summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_chroma_from_luma.cc
blob: 0cdd2a7823b0371086942ecb733f3a1c479a0409 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jxl/enc_chroma_from_luma.h"

#include <float.h>
#include <stdlib.h>

#include <algorithm>
#include <array>
#include <cmath>

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/enc_chroma_from_luma.cc"
#include <hwy/aligned_allocator.h>
#include <hwy/foreach_target.h>
#include <hwy/highway.h>

#include "lib/jxl/base/bits.h"
#include "lib/jxl/base/padded_bytes.h"
#include "lib/jxl/base/profiler.h"
#include "lib/jxl/base/span.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/common.h"
#include "lib/jxl/dec_transforms-inl.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_transforms-inl.h"
#include "lib/jxl/entropy_coder.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/modular/encoding/encoding.h"
#include "lib/jxl/quantizer.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Abs;
using hwy::HWY_NAMESPACE::Ge;
using hwy::HWY_NAMESPACE::GetLane;
using hwy::HWY_NAMESPACE::IfThenElse;
using hwy::HWY_NAMESPACE::Lt;

static HWY_FULL(float) df;

struct CFLFunction {
  static constexpr float kCoeff = 1.f / 3;
  static constexpr float kThres = 100.0f;
  static constexpr float kInvColorFactor = 1.0f / kDefaultColorFactor;
  CFLFunction(const float* values_m, const float* values_s, size_t num,
              float base, float distance_mul)
      : values_m(values_m),
        values_s(values_s),
        num(num),
        base(base),
        distance_mul(distance_mul) {}

  // Returns f'(x), where f is 1/3 * sum ((|color residual| + 1)^2-1) +
  // distance_mul * x^2 * num.
  float Compute(float x, float eps, float* fpeps, float* fmeps) const {
    float first_derivative = 2 * distance_mul * num * x;
    float first_derivative_peps = 2 * distance_mul * num * (x + eps);
    float first_derivative_meps = 2 * distance_mul * num * (x - eps);

    const auto inv_color_factor = Set(df, kInvColorFactor);
    const auto thres = Set(df, kThres);
    const auto coeffx2 = Set(df, kCoeff * 2.0f);
    const auto one = Set(df, 1.0f);
    const auto zero = Set(df, 0.0f);
    const auto base_v = Set(df, base);
    const auto x_v = Set(df, x);
    const auto xpe_v = Set(df, x + eps);
    const auto xme_v = Set(df, x - eps);
    auto fd_v = Zero(df);
    auto fdpe_v = Zero(df);
    auto fdme_v = Zero(df);
    JXL_ASSERT(num % Lanes(df) == 0);

    for (size_t i = 0; i < num; i += Lanes(df)) {
      // color residual = ax + b
      const auto a = Mul(inv_color_factor, Load(df, values_m + i));
      const auto b =
          Sub(Mul(base_v, Load(df, values_m + i)), Load(df, values_s + i));
      const auto v = MulAdd(a, x_v, b);
      const auto vpe = MulAdd(a, xpe_v, b);
      const auto vme = MulAdd(a, xme_v, b);
      const auto av = Abs(v);
      const auto avpe = Abs(vpe);
      const auto avme = Abs(vme);
      const auto acoeffx2 = Mul(coeffx2, a);
      auto d = Mul(acoeffx2, Add(av, one));
      auto dpe = Mul(acoeffx2, Add(avpe, one));
      auto dme = Mul(acoeffx2, Add(avme, one));
      d = IfThenElse(Lt(v, zero), Sub(zero, d), d);
      dpe = IfThenElse(Lt(vpe, zero), Sub(zero, dpe), dpe);
      dme = IfThenElse(Lt(vme, zero), Sub(zero, dme), dme);
      const auto above = Ge(av, thres);
      // TODO(eustas): use IfThenElseZero
      fd_v = Add(fd_v, IfThenElse(above, zero, d));
      fdpe_v = Add(fdpe_v, IfThenElse(above, zero, dpe));
      fdme_v = Add(fdme_v, IfThenElse(above, zero, dme));
    }

    *fpeps = first_derivative_peps + GetLane(SumOfLanes(df, fdpe_v));
    *fmeps = first_derivative_meps + GetLane(SumOfLanes(df, fdme_v));
    return first_derivative + GetLane(SumOfLanes(df, fd_v));
  }

  const float* JXL_RESTRICT values_m;
  const float* JXL_RESTRICT values_s;
  size_t num;
  float base;
  float distance_mul;
};

// Chroma-from-luma search, values_m will have luma -- and values_s chroma.
int32_t FindBestMultiplier(const float* values_m, const float* values_s,
                           size_t num, float base, float distance_mul,
                           bool fast) {
  if (num == 0) {
    return 0;
  }
  float x;
  if (fast) {
    static constexpr float kInvColorFactor = 1.0f / kDefaultColorFactor;
    auto ca = Zero(df);
    auto cb = Zero(df);
    const auto inv_color_factor = Set(df, kInvColorFactor);
    const auto base_v = Set(df, base);
    for (size_t i = 0; i < num; i += Lanes(df)) {
      // color residual = ax + b
      const auto a = Mul(inv_color_factor, Load(df, values_m + i));
      const auto b =
          Sub(Mul(base_v, Load(df, values_m + i)), Load(df, values_s + i));
      ca = MulAdd(a, a, ca);
      cb = MulAdd(a, b, cb);
    }
    // + distance_mul * x^2 * num
    x = -GetLane(SumOfLanes(df, cb)) /
        (GetLane(SumOfLanes(df, ca)) + num * distance_mul * 0.5f);
  } else {
    constexpr float eps = 100;
    constexpr float kClamp = 20.0f;
    CFLFunction fn(values_m, values_s, num, base, distance_mul);
    x = 0;
    // Up to 20 Newton iterations, with approximate derivatives.
    // Derivatives are approximate due to the high amount of noise in the exact
    // derivatives.
    for (size_t i = 0; i < 20; i++) {
      float dfpeps, dfmeps;
      float df = fn.Compute(x, eps, &dfpeps, &dfmeps);
      float ddf = (dfpeps - dfmeps) / (2 * eps);
      float kExperimentalInsignificantStabilizer = 0.85;
      float step = df / (ddf + kExperimentalInsignificantStabilizer);
      x -= std::min(kClamp, std::max(-kClamp, step));
      if (std::abs(step) < 3e-3) break;
    }
  }
  // CFL seems to be tricky for larger transforms for HF components
  // close to zero. This heuristic brings the solutions closer to zero
  // and reduces red-green oscillations.
  float towards_zero = 2.6;
  if (x >= towards_zero) {
    x -= towards_zero;
  } else if (x <= -towards_zero) {
    x += towards_zero;
  } else {
    x = 0;
  }
  return std::max(-128.0f, std::min(127.0f, roundf(x)));
}

void InitDCStorage(size_t num_blocks, ImageF* dc_values) {
  // First row: Y channel
  // Second row: X channel
  // Third row: Y channel
  // Fourth row: B channel
  *dc_values = ImageF(RoundUpTo(num_blocks, Lanes(df)), 4);

  JXL_ASSERT(dc_values->xsize() != 0);
  // Zero-fill the last lanes
  for (size_t y = 0; y < 4; y++) {
    for (size_t x = dc_values->xsize() - Lanes(df); x < dc_values->xsize();
         x++) {
      dc_values->Row(y)[x] = 0;
    }
  }
}

void ComputeDC(const ImageF& dc_values, bool fast, int32_t* dc_x,
               int32_t* dc_b) {
  constexpr float kDistanceMultiplierDC = 1e-5f;
  const float* JXL_RESTRICT dc_values_yx = dc_values.Row(0);
  const float* JXL_RESTRICT dc_values_x = dc_values.Row(1);
  const float* JXL_RESTRICT dc_values_yb = dc_values.Row(2);
  const float* JXL_RESTRICT dc_values_b = dc_values.Row(3);
  *dc_x = FindBestMultiplier(dc_values_yx, dc_values_x, dc_values.xsize(), 0.0f,
                             kDistanceMultiplierDC, fast);
  *dc_b = FindBestMultiplier(dc_values_yb, dc_values_b, dc_values.xsize(),
                             kYToBRatio, kDistanceMultiplierDC, fast);
}

void ComputeTile(const Image3F& opsin, const DequantMatrices& dequant,
                 const AcStrategyImage* ac_strategy,
                 const ImageI* raw_quant_field, const Quantizer* quantizer,
                 const Rect& r, bool fast, bool use_dct8, ImageSB* map_x,
                 ImageSB* map_b, ImageF* dc_values, float* mem) {
  static_assert(kEncTileDimInBlocks == kColorTileDimInBlocks,
                "Invalid color tile dim");
  size_t xsize_blocks = opsin.xsize() / kBlockDim;
  constexpr float kDistanceMultiplierAC = 1e-9f;

  const size_t y0 = r.y0();
  const size_t x0 = r.x0();
  const size_t x1 = r.x0() + r.xsize();
  const size_t y1 = r.y0() + r.ysize();

  int ty = y0 / kColorTileDimInBlocks;
  int tx = x0 / kColorTileDimInBlocks;

  int8_t* JXL_RESTRICT row_out_x = map_x->Row(ty);
  int8_t* JXL_RESTRICT row_out_b = map_b->Row(ty);

  float* JXL_RESTRICT dc_values_yx = dc_values->Row(0);
  float* JXL_RESTRICT dc_values_x = dc_values->Row(1);
  float* JXL_RESTRICT dc_values_yb = dc_values->Row(2);
  float* JXL_RESTRICT dc_values_b = dc_values->Row(3);

  // All are aligned.
  float* HWY_RESTRICT block_y = mem;
  float* HWY_RESTRICT block_x = block_y + AcStrategy::kMaxCoeffArea;
  float* HWY_RESTRICT block_b = block_x + AcStrategy::kMaxCoeffArea;
  float* HWY_RESTRICT coeffs_yx = block_b + AcStrategy::kMaxCoeffArea;
  float* HWY_RESTRICT coeffs_x = coeffs_yx + kColorTileDim * kColorTileDim;
  float* HWY_RESTRICT coeffs_yb = coeffs_x + kColorTileDim * kColorTileDim;
  float* HWY_RESTRICT coeffs_b = coeffs_yb + kColorTileDim * kColorTileDim;
  float* HWY_RESTRICT scratch_space = coeffs_b + kColorTileDim * kColorTileDim;
  JXL_DASSERT(scratch_space + 2 * AcStrategy::kMaxCoeffArea ==
              block_y + CfLHeuristics::kItemsPerThread);

  // Small (~256 bytes each)
  HWY_ALIGN_MAX float
      dc_y[AcStrategy::kMaxCoeffBlocks * AcStrategy::kMaxCoeffBlocks] = {};
  HWY_ALIGN_MAX float
      dc_x[AcStrategy::kMaxCoeffBlocks * AcStrategy::kMaxCoeffBlocks] = {};
  HWY_ALIGN_MAX float
      dc_b[AcStrategy::kMaxCoeffBlocks * AcStrategy::kMaxCoeffBlocks] = {};
  size_t num_ac = 0;

  for (size_t y = y0; y < y1; ++y) {
    const float* JXL_RESTRICT row_y = opsin.ConstPlaneRow(1, y * kBlockDim);
    const float* JXL_RESTRICT row_x = opsin.ConstPlaneRow(0, y * kBlockDim);
    const float* JXL_RESTRICT row_b = opsin.ConstPlaneRow(2, y * kBlockDim);
    size_t stride = opsin.PixelsPerRow();

    for (size_t x = x0; x < x1; x++) {
      AcStrategy acs = use_dct8
                           ? AcStrategy::FromRawStrategy(AcStrategy::Type::DCT)
                           : ac_strategy->ConstRow(y)[x];
      if (!acs.IsFirstBlock()) continue;
      size_t xs = acs.covered_blocks_x();
      TransformFromPixels(acs.Strategy(), row_y + x * kBlockDim, stride,
                          block_y, scratch_space);
      DCFromLowestFrequencies(acs.Strategy(), block_y, dc_y, xs);
      TransformFromPixels(acs.Strategy(), row_x + x * kBlockDim, stride,
                          block_x, scratch_space);
      DCFromLowestFrequencies(acs.Strategy(), block_x, dc_x, xs);
      TransformFromPixels(acs.Strategy(), row_b + x * kBlockDim, stride,
                          block_b, scratch_space);
      DCFromLowestFrequencies(acs.Strategy(), block_b, dc_b, xs);
      const float* const JXL_RESTRICT qm_x =
          dequant.InvMatrix(acs.Strategy(), 0);
      const float* const JXL_RESTRICT qm_b =
          dequant.InvMatrix(acs.Strategy(), 2);
      float q_dc_x = use_dct8 ? 1 : 1.0f / quantizer->GetInvDcStep(0);
      float q_dc_b = use_dct8 ? 1 : 1.0f / quantizer->GetInvDcStep(2);

      // Copy DCs in dc_values.
      for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) {
        for (size_t ix = 0; ix < xs; ix++) {
          dc_values_yx[(iy + y) * xsize_blocks + ix + x] =
              dc_y[iy * xs + ix] * q_dc_x;
          dc_values_x[(iy + y) * xsize_blocks + ix + x] =
              dc_x[iy * xs + ix] * q_dc_x;
          dc_values_yb[(iy + y) * xsize_blocks + ix + x] =
              dc_y[iy * xs + ix] * q_dc_b;
          dc_values_b[(iy + y) * xsize_blocks + ix + x] =
              dc_b[iy * xs + ix] * q_dc_b;
        }
      }

      // Do not use this block for computing AC CfL.
      if (acs.covered_blocks_x() + x0 > x1 ||
          acs.covered_blocks_y() + y0 > y1) {
        continue;
      }

      // Copy AC coefficients in the local block. The order in which
      // coefficients get stored does not matter.
      size_t cx = acs.covered_blocks_x();
      size_t cy = acs.covered_blocks_y();
      CoefficientLayout(&cy, &cx);
      // Zero out LFs. This introduces terms in the optimization loop that
      // don't affect the result, as they are all 0, but allow for simpler
      // SIMDfication.
      for (size_t iy = 0; iy < cy; iy++) {
        for (size_t ix = 0; ix < cx; ix++) {
          block_y[cx * kBlockDim * iy + ix] = 0;
          block_x[cx * kBlockDim * iy + ix] = 0;
          block_b[cx * kBlockDim * iy + ix] = 0;
        }
      }
      // Unclear why this is like it is. (This works slightly better
      // than the previous approach which was also a hack.)
      const float qq =
          (raw_quant_field == nullptr) ? 1.0f : raw_quant_field->Row(y)[x];
      // Experimentally values 128-130 seem best -- I don't know why we
      // need this multiplier.
      const float kStrangeMultiplier = 128;
      float q = use_dct8 ? 1 : quantizer->Scale() * kStrangeMultiplier * qq;
      const auto qv = Set(df, q);
      for (size_t i = 0; i < cx * cy * 64; i += Lanes(df)) {
        const auto b_y = Load(df, block_y + i);
        const auto b_x = Load(df, block_x + i);
        const auto b_b = Load(df, block_b + i);
        const auto qqm_x = Mul(qv, Load(df, qm_x + i));
        const auto qqm_b = Mul(qv, Load(df, qm_b + i));
        Store(Mul(b_y, qqm_x), df, coeffs_yx + num_ac);
        Store(Mul(b_x, qqm_x), df, coeffs_x + num_ac);
        Store(Mul(b_y, qqm_b), df, coeffs_yb + num_ac);
        Store(Mul(b_b, qqm_b), df, coeffs_b + num_ac);
        num_ac += Lanes(df);
      }
    }
  }
  JXL_CHECK(num_ac % Lanes(df) == 0);
  row_out_x[tx] = FindBestMultiplier(coeffs_yx, coeffs_x, num_ac, 0.0f,
                                     kDistanceMultiplierAC, fast);
  row_out_b[tx] = FindBestMultiplier(coeffs_yb, coeffs_b, num_ac, kYToBRatio,
                                     kDistanceMultiplierAC, fast);
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jxl
HWY_AFTER_NAMESPACE();

#if HWY_ONCE
namespace jxl {

HWY_EXPORT(InitDCStorage);
HWY_EXPORT(ComputeDC);
HWY_EXPORT(ComputeTile);

void CfLHeuristics::Init(const Image3F& opsin) {
  size_t xsize_blocks = opsin.xsize() / kBlockDim;
  size_t ysize_blocks = opsin.ysize() / kBlockDim;
  HWY_DYNAMIC_DISPATCH(InitDCStorage)
  (xsize_blocks * ysize_blocks, &dc_values);
}

void CfLHeuristics::ComputeTile(const Rect& r, const Image3F& opsin,
                                const DequantMatrices& dequant,
                                const AcStrategyImage* ac_strategy,
                                const ImageI* raw_quant_field,
                                const Quantizer* quantizer, bool fast,
                                size_t thread, ColorCorrelationMap* cmap) {
  bool use_dct8 = ac_strategy == nullptr;
  HWY_DYNAMIC_DISPATCH(ComputeTile)
  (opsin, dequant, ac_strategy, raw_quant_field, quantizer, r, fast, use_dct8,
   &cmap->ytox_map, &cmap->ytob_map, &dc_values,
   mem.get() + thread * kItemsPerThread);
}

void CfLHeuristics::ComputeDC(bool fast, ColorCorrelationMap* cmap) {
  int32_t ytob_dc = 0;
  int32_t ytox_dc = 0;
  HWY_DYNAMIC_DISPATCH(ComputeDC)(dc_values, fast, &ytox_dc, &ytob_dc);
  cmap->SetYToBDC(ytob_dc);
  cmap->SetYToXDC(ytox_dc);
}

void ColorCorrelationMapEncodeDC(ColorCorrelationMap* map, BitWriter* writer,
                                 size_t layer, AuxOut* aux_out) {
  float color_factor = map->GetColorFactor();
  float base_correlation_x = map->GetBaseCorrelationX();
  float base_correlation_b = map->GetBaseCorrelationB();
  int32_t ytox_dc = map->GetYToXDC();
  int32_t ytob_dc = map->GetYToBDC();

  BitWriter::Allotment allotment(writer, 1 + 2 * kBitsPerByte + 12 + 32);
  if (ytox_dc == 0 && ytob_dc == 0 && color_factor == kDefaultColorFactor &&
      base_correlation_x == 0.0f && base_correlation_b == kYToBRatio) {
    writer->Write(1, 1);
    allotment.ReclaimAndCharge(writer, layer, aux_out);
    return;
  }
  writer->Write(1, 0);
  JXL_CHECK(U32Coder::Write(kColorFactorDist, color_factor, writer));
  JXL_CHECK(F16Coder::Write(base_correlation_x, writer));
  JXL_CHECK(F16Coder::Write(base_correlation_b, writer));
  writer->Write(kBitsPerByte, ytox_dc - std::numeric_limits<int8_t>::min());
  writer->Write(kBitsPerByte, ytob_dc - std::numeric_limits<int8_t>::min());
  allotment.ReclaimAndCharge(writer, layer, aux_out);
}

}  // namespace jxl
#endif  // HWY_ONCE