUint8(length - 3, writer);
    }

    // The logcount values are encoded with a static Huffman code.
    static const size_t kMinReps = 4;
    size_t rep = ANS_LOG_TAB_SIZE + 1;
    for (int i = 0; i < length; ++i) {
      if (i > 0 && same[i - 1] > kMinReps) {
        // Encode the RLE symbol and skip the repeated ones.
        writer->Write(kLogCountBitLengths[rep], kLogCountSymbols[rep]);
        StoreVarLenUint8(same[i - 1] - kMinReps - 1, writer);
        i += same[i - 1] - 2;
        continue;
      }
      writer->Write(kLogCountBitLengths[logcounts[i]],
                    kLogCountSymbols[logcounts[i]]);
    }
    for (int i = 0; i < length; ++i) {
      if (i > 0 && same[i - 1] > kMinReps) {
        // Skip symbols encoded by RLE.
        i += same[i - 1] - 2;
        continue;
      }
      if (logcounts[i] > 1 && i != omit_pos) {
        int bitcount = GetPopulationCountPrecision(logcounts[i] - 1, shift);
        int drop_bits = logcounts[i] - 1 - bitcount;
        JXL_CHECK((counts[i] & ((1 << drop_bits) - 1)) == 0);
        writer->Write(bitcount, (counts[i] >> drop_bits) - (1 << bitcount));
      }
    }
  }
  return ok;
}

void EncodeFlatHistogram(const int alphabet_size, BitWriter* writer) {
  // Mark non-small tree.
  writer->Write(1, 0);
  // Mark uniform histogram.
  writer->Write(1, 1);
  JXL_ASSERT(alphabet_size > 0);
  // Encode alphabet size.
  StoreVarLenUint8(alphabet_size - 1, writer);
}

float ComputeHistoAndDataCost(const ANSHistBin* histogram, size_t alphabet_size,
                              uint32_t method) {
  if (method == 0) {  // Flat code
    return ANS_LOG_TAB_SIZE + 2 +
           EstimateDataBitsFlat(histogram, alphabet_size);
  }
  // Non-flat: shift = method-1.
  uint32_t shift = method - 1;
  std::vector<ANSHistBin> counts(histogram, histogram + alphabet_size);
  int omit_pos = 0;
  int num_symbols;
  int symbols[kMaxNumSymbolsForSmallCode] = {};
  JXL_CHECK(NormalizeCounts(counts.data(), &omit_pos, alphabet_size,
                            ANS_LOG_TAB_SIZE, shift, &num_symbols, symbols));
  SizeWriter writer;
  // Ignore the correctness, no real encoding happens at this stage.
  (void)EncodeCounts(counts.data(), alphabet_size, omit_pos, num_symbols, shift,
                     symbols, &writer);
  return writer.size +
         EstimateDataBits(histogram, counts.data(), alphabet_size);
}

uint32_t ComputeBestMethod(
    const ANSHistBin* histogram, size_t alphabet_size, float* cost,
    HistogramParams::ANSHistogramStrategy ans_histogram_strategy) {
  size_t method = 0;
  float fcost = ComputeHistoAndDataCost(histogram, alphabet_size, 0);
  auto try_shift = [&](size_t shift) {
    float c = ComputeHistoAndDataCost(histogram, alphabet_size, shift + 1);
    if (c < fcost) {
      method = shift + 1;
      fcost = c;
    }
  };
  switch (ans_histogram_strategy) {
    case HistogramParams::ANSHistogramStrategy::kPrecise: {
      for (uint32_t shift = 0; shift <= ANS_LOG_TAB_SIZE; shift++) {
        try_shift(shift);
      }
      break;
    }
    case HistogramParams::ANSHistogramStrategy::kApproximate: {
      for (uint32_t shift = 0; shift <= ANS_LOG_TAB_SIZE; shift += 2) {
        try_shift(shift);
      }
      break;
    }
    case HistogramParams::ANSHistogramStrategy::kFast: {
      try_shift(0);
      try_shift(ANS_LOG_TAB_SIZE / 2);
      try_shift(ANS_LOG_TAB_SIZE);
      break;
    }
  };
  *cost = fcost;
  return method;
}

}  // namespace

// Returns an estimate of the cost of encoding this histogram and the
// corresponding data.
size_t BuildAndStoreANSEncodingData(
    HistogramParams::ANSHistogramStrategy ans_histogram_strategy,
    const ANSHistBin* histogram, size_t alphabet_size, size_t log_alpha_size,
    bool use_prefix_code, ANSEncSymbolInfo* info, BitWriter* writer) {
  if (use_prefix_code) {
    if (alphabet_size <= 1) return 0;
    std::vector<uint32_t> histo(alphabet_size);
    for (size_t i = 0; i < alphabet_size; i++) {
      histo[i] = histogram[i];
      JXL_CHECK(histogram[i] >= 0);
    }
    size_t cost = 0;
    {
      std::vector<uint8_t> depths(alphabet_size);
      std::vector<uint16_t> bits(alphabet_size);
      if (writer == nullptr) {
        BitWriter tmp_writer;
        BitWriter::Allotment allotment(
            &tmp_writer, 8 * alphabet_size + 8);  // safe upper bound
        BuildAndStoreHuffmanTree(histo.data(), alphabet_size, depths.data(),
                                 bits.data(), &tmp_writer);
        allotment.ReclaimAndCharge(&tmp_writer, 0, /*aux_out=*/nullptr);
        cost = tmp_writer.BitsWritten();
      } else {
        size_t start = writer->BitsWritten();
        BuildAndStoreHuffmanTree(histo.data(), alphabet_size, depths.data(),
                                 bits.data(), writer);
        cost = writer->BitsWritten() - start;
      }
      for (size_t i = 0; i < alphabet_size; i++) {
        info[i].bits = depths[i] == 0 ? 0 : bits[i];
        info[i].depth = depths[i];
      }
    }
    // Estimate data cost.
    for (size_t i = 0; i < alphabet_size; i++) {
      cost += histogram[i] * info[i].depth;
    }
    return cost;
  }
  JXL_ASSERT(alphabet_size <= ANS_TAB_SIZE);
  // Ensure we ignore trailing zeros in the histogram.
  if (alphabet_size != 0) {
    size_t largest_symbol = 0;
    for (size_t i = 0; i < alphabet_size; i++) {
      if (histogram[i] != 0) largest_symbol = i;
    }
    alphabet_size = largest_symbol + 1;
  }
  float cost;
  uint32_t method = ComputeBestMethod(histogram, alphabet_size, &cost,
                                      ans_histogram_strategy);
  JXL_ASSERT(cost >= 0);
  int num_symbols;
  int symbols[kMaxNumSymbolsForSmallCode] = {};
  std::vector<ANSHistBin> counts(histogram, histogram + alphabet_size);
  if (!counts.empty()) {
    size_t sum = 0;
    for (size_t i = 0; i < counts.size(); i++) {
      sum += counts[i];
    }
    if (sum == 0) {
      counts[0] = ANS_TAB_SIZE;
    }
  }
  if (method == 0) {
    counts = CreateFlatHistogram(alphabet_size, ANS_TAB_SIZE);
    AliasTable::Entry a[ANS_MAX_ALPHABET_SIZE];
    InitAliasTable(counts, ANS_TAB_SIZE, log_alpha_size, a);
    ANSBuildInfoTable(counts.data(), a, alphabet_size, log_alpha_size, info);
    if (writer != nullptr) {
      EncodeFlatHistogram(alphabet_size, writer);
    }
    return cost;
  }
  int omit_pos = 0;
  uint32_t shift = method - 1;
  JXL_CHECK(NormalizeCounts(counts.data(), &omit_pos, alphabet_size,
                            ANS_LOG_TAB_SIZE, shift, &num_symbols, symbols));
  AliasTable::Entry a[ANS_MAX_ALPHABET_SIZE];
  InitAliasTable(counts, ANS_TAB_SIZE, log_alpha_size, a);
  ANSBuildInfoTable(counts.data(), a, alphabet_size, log_alpha_size, info);
  if (writer != nullptr) {
    bool ok = EncodeCounts(counts.data(), alphabet_size, omit_pos, num_symbols,
                           shift, symbols, writer);
    (void)ok;
    JXL_DASSERT(ok);
  }
  return cost;
}

float ANSPopulationCost(const ANSHistBin* data, size_t alphabet_size) {
  float c;
  ComputeBestMethod(data, alphabet_size, &c,
                    HistogramParams::ANSHistogramStrategy::kFast);
  return c;
}

template <typename Writer>
void EncodeUintConfig(const HybridUintConfig uint_config, Writer* writer,
                      size_t log_alpha_size) {
  writer->Write(CeilLog2Nonzero(log_alpha_size + 1),
                uint_config.split_exponent);
  if (uint_config.split_exponent == log_alpha_size) {
    return;  // msb/lsb don't matter.
  }
  size_t nbits = CeilLog2Nonzero(uint_config.split_exponent + 1);
  writer->Write(nbits, uint_config.msb_in_token);
  nbits = CeilLog2Nonzero(uint_config.split_exponent -
                          uint_config.msb_in_token + 1);
  writer->Write(nbits, uint_config.lsb_in_token);
}
template <typename Writer>
void EncodeUintConfigs(const std::vector<HybridUintConfig>& uint_config,
                       Writer* writer, size_t log_alpha_size) {
  // TODO(veluca): RLE?
  for (size_t i = 0; i < uint_config.size(); i++) {
    EncodeUintConfig(uint_config[i], writer, log_alpha_size);
  }
}
template void EncodeUintConfigs(const std::vector<HybridUintConfig>&,
                                BitWriter*, size_t);

namespace {

void ChooseUintConfigs(const HistogramParams& params,
                       const std::vector<std::vector<Token>>& tokens,
                       const std::vector<uint8_t>& context_map,
                       std::vector<Histogram>* clustered_histograms,
                       EntropyEncodingData* codes, size_t* log_alpha_size) {
  codes->uint_config.resize(clustered_histograms->size());

  if (params.uint_method == HistogramParams::HybridUintMethod::kNone) return;
  if (params.uint_method == HistogramParams::HybridUintMethod::k000) {
    codes->uint_config.clear();
    codes->uint_config.resize(clustered_histograms->size(),
                              HybridUintConfig(0, 0, 0));
    return;
  }
  if (params.uint_method == HistogramParams::HybridUintMethod::kContextMap) {
    codes->uint_config.clear();
    codes->uint_config.resize(clustered_histograms->size(),
                              HybridUintConfig(2, 0, 1));
    return;
  }

  // Brute-force method that tries a few options.
  std::vector<HybridUintConfig> configs;
  if (params.uint_method == HistogramParams::HybridUintMethod::kBest) {
    configs = {
        HybridUintConfig(4, 2, 0),  // default
        HybridUintConfig(4, 1, 0),  // less precise
        HybridUintConfig(4, 2, 1),  // add sign
        HybridUintConfig(4, 2, 2),  // add sign+parity
        HybridUintConfig(4, 1, 2),  // add parity but less msb
        // Same as above, but more direct coding.
        HybridUintConfig(5, 2, 0), HybridUintConfig(5, 1, 0),
        HybridUintConfig(5, 2, 1), HybridUintConfig(5, 2, 2),
        HybridUintConfig(5, 1, 2),
        // Same as above, but less direct coding.
        HybridUintConfig(3, 2, 0), HybridUintConfig(3, 1, 0),
        HybridUintConfig(3, 2, 1), HybridUintConfig(3, 1, 2),
        // For near-lossless.
        HybridUintConfig(4, 1, 3), HybridUintConfig(5, 1, 4),
        HybridUintConfig(5, 2, 3), HybridUintConfig(6, 1, 5),
        HybridUintConfig(6, 2, 4), HybridUintConfig(6, 0, 0),
        // Other
        HybridUintConfig(0, 0, 0),   // varlenuint
        HybridUintConfig(2, 0, 1),   // works well for ctx map
        HybridUintConfig(7, 0, 0),   // direct coding
        HybridUintConfig(8, 0, 0),   // direct coding
        HybridUintConfig(9, 0, 0),   // direct coding
        HybridUintConfig(10, 0, 0),  // direct coding
        HybridUintConfig(11, 0, 0),  // direct coding
        HybridUintConfig(12, 0, 0),  // direct coding
    };
  } else if (params.uint_method == HistogramParams::HybridUintMethod::kFast) {
    configs = {
        HybridUintConfig(4, 2, 0),  // default
        HybridUintConfig(4, 1, 2),  // add parity but less msb
        HybridUintConfig(0, 0, 0),  // smallest histograms
        HybridUintConfig(2, 0, 1),  // works well for ctx map
    };
  }

  std::vector<float> costs(clustered_histograms->size(),
                           std::numeric_limits<float>::max());
  std::vector<uint32_t> extra_bits(clustered_histograms->size());
  std::vector<uint8_t> is_valid(clustered_histograms->size());
  size_t max_alpha =
      codes->use_prefix_code ? PREFIX_MAX_ALPHABET_SIZE : ANS_MAX_ALPHABET_SIZE;
  for (HybridUintConfig cfg : configs) {
    std::fill(is_valid.begin(), is_valid.end(), true);
    std::fill(extra_bits.begin(), extra_bits.end(), 0);

    for (size_t i = 0; i < clustered_histograms->size(); i++) {
      (*clustered_histograms)[i].Clear();
    }
    for (size_t i = 0; i < tokens.size(); ++i) {
      for (size_t j = 0; j < tokens[i].size(); ++j) {
        const Token token = tokens[i][j];
        // TODO(veluca): do not ignore lz77 commands.
        if (token.is_lz77_length) continue;
        size_t histo = context_map[token.context];
        uint32_t tok, nbits, bits;
        cfg.Encode(token.value, &tok, &nbits, &bits);
        if (tok >= max_alpha ||
            (codes->lz77.enabled && tok >= codes->lz77.min_symbol)) {
          is_valid[histo] = false;
          continue;
        }
        extra_bits[histo] += nbits;
        (*clustered_histograms)[histo].Add(tok);
      }
    }

    for (size_t i = 0; i < clustered_histograms->size(); i++) {
      if (!is_valid[i]) continue;
      float cost = (*clustered_histograms)[i].PopulationCost() + extra_bits[i];
      // add signaling cost of the hybriduintconfig itself
      cost += CeilLog2Nonzero(cfg.split_exponent + 1);
      cost += CeilLog2Nonzero(cfg.split_exponent - cfg.msb_in_token + 1);
      if (cost < costs[i]) {
        codes->uint_config[i] = cfg;
        costs[i] = cost;
      }
    }
  }

  // Rebuild histograms.
  for (size_t i = 0; i < clustered_histograms->size(); i++) {
    (*clustered_histograms)[i].Clear();
  }
  *log_alpha_size = 4;
  for (size_t i = 0; i < tokens.size(); ++i) {
    for (size_t j = 0; j < tokens[i].size(); ++j) {
      const Token token = tokens[i][j];
      uint32_t tok, nbits, bits;
      size_t histo = context_map[token.context];
      (token.is_lz77_length ? codes->lz77.length_uint_config
                            : codes->uint_config[histo])
          .Encode(token.value, &tok, &nbits, &bits);
      tok += token.is_lz77_length ? codes->lz77.min_symbol : 0;
      (*clustered_histograms)[histo].Add(tok);
      while (tok >= (1u << *log_alpha_size)) (*log_alpha_size)++;
    }
  }
#if JXL_ENABLE_ASSERT
  size_t max_log_alpha_size = codes->use_prefix_code ? PREFIX_MAX_BITS : 8;
  JXL_ASSERT(*log_alpha_size <= max_log_alpha_size);
#endif
}

class HistogramBuilder {
 public:
  explicit HistogramBuilder(const size_t num_contexts)
      : histograms_(num_contexts) {}

  void VisitSymbol(int symbol, size_t histo_idx) {
    JXL_DASSERT(histo_idx < histograms_.size());
    histograms_[histo_idx].Add(symbol);
  }

  // NOTE: `layer` is only for clustered_entropy; caller does ReclaimAndCharge.
  size_t BuildAndStoreEntropyCodes(
      const HistogramParams& params,
      const std::vector<std::vector<Token>>& tokens, EntropyEncodingData* codes,
      std::vector<uint8_t>* context_map, bool use_prefix_code,
      BitWriter* writer, size_t layer, AuxOut* aux_out) const {
    size_t cost = 0;
    codes->encoding_info.clear();
    std::vector<Histogram> clustered_histograms(histograms_);
    context_map->resize(histograms_.size());
    if (histograms_.size() > 1) {
      if (!ans_fuzzer_friendly_) {
        std::vector<uint32_t> histogram_symbols;
        ClusterHistograms(params, histograms_, kClustersLimit,
                          &clustered_histograms, &histogram_symbols);
        for (size_t c = 0; c < histograms_.size(); ++c) {
          (*context_map)[c] = static_cast<uint8_t>(histogram_symbols[c]);
        }
      } else {
        fill(context_map->begin(), context_map->end(), 0);
        size_t max_symbol = 0;
        for (const Histogram& h : histograms_) {
          max_symbol = std::max(h.data_.size(), max_symbol);
        }
        size_t num_symbols = 1 << CeilLog2Nonzero(max_symbol + 1);
        clustered_histograms.resize(1);
        clustered_histograms[0].Clear();
        for (size_t i = 0; i < num_symbols; i++) {
          clustered_histograms[0].Add(i);
        }
      }
      if (writer != nullptr) {
        EncodeContextMap(*context_map, clustered_histograms.size(), writer,
                         layer, aux_out);
      }
    }
    if (aux_out != nullptr) {
      for (size_t i = 0; i < clustered_histograms.size(); ++i) {
        aux_out->layers[layer].clustered_entropy +=
            clustered_histograms[i].ShannonEntropy();
      }
    }
    codes->use_prefix_code = use_prefix_code;
    size_t log_alpha_size = codes->lz77.enabled ? 8 : 7;  // Sane default.
    if (ans_fuzzer_friendly_) {
      codes->uint_config.clear();
      codes->uint_config.resize(1, HybridUintConfig(7, 0, 0));
    } else {
      ChooseUintConfigs(params, tokens, *context_map, &clustered_histograms,
                        codes, &log_alpha_size);
    }
    if (log_alpha_size < 5) log_alpha_size = 5;
    SizeWriter size_writer;  // Used if writer == nullptr to estimate costs.
    cost += 1;
    if (writer) writer->Write(1, use_prefix_code);

    if (use_prefix_code) {
      log_alpha_size = PREFIX_MAX_BITS;
    } else {
      cost += 2;
    }
    if (writer == nullptr) {
      EncodeUintConfigs(codes->uint_config, &size_writer, log_alpha_size);
    } else {
      if (!use_prefix_code) writer->Write(2, log_alpha_size - 5);
      EncodeUintConfigs(codes->uint_config, writer, log_alpha_size);
    }
    if (use_prefix_code) {
      for (size_t c = 0; c < clustered_histograms.size(); ++c) {
        size_t num_symbol = 1;
        for (size_t i = 0; i < clustered_histograms[c].data_.size(); i++) {
          if (clustered_histograms[c].data_[i]) num_symbol = i + 1;
        }
        if (writer) {
          StoreVarLenUint16(num_symbol - 1, writer);
        } else {
          StoreVarLenUint16(num_symbol - 1, &size_writer);
        }
      }
    }
    cost += size_writer.size;
    for (size_t c = 0; c < clustered_histograms.size(); ++c) {
      size_t num_symbol = 1;
      for (size_t i = 0; i < clustered_histograms[c].data_.size(); i++) {
        if (clustered_histograms[c].data_[i]) num_symbol = i + 1;
      }
      codes->encoding_info.emplace_back();
      codes->encoding_info.back().resize(std::max<size_t>(1, num_symbol));

      BitWriter::Allotment allotment(writer, 256 + num_symbol * 24);
      cost += BuildAndStoreANSEncodingData(
          params.ans_histogram_strategy, clustered_histograms[c].data_.data(),
          num_symbol, log_alpha_size, use_prefix_code,
          codes->encoding_info.back().data(), writer);
      allotment.FinishedHistogram(writer);
      allotment.ReclaimAndCharge(writer, layer, aux_out);
    }
    return cost;
  }

  const Histogram& Histo(size_t i) const { return histograms_[i]; }

 private:
  std::vector<Histogram> histograms_;
};

class SymbolCostEstimator {
 public:
  SymbolCostEstimator(size_t num_contexts, bool force_huffman,
                      const std::vector<std::vector<Token>>& tokens,
                      const LZ77Params& lz77) {
    HistogramBuilder builder(num_contexts);
    // Build histograms for estimating lz77 savings.
    HybridUintConfig uint_config;
    for (size_t i = 0; i < tokens.size(); ++i) {
      for (size_t j = 0; j < tokens[i].size(); ++j) {
        const Token token = tokens[i][j];
        uint32_t tok, nbits, bits;
        (token.is_lz77_length ? lz77.length_uint_config : uint_config)
            .Encode(token.value, &tok, &nbits, &bits);
        tok += token.is_lz77_length ? lz77.min_symbol : 0;
        builder.VisitSymbol(tok, token.context);
      }
    }
    max_alphabet_size_ = 0;
    for (size_t i = 0; i < num_contexts; i++) {
      max_alphabet_size_ =
          std::max(max_alphabet_size_, builder.Histo(i).data_.size());
    }
    bits_.resize(num_contexts * max_alphabet_size_);
    // TODO(veluca): SIMD?
    add_symbol_cost_.resize(num_contexts);
    for (size_t i = 0; i < num_contexts; i++) {
      float inv_total = 1.0f / (builder.Histo(i).total_count_ + 1e-8f);
      float total_cost = 0;
      for (size_t j = 0; j < builder.Histo(i).data_.size(); j++) {
        size_t cnt = builder.Histo(i).data_[j];
        float cost = 0;
        if (cnt != 0 && cnt != builder.Histo(i).total_count_) {
          cost = -FastLog2f(cnt * inv_total);
          if (force_huffman) cost = std::ceil(cost);
        } else if (cnt == 0) {
          cost = ANS_LOG_TAB_SIZE;  // Highest possible cost.
        }
        bits_[i * max_alphabet_size_ + j] = cost;
        total_cost += cost * builder.Histo(i).data_[j];
      }
      // Penalty for adding a lz77 symbol to this contest (only used for static
      // cost model). Higher penalty for contexts that have a very low
      // per-symbol entropy.
      add_symbol_cost_[i] = std::max(0.0f, 6.0f - total_cost * inv_total);
    }
  }
  float Bits(size_t ctx, size_t sym) const {
    return bits_[ctx * max_alphabet_size_ + sym];
  }
  float LenCost(size_t ctx, size_t len, const LZ77Params& lz77) const {
    uint32_t nbits, bits, tok;
    lz77.length_uint_config.Encode(len, &tok, &nbits, &bits);
    tok += lz77.min_symbol;
    return nbits + Bits(ctx, tok);
  }
  float DistCost(size_t len, const LZ77Params& lz77) const {
    uint32_t nbits, bits, tok;
    HybridUintConfig().Encode(len, &tok, &nbits, &bits);
    return nbits + Bits(lz77.nonserialized_distance_context, tok);
  }
  float AddSymbolCost(size_t idx) const { return add_symbol_cost_[idx]; }

 private:
  size_t max_alphabet_size_;
  std::vector<float> bits_;
  std::vector<float> add_symbol_cost_;
};

void ApplyLZ77_RLE(const HistogramParams& params, size_t num_contexts,
                   const std::vector<std::vector<Token>>& tokens,
                   LZ77Params& lz77,
                   std::vector<std::vector<Token>>& tokens_lz77) {
  // TODO(veluca): tune heuristics here.
  SymbolCostEstimator sce(num_contexts, params.force_huffman, tokens, lz77);
  float bit_decrease = 0;
  size_t total_symbols = 0;
  tokens_lz77.resize(tokens.size());
  std::vector<float> sym_cost;
  HybridUintConfig uint_config;
  for (size_t stream = 0; stream < tokens.size(); stream++) {
    size_t distance_multiplier =
        params.image_widths.size() > stream ? params.image_widths[stream] : 0;
    const auto& in = tokens[stream];
    auto& out = tokens_lz77[stream];
    total_symbols += in.size();
    // Cumulative sum of bit costs.
    sym_cost.resize(in.size() + 1);
    for (size_t i = 0; i < in.size(); i++) {
      uint32_t tok, nbits, unused_bits;
      uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
      sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
    }
    out.reserve(in.size());
    for (size_t i = 0; i < in.size(); i++) {
      size_t num_to_copy = 0;
      size_t distance_symbol = 0;  // 1 for RLE.
      if (distance_multiplier != 0) {
        distance_symbol = 1;  // Special distance 1 if enabled.
        JXL_DASSERT(kSpecialDistances[1][0] == 1);
        JXL_DASSERT(kSpecialDistances[1][1] == 0);
      }
      if (i > 0) {
        for (; i + num_to_copy < in.size(); num_to_copy++) {
          if (in[i + num_to_copy].value != in[i - 1].value) {
            break;
          }
        }
      }
      if (num_to_copy == 0) {
        out.push_back(in[i]);
        continue;
      }
      float cost = sym_cost[i + num_to_copy] - sym_cost[i];
      // This subtraction might overflow, but that's OK.
      size_t lz77_len = num_to_copy - lz77.min_length;
      float lz77_cost = num_to_copy >= lz77.min_length
                            ? CeilLog2Nonzero(lz77_len + 1) + 1
                            : 0;
      if (num_to_copy < lz77.min_length || cost <= lz77_cost) {
        for (size_t j = 0; j < num_to_copy; j++) {
          out.push_back(in[i + j]);
        }
        i += num_to_copy - 1;
        continue;
      }
      // Output the LZ77 length
      out.emplace_back(in[i].context, lz77_len);
      out.back().is_lz77_length = true;
      i += num_to_copy - 1;
      bit_decrease += cost - lz77_cost;
      // Output the LZ77 copy distance.
      out.emplace_back(lz77.nonserialized_distance_context, distance_symbol);
    }
  }

  if (bit_decrease > total_symbols * 0.2 + 16) {
    lz77.enabled = true;
  }
}

// Hash chain for LZ77 matching
struct HashChain {
  size_t size_;
  std::vector<uint32_t> data_;

  unsigned hash_num_values_ = 32768;
  unsigned hash_mask_ = hash_num_values_ - 1;
  unsigned hash_shift_ = 5;

  std::vector<int> head;
  std::vector<uint32_t> chain;
  std::vector<int> val;

  // Speed up repetitions of zero
  std::vector<int> headz;
  std::vector<uint32_t> chainz;
  std::vector<uint32_t> zeros;
  uint32_t numzeros = 0;

  size_t window_size_;
  size_t window_mask_;
  size_t min_length_;
  size_t max_length_;

  // Map of special distance codes.
  std::unordered_map<int, int> special_dist_table_;
  size_t num_special_distances_ = 0;

  uint32_t maxchainlength = 256;  // window_size_ to allow all

  HashChain(const Token* data, size_t size, size_t window_size,
            size_t min_length, size_t max_length, size_t distance_multiplier)
      : size_(size),
        window_size_(window_size),
        window_mask_(window_size - 1),
        min_length_(min_length),
        max_length_(max_length) {
    data_.resize(size);
    for (size_t i = 0; i < size; i++) {
      data_[i] = data[i].value;
    }

    head.resize(hash_num_values_, -1);
    val.resize(window_size_, -1);
    chain.resize(window_size_);
    for (uint32_t i = 0; i < window_size_; ++i) {
      chain[i] = i;  // same value as index indicates uninitialized
    }

    zeros.resize(window_size_);
    headz.resize(window_size_ + 1, -1);
    chainz.resize(window_size_);
    for (uint32_t i = 0; i < window_size_; ++i) {
      chainz[i] = i;
    }
    // Translate distance to special distance code.
    if (distance_multiplier) {
      // Count down, so if due to small distance multiplier multiple distances
      // map to the same code, the smallest code will be used in the end.
      for (int i = kNumSpecialDistances - 1; i >= 0; --i) {
        int xi = kSpecialDistances[i][0];
        int yi = kSpecialDistances[i][1];
        int distance = yi * distance_multiplier + xi;
        // Ensure that we map distance 1 to the lowest symbols.
        if (distance < 1) distance = 1;
        special_dist_table_[distance] = i;
      }
      num_special_distances_ = kNumSpecialDistances;
    }
  }

  uint32_t GetHash(size_t pos) const {
    uint32_t result = 0;
    if (pos + 2 < size_) {
      // TODO(lode): take the MSB's of the uint32_t values into account as well,
      // given that the hash code itself is less than 32 bits.
      result ^= (uint32_t)(data_[pos + 0] << 0u);
      result ^= (uint32_t)(data_[pos + 1] << hash_shift_);
      result ^= (uint32_t)(data_[pos + 2] << (hash_shift_ * 2));
    } else {
      // No need to compute hash of last 2 bytes, the length 2 is too short.
      return 0;
    }
    return result & hash_mask_;
  }

  uint32_t CountZeros(size_t pos, uint32_t prevzeros) const {
    size_t end = pos + window_size_;
    if (end > size_) end = size_;
    if (prevzeros > 0) {
      if (prevzeros >= window_mask_ && data_[end - 1] == 0 &&
          end == pos + window_size_) {
        return prevzeros;
      } else {
        return prevzeros - 1;
      }
    }
    uint32_t num = 0;
    while (pos + num < end && data_[pos + num] == 0) num++;
    return num;
  }

  void Update(size_t pos) {
    uint32_t hashval = GetHash(pos);
    uint32_t wpos = pos & window_mask_;

    val[wpos] = (int)hashval;
    if (head[hashval] != -1) chain[wpos] = head[hashval];
    head[hashval] = wpos;

    if (pos > 0 && data_[pos] != data_[pos - 1]) numzeros = 0;
    numzeros = CountZeros(pos, numzeros);

    zeros[wpos] = numzeros;
    if (headz[numzeros] != -1) chainz[wpos] = headz[numzeros];
    headz[numzeros] = wpos;
  }

  void Update(size_t pos, size_t len) {
    for (size_t i = 0; i < len; i++) {
      Update(pos + i);
    }
  }

  template <typename CB>
  void FindMatches(size_t pos, int max_dist, const CB& found_match) const {
    uint32_t wpos = pos & window_mask_;
    uint32_t hashval = GetHash(pos);
    uint32_t hashpos = chain[wpos];

    int prev_dist = 0;
    int end = std::min<int>(pos + max_length_, size_);
    uint32_t chainlength = 0;
    uint32_t best_len = 0;
    for (;;) {
      int dist = (hashpos <= wpos) ? (wpos - hashpos)
                                   : (wpos - hashpos + window_mask_ + 1);
      if (dist < prev_dist) break;
      prev_dist = dist;
      uint32_t len = 0;
      if (dist > 0) {
        int i = pos;
        int j = pos - dist;
        if (numzeros > 3) {
          int r = std::min<int>(numzeros - 1, zeros[hashpos]);
          if (i + r >= end) r = end - i - 1;
          i += r;
          j += r;
        }
        while (i < end && data_[i] == data_[j]) {
          i++;
          j++;
        }
        len = i - pos;
        // This can trigger even if the new length is slightly smaller than the
        // best length, because it is possible for a slightly cheaper distance
        // symbol to occur.
        if (len >= min_length_ && len + 2 >= best_len) {
          auto it = special_dist_table_.find(dist);
          int dist_symbol = (it == special_dist_table_.end())
                                ? (num_special_distances_ + dist - 1)
                                : it->second;
          found_match(len, dist_symbol);
          if (len > best_len) best_len = len;
        }
      }

      chainlength++;
      if (chainlength >= maxchainlength) break;

      if (numzeros >= 3 && len > numzeros) {
        if (hashpos == chainz[hashpos]) break;
        hashpos = chainz[hashpos];
        if (zeros[hashpos] != numzeros) break;
      } else {
        if (hashpos == chain[hashpos]) break;
        hashpos = chain[hashpos];
        if (val[hashpos] != (int)hashval) break;  // outdated hash value
      }
    }
  }
  void FindMatch(size_t pos, int max_dist, size_t* result_dist_symbol,
                 size_t* result_len) const {
    *result_dist_symbol = 0;
    *result_len = 1;
    FindMatches(pos, max_dist, [&](size_t len, size_t dist_symbol) {
      if (len > *result_len ||
          (len == *result_len && *result_dist_symbol > dist_symbol)) {
        *result_len = len;
        *result_dist_symbol = dist_symbol;
      }
    });
  }
};

float LenCost(size_t len) {
  uint32_t nbits, bits, tok;
  HybridUintConfig(1, 0, 0).Encode(len, &tok, &nbits, &bits);
  constexpr float kCostTable[] = {
      2.797667318563126,  3.213177690381199,  2.5706009246743737,
      2.408392498667534,  2.829649191872326,  3.3923087753324577,
      4.029267451554331,  4.415576699706408,  4.509357574741465,
      9.21481543803004,   10.020590190114898, 11.858671627804766,
      12.45853300490526,  11.713105831990857, 12.561996324849314,
      13.775477692278367, 13.174027068768641,
  };
  size_t table_size = sizeof kCostTable / sizeof *kCostTable;
  if (tok >= table_size) tok = table_size - 1;
  return kCostTable[tok] + nbits;
}

// TODO(veluca): this does not take into account usage or non-usage of distance
// multipliers.
float DistCost(size_t dist) {
  uint32_t nbits, bits, tok;
  HybridUintConfig(7, 0, 0).Encode(dist, &tok, &nbits, &bits);
  constexpr float kCostTable[] = {
      6.368282626312716,  5.680793277090298,  8.347404197105247,
      7.641619201599141,  6.914328374119438,  7.959808291537444,
      8.70023120759855,   8.71378518934703,   9.379132523982769,
      9.110472749092708,  9.159029569270908,  9.430936766731973,
      7.278284055315169,  7.8278514904267755, 10.026641158289236,
      9.976049229827066,  9.64351607048908,   9.563403863480442,
      10.171474111762747, 10.45950155077234,  9.994813912104219,
      10.322524683741156, 8.465808729388186,  8.756254166066853,
      10.160930174662234, 10.247329273413435, 10.04090403724809,
      10.129398517544082, 9.342311691539546,  9.07608009102374,
      10.104799540677513, 10.378079384990906, 10.165828974075072,
      10.337595322341553, 7.940557464567944,  10.575665823319431,
      11.023344321751955, 10.736144698831827, 11.118277044595054,
      7.468468230648442,  10.738305230932939, 10.906980780216568,
      10.163468216353817, 10.17805759656433,  11.167283670483565,
      11.147050200274544, 10.517921919244333, 10.651764778156886,
      10.17074446448919,  11.217636876224745, 11.261630721139484,
      11.403140815247259, 10.892472096873417, 11.1859607804481,
      8.017346947551262,  7.895143720278828,  11.036577113822025,
      11.170562110315794, 10.326988722591086, 10.40872184751056,
      11.213498225466386, 11.30580635516863,  10.672272515665442,
      10.768069466228063, 11.145257364153565, 11.64668307145549,
      10.593156194627339, 11.207499484844943, 10.767517766396908,
      10.826629811407042, 10.737764794499988, 10.6200448518045,
      10.191315385198092, 8.468384171390085,  11.731295299170432,
      11.824619886654398, 10.41518844301179,  10.16310536548649,
      10.539423685097576, 10.495136599328031, 10.469112847728267,
      11.72057686174922,  10.910326337834674, 11.378921834673758,
      11.847759036098536, 11.92071647623854,  10.810628276345282,
      11.008601085273893, 11.910326337834674, 11.949212023423133,
      11.298614839104337, 11.611603659010392, 10.472930394619985,
      11.835564720850282, 11.523267392285337, 12.01055816679611,
      8.413029688994023,  11.895784139536406, 11.984679534970505,
      11.220654278717394, 11.716311684833672, 10.61036646226114,
      10.89849965960364,  10.203762898863669, 10.997560826267238,
      11.484217379438984, 11.792836176993665, 12.24310468755171,
      11.464858097919262, 12.212747017409377, 11.425595666074955,
      11.572048533398757, 12.742093965163013, 11.381874288645637,
      12.191870445817015, 11.683156920035426, 11.152442115262197,
      11.90303691580457,  11.653292787169159, 11.938615382266098,
      16.970641701570223, 16.853602280380002, 17.26240782594733,
      16.644655390108507, 17.14310889757499,  16.910935455445955,
      17.505678976959697, 17.213498225466388, 2.4162310293553024,
      3.494587244462329,  3.5258600986408344, 3.4959806589517095,
      3.098390886949687,  3.343454654302911,  3.588847442290287,
      4.14614790111827,   5.152948641990529,  7.433696808092598,
      9.716311684833672,
  };
  size_t table_size = sizeof kCostTable / sizeof *kCostTable;
  if (tok >= table_size) tok = table_size - 1;
  return kCostTable[tok] + nbits;
}

void ApplyLZ77_LZ77(const HistogramParams& params, size_t num_contexts,
                    const std::vector<std::vector<Token>>& tokens,
                    LZ77Params& lz77,
                    std::vector<std::vector<Token>>& tokens_lz77) {
  // TODO(veluca): tune heuristics here.
  SymbolCostEstimator sce(num_contexts, params.force_huffman, tokens, lz77);
  float bit_decrease = 0;
  size_t total_symbols = 0;
  tokens_lz77.resize(tokens.size());
  HybridUintConfig uint_config;
  std::vector<float> sym_cost;
  for (size_t stream = 0; stream < tokens.size(); stream++) {
    size_t distance_multiplier =
        params.image_widths.size() > stream ? params.image_widths[stream] : 0;
    const auto& in = tokens[stream];
    auto& out = tokens_lz77[stream];
    total_symbols += in.size();
    // Cumulative sum of bit costs.
    sym_cost.resize(in.size() + 1);
    for (size_t i = 0; i < in.size(); i++) {
      uint32_t tok, nbits, unused_bits;
      uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
      sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
    }

    out.reserve(in.size());
    size_t max_distance = in.size();
    size_t min_length = lz77.min_length;
    JXL_ASSERT(min_length >= 3);
    size_t max_length = in.size();

    // Use next power of two as window size.
    size_t window_size = 1;
    while (window_size < max_distance && window_size < kWindowSize) {
      window_size <<= 1;
    }

    HashChain chain(in.data(), in.size(), window_size, min_length, max_length,
                    distance_multiplier);
    size_t len, dist_symbol;

    const size_t max_lazy_match_len = 256;  // 0 to disable lazy matching

    // Whether the next symbol was already updated (to test lazy matching)
    bool already_updated = false;
    for (size_t i = 0; i < in.size(); i++) {
      out.push_back(in[i]);
      if (!already_updated) chain.Update(i);
      already_updated = false;
      chain.FindMatch(i, max_distance, &dist_symbol, &len);
      if (len >= min_length) {
        if (len < max_lazy_match_len && i + 1 < in.size()) {
          // Try length at next symbol lazy matching
          chain.Update(i + 1);
          already_updated = true;
          size_t len2, dist_symbol2;
          chain.FindMatch(i + 1, max_distance, &dist_symbol2, &len2);
          if (len2 > len) {
            // Use the lazy match. Add literal, and use the next length starting
            // from the next byte.
            ++i;
            already_updated = false;
            len = len2;
            dist_symbol = dist_symbol2;
            out.push_back(in[i]);
          }
        }

        float cost = sym_cost[i + len] - sym_cost[i];
        size_t lz77_len = len - lz77.min_length;
        float lz77_cost = LenCost(lz77_len) + DistCost(dist_symbol) +
                          sce.AddSymbolCost(out.back().context);

        if (lz77_cost <= cost) {
          out.back().value = len - min_length;
          out.back().is_lz77_length = true;
          out.emplace_back(lz77.nonserialized_distance_context, dist_symbol);
          bit_decrease += cost - lz77_cost;
        } else {
          // LZ77 match ignored, and symbol already pushed. Push all other
          // symbols and skip.
          for (size_t j = 1; j < len; j++) {
            out.push_back(in[i + j]);
          }
        }

        if (already_updated) {
          chain.Update(i + 2, len - 2);
          already_updated = false;
        } else {
          chain.Update(i + 1, len - 1);
        }
        i += len - 1;
      } else {
        // Literal, already pushed
      }
    }
  }

  if (bit_decrease > total_symbols * 0.2 + 16) {
    lz77.enabled = true;
  }
}

void ApplyLZ77_Optimal(const HistogramParams& params, size_t num_contexts,
                       const std::vector<std::vector<Token>>& tokens,
                       LZ77Params& lz77,
                       std::vector<std::vector<Token>>& tokens_lz77) {
  std::vector<std::vector<Token>> tokens_for_cost_estimate;
  ApplyLZ77_LZ77(params, num_contexts, tokens, lz77, tokens_for_cost_estimate);
  // If greedy-LZ77 does not give better compression than no-lz77, no reason to
  // run the optimal matching.
  if (!lz77.enabled) return;
  SymbolCostEstimator sce(num_contexts + 1, params.force_huffman,
                          tokens_for_cost_estimate, lz77);
  tokens_lz77.resize(tokens.size());
  HybridUintConfig uint_config;
  std::vector<float> sym_cost;
  std::vector<uint32_t> dist_symbols;
  for (size_t stream = 0; stream < tokens.size(); stream++) {
    size_t distance_multiplier =
        params.image_widths.size() > stream ? params.image_widths[stream] : 0;
    const auto& in = tokens[stream];
    auto& out = tokens_lz77[stream];
    // Cumulative sum of bit costs.
    sym_cost.resize(in.size() + 1);
    for (size_t i = 0; i < in.size(); i++) {
      uint32_t tok, nbits, unused_bits;
      uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
      sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
    }

    out.reserve(in.size());
    size_t max_distance = in.size();
    size_t min_length = lz77.min_length;
    JXL_ASSERT(min_length >= 3);
    size_t max_length = in.size();

    // Use next power of two as window size.
    size_t window_size = 1;
    while (window_size < max_distance && window_size < kWindowSize) {
      window_size <<= 1;
    }

    HashChain chain(in.data(), in.size(), window_size, min_length, max_length,
                    distance_multiplier);

    struct MatchInfo {
      uint32_t len;
      uint32_t dist_symbol;
      uint32_t ctx;
      float total_cost = std::numeric_limits<float>::max();
    };
    // Total cost to encode the first N symbols.
    std::vector<MatchInfo> prefix_costs(in.size() + 1);
    prefix_costs[0].total_cost = 0;

    size_t rle_length = 0;
    size_t skip_lz77 = 0;
    for (size_t i = 0; i < in.size(); i++) {
      chain.Update(i);
      float lit_cost =
          prefix_costs[i].total_cost + sym_cost[i + 1] - sym_cost[i];
      if (prefix_costs[i + 1].total_cost > lit_cost) {
        prefix_costs[i + 1].dist_symbol = 0;
        prefix_costs[i + 1].len = 1;
        prefix_costs[i + 1].ctx = in[i].context;
        prefix_costs[i + 1].total_cost = lit_cost;
      }
      if (skip_lz77 > 0) {
        skip_lz77--;
        continue;
      }
      dist_symbols.clear();
      chain.FindMatches(i, max_distance,
                        [&dist_symbols](size_t len, size_t dist_symbol) {
                          if (dist_symbols.size() <= len) {
                            dist_symbols.resize(len + 1, dist_symbol);
                          }
                          if (dist_symbol < dist_symbols[len]) {
                            dist_symbols[len] = dist_symbol;
                          }
                        });
      if (dist_symbols.size() <= min_length) continue;
      {
        size_t best_cost = dist_symbols.back();
        for (size_t j = dist_symbols.size() - 1; j >= min_length; j--) {
          if (dist_symbols[j] < best_cost) {
            best_cost = dist_symbols[j];
          }
          dist_symbols[j] = best_cost;
        }
      }
      for (size_t j = min_length; j < dist_symbols.size(); j++) {
        // Cost model that uses results from lazy LZ77.
        float lz77_cost = sce.LenCost(in[i].context, j - min_length, lz77) +
                          sce.DistCost(dist_symbols[j], lz77);
        float cost = prefix_costs[i].total_cost + lz77_cost;
        if (prefix_costs[i + j].total_cost > cost) {
          prefix_costs[i + j].len = j;
          prefix_costs[i + j].dist_symbol = dist_symbols[j] + 1;
          prefix_costs[i + j].ctx = in[i].context;
          prefix_costs[i + j].total_cost = cost;
        }
      }
      // We are in a RLE sequence: skip all the symbols except the first 8 and
      // the last 8. This avoid quadratic costs for sequences with long runs of
      // the same symbol.
      if ((dist_symbols.back() == 0 && distance_multiplier == 0) ||
          (dist_symbols.back() == 1 && distance_multiplier != 0)) {
        rle_length++;
      } else {
        rle_length = 0;
      }
      if (rle_length >= 8 && dist_symbols.size() > 9) {
        skip_lz77 = dist_symbols.size() - 10;
        rle_length = 0;
      }
    }
    size_t pos = in.size();
    while (pos > 0) {
      bool is_lz77_length = prefix_costs[pos].dist_symbol != 0;
      if (is_lz77_length) {
        size_t dist_symbol = prefix_costs[pos].dist_symbol - 1;
        out.emplace_back(lz77.nonserialized_distance_context, dist_symbol);
      }
      size_t val = is_lz77_length ? prefix_costs[pos].len - min_length
                                  : in[pos - 1].value;
      out.emplace_back(prefix_costs[pos].ctx, val);
      out.back().is_lz77_length = is_lz77_length;
      pos -= prefix_costs[pos].len;
    }
    std::reverse(out.begin(), out.end());
  }
}

void ApplyLZ77(const HistogramParams& params, size_t num_contexts,
               const std::vector<std::vector<Token>>& tokens, LZ77Params& lz77,
               std::vector<std::vector<Token>>& tokens_lz77) {
  lz77.enabled = false;
  if (params.force_huffman) {
    lz77.min_symbol = std::min(PREFIX_MAX_ALPHABET_SIZE - 32, 512);
  } else {
    lz77.min_symbol = 224;
  }
  if (params.lz77_method == HistogramParams::LZ77Method::kNone) {
    return;
  } else if (params.lz77_method == HistogramParams::LZ77Method::kRLE) {
    ApplyLZ77_RLE(params, num_contexts, tokens, lz77, tokens_lz77);
  } else if (params.lz77_method == HistogramParams::LZ77Method::kLZ77) {
    ApplyLZ77_LZ77(params, num_contexts, tokens, lz77, tokens_lz77);
  } else if (params.lz77_method == HistogramParams::LZ77Method::kOptimal) {
    ApplyLZ77_Optimal(params, num_contexts, tokens, lz77, tokens_lz77);
  } else {
    JXL_ABORT("Not implemented");
  }
}
}  // namespace

size_t BuildAndEncodeHistograms(const HistogramParams& params,
                                size_t num_contexts,
                                std::vector<std::vector<Token>>& tokens,
                                EntropyEncodingData* codes,
                                std::vector<uint8_t>* context_map,
                                BitWriter* writer, size_t layer,
                                AuxOut* aux_out) {
  size_t total_bits = 0;
  codes->lz77.nonserialized_distance_context = num_contexts;
  std::vector<std::vector<Token>> tokens_lz77;
  ApplyLZ77(params, num_contexts, tokens, codes->lz77, tokens_lz77);
  if (ans_fuzzer_friendly_) {
    codes->lz77.length_uint_config = HybridUintConfig(10, 0, 0);
    codes->lz77.min_symbol = 2048;
  }

  const size_t max_contexts = std::min(num_contexts, kClustersLimit);
  BitWriter::Allotment allotment(writer,
                                 128 + num_contexts * 40 + max_contexts * 96);
  if (writer) {
    JXL_CHECK(Bundle::Write(codes->lz77, writer, layer, aux_out));
  } else {
    size_t ebits, bits;
    JXL_CHECK(Bundle::CanEncode(codes->lz77, &ebits, &bits));
    total_bits += bits;
  }
  if (codes->lz77.enabled) {
    if (writer) {
      size_t b = writer->BitsWritten();
      EncodeUintConfig(codes->lz77.length_uint_config, writer,
                       /*log_alpha_size=*/8);
      total_bits += writer->BitsWritten() - b;
    } else {
      SizeWriter size_writer;
      EncodeUintConfig(codes->lz77.length_uint_config, &size_writer,
                       /*log_alpha_size=*/8);
      total_bits += size_writer.size;
    }
    num_contexts += 1;
    tokens = std::move(tokens_lz77);
  }
  size_t total_tokens = 0;
  // Build histograms.
  HistogramBuilder builder(num_contexts);
  HybridUintConfig uint_config;  //  Default config for clustering.
  // Unless we are using the kContextMap histogram option.
  if (params.uint_method == HistogramParams::HybridUintMethod::kContextMap) {
    uint_config = HybridUintConfig(2, 0, 1);
  }
  if (params.uint_method == HistogramParams::HybridUintMethod::k000) {
    uint_config = HybridUintConfig(0, 0, 0);
  }
  if (ans_fuzzer_friendly_) {
    uint_config = HybridUintConfig(10, 0, 0);
  }
  for (size_t i = 0; i < tokens.size(); ++i) {
    if (codes->lz77.enabled) {
      for (size_t j = 0; j < tokens[i].size(); ++j) {
        const Token& token = tokens[i][j];
        total_tokens++;
        uint32_t tok, nbits, bits;
        (token.is_lz77_length ? codes->lz77.length_uint_config : uint_config)
            .Encode(token.value, &tok, &nbits, &bits);
        tok += token.is_lz77_length ? codes->lz77.min_symbol : 0;
        builder.VisitSymbol(tok, token.context);
      }
    } else if (num_contexts == 1) {
      for (size_t j = 0; j < tokens[i].size(); ++j) {
        const Token& token = tokens[i][j];
        total_tokens++;
        uint32_t tok, nbits, bits;
        uint_config.Encode(token.value, &tok, &nbits, &bits);
        builder.VisitSymbol(tok, /*token.context=*/0);
      }
    } else {
      for (size_t j = 0; j < tokens[i].size(); ++j) {
        const Token& token = tokens[i][j];
        total_tokens++;
        uint32_t tok, nbits, bits;
        uint_config.Encode(token.value, &tok, &nbits, &bits);
        builder.VisitSymbol(tok, token.context);
      }
    }
  }

  bool use_prefix_code =
      params.force_huffman || total_tokens < 100 ||
      params.clustering == HistogramParams::ClusteringType::kFastest ||
      ans_fuzzer_friendly_;
  if (!use_prefix_code) {
    bool all_singleton = true;
    for (size_t i = 0; i < num_contexts; i++) {
      if (builder.Histo(i).ShannonEntropy() >= 1e-5) {
        all_singleton = false;
      }
    }
    if (all_singleton) {
      use_prefix_code = true;
    }
  }

  // Encode histograms.
  total_bits += builder.BuildAndStoreEntropyCodes(params, tokens, codes,
                                                  context_map, use_prefix_code,
                                                  writer, layer, aux_out);
  allotment.FinishedHistogram(writer);
  allotment.ReclaimAndCharge(writer, layer, aux_out);

  if (aux_out != nullptr) {
    aux_out->layers[layer].num_clustered_histograms +=
        codes->encoding_info.size();
  }
  return total_bits;
}

size_t WriteTokens(const std::vector<Token>& tokens,
                   const EntropyEncodingData& codes,
                   const std::vector<uint8_t>& context_map, BitWriter* writer) {
  size_t num_extra_bits = 0;
  if (codes.use_prefix_code) {
    for (size_t i = 0; i < tokens.size(); i++) {
      uint32_t tok, nbits, bits;
      const Token& token = tokens[i];
      size_t histo = context_map[token.context];
      (token.is_lz77_length ? codes.lz77.length_uint_config
                            : codes.uint_config[histo])
          .Encode(token.value, &tok, &nbits, &bits);
      tok += token.is_lz77_length ? codes.lz77.min_symbol : 0;
      // Combine two calls to the BitWriter. Equivalent to:
      // writer->Write(codes.encoding_info[histo][tok].depth,
      //               codes.encoding_info[histo][tok].bits);
      // writer->Write(nbits, bits);
      uint64_t data = codes.encoding_info[histo][tok].bits;
      data |= bits << codes.encoding_info[histo][tok].depth;
      writer->Write(codes.encoding_info[histo][tok].depth + nbits, data);
      num_extra_bits += nbits;
    }
    return num_extra_bits;
  }
  std::vector<uint64_t> out;
  std::vector<uint8_t> out_nbits;
  out.reserve(tokens.size());
  out_nbits.reserve(tokens.size());
  uint64_t allbits = 0;
  size_t numallbits = 0;
  // Writes in *reversed* order.
  auto addbits = [&](size_t bits, size_t nbits) {
    if (JXL_UNLIKELY(nbits)) {
      JXL_DASSERT(bits >> nbits == 0);
      if (JXL_UNLIKELY(numallbits + nbits > BitWriter::kMaxBitsPerCall)) {
        out.push_back(allbits);
        out_nbits.push_back(numallbits);
        numallbits = allbits = 0;
      }
      allbits <<= nbits;
      allbits |= bits;
      numallbits += nbits;
    }
  };
  const int end = tokens.size();
  ANSCoder ans;
  if (codes.lz77.enabled || context_map.size() > 1) {
    for (int i = end - 1; i >= 0; --i) {
      const Token token = tokens[i];
      const uint8_t histo = context_map[token.context];
      uint32_t tok, nbits, bits;
      (token.is_lz77_length ? codes.lz77.length_uint_config
                            : codes.uint_config[histo])
          .Encode(tokens[i].value, &tok, &nbits, &bits);
      tok += token.is_lz77_length ? codes.lz77.min_symbol : 0;
      const ANSEncSymbolInfo& info = codes.encoding_info[histo][tok];
      // Extra bits first as this is reversed.
      addbits(bits, nbits);
      num_extra_bits += nbits;
      uint8_t ans_nbits = 0;
      uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits);
      addbits(ans_bits, ans_nbits);
    }
  } else {
    for (int i = end - 1; i >= 0; --i) {
      uint32_t tok, nbits, bits;
      codes.uint_config[0].Encode(tokens[i].value, &tok, &nbits, &bits);
      const ANSEncSymbolInfo& info = codes.encoding_info[0][tok];
      // Extra bits first as this is reversed.
      addbits(bits, nbits);
      num_extra_bits += nbits;
      uint8_t ans_nbits = 0;
      uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits);
      addbits(ans_bits, ans_nbits);
    }
  }
  const uint32_t state = ans.GetState();
  writer->Write(32, state);
  writer->Write(numallbits, allbits);
  for (int i = out.size(); i > 0; --i) {
    writer->Write(out_nbits[i - 1], out[i - 1]);
  }
  return num_extra_bits;
}

void WriteTokens(const std::vector<Token>& tokens,
                 const EntropyEncodingData& codes,
                 const std::vector<uint8_t>& context_map, BitWriter* writer,
                 size_t layer, AuxOut* aux_out) {
  BitWriter::Allotment allotment(writer, 32 * tokens.size() + 32 * 1024 * 4);
  size_t num_extra_bits = WriteTokens(tokens, codes, context_map, writer);
  allotment.ReclaimAndCharge(writer, layer, aux_out);
  if (aux_out != nullptr) {
    aux_out->layers[layer].extra_bits += num_extra_bits;
  }
}

void SetANSFuzzerFriendly(bool ans_fuzzer_friendly) {
#if JXL_IS_DEBUG_BUILD  // Guard against accidental / malicious changes.
  ans_fuzzer_friendly_ = ans_fuzzer_friendly;
#endif
}
}  // namespace jxl