summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_patch_dictionary.cc
blob: 157e18c3a875983b000b3c0bf3ab85f8843b0008 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jxl/enc_patch_dictionary.h"

#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>

#include <algorithm>
#include <atomic>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

#include "lib/jxl/ans_params.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/override.h"
#include "lib/jxl/base/random.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/chroma_from_luma.h"
#include "lib/jxl/color_management.h"
#include "lib/jxl/common.h"
#include "lib/jxl/dec_cache.h"
#include "lib/jxl/dec_frame.h"
#include "lib/jxl/enc_ans.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_cache.h"
#include "lib/jxl/enc_dot_dictionary.h"
#include "lib/jxl/enc_frame.h"
#include "lib/jxl/entropy_coder.h"
#include "lib/jxl/frame_header.h"
#include "lib/jxl/image.h"
#include "lib/jxl/image_bundle.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/patch_dictionary_internal.h"

namespace jxl {

static constexpr size_t kPatchFrameReferenceId = 3;

// static
void PatchDictionaryEncoder::Encode(const PatchDictionary& pdic,
                                    BitWriter* writer, size_t layer,
                                    AuxOut* aux_out) {
  JXL_ASSERT(pdic.HasAny());
  std::vector<std::vector<Token>> tokens(1);
  size_t num_ec = pdic.shared_->metadata->m.num_extra_channels;

  auto add_num = [&](int context, size_t num) {
    tokens[0].emplace_back(context, num);
  };
  size_t num_ref_patch = 0;
  for (size_t i = 0; i < pdic.positions_.size();) {
    size_t ref_pos_idx = pdic.positions_[i].ref_pos_idx;
    while (i < pdic.positions_.size() &&
           pdic.positions_[i].ref_pos_idx == ref_pos_idx) {
      i++;
    }
    num_ref_patch++;
  }
  add_num(kNumRefPatchContext, num_ref_patch);
  size_t blend_pos = 0;
  for (size_t i = 0; i < pdic.positions_.size();) {
    size_t i_start = i;
    size_t ref_pos_idx = pdic.positions_[i].ref_pos_idx;
    const auto& ref_pos = pdic.ref_positions_[ref_pos_idx];
    while (i < pdic.positions_.size() &&
           pdic.positions_[i].ref_pos_idx == ref_pos_idx) {
      i++;
    }
    size_t num = i - i_start;
    JXL_ASSERT(num > 0);
    add_num(kReferenceFrameContext, ref_pos.ref);
    add_num(kPatchReferencePositionContext, ref_pos.x0);
    add_num(kPatchReferencePositionContext, ref_pos.y0);
    add_num(kPatchSizeContext, ref_pos.xsize - 1);
    add_num(kPatchSizeContext, ref_pos.ysize - 1);
    add_num(kPatchCountContext, num - 1);
    for (size_t j = i_start; j < i; j++) {
      const PatchPosition& pos = pdic.positions_[j];
      if (j == i_start) {
        add_num(kPatchPositionContext, pos.x);
        add_num(kPatchPositionContext, pos.y);
      } else {
        add_num(kPatchOffsetContext,
                PackSigned(pos.x - pdic.positions_[j - 1].x));
        add_num(kPatchOffsetContext,
                PackSigned(pos.y - pdic.positions_[j - 1].y));
      }
      for (size_t j = 0; j < num_ec + 1; ++j, ++blend_pos) {
        const PatchBlending& info = pdic.blendings_[blend_pos];
        add_num(kPatchBlendModeContext, static_cast<uint32_t>(info.mode));
        if (UsesAlpha(info.mode) &&
            pdic.shared_->metadata->m.extra_channel_info.size() > 1) {
          add_num(kPatchAlphaChannelContext, info.alpha_channel);
        }
        if (UsesClamp(info.mode)) {
          add_num(kPatchClampContext, info.clamp);
        }
      }
    }
  }

  EntropyEncodingData codes;
  std::vector<uint8_t> context_map;
  BuildAndEncodeHistograms(HistogramParams(), kNumPatchDictionaryContexts,
                           tokens, &codes, &context_map, writer, layer,
                           aux_out);
  WriteTokens(tokens[0], codes, context_map, writer, layer, aux_out);
}

// static
void PatchDictionaryEncoder::SubtractFrom(const PatchDictionary& pdic,
                                          Image3F* opsin) {
  size_t num_ec = pdic.shared_->metadata->m.num_extra_channels;
  // TODO(veluca): this can likely be optimized knowing it runs on full images.
  for (size_t y = 0; y < opsin->ysize(); y++) {
    float* JXL_RESTRICT rows[3] = {
        opsin->PlaneRow(0, y),
        opsin->PlaneRow(1, y),
        opsin->PlaneRow(2, y),
    };
    for (size_t pos_idx : pdic.GetPatchesForRow(y)) {
      const size_t blending_idx = pos_idx * (num_ec + 1);
      const PatchPosition& pos = pdic.positions_[pos_idx];
      const PatchReferencePosition& ref_pos =
          pdic.ref_positions_[pos.ref_pos_idx];
      const PatchBlendMode mode = pdic.blendings_[blending_idx].mode;
      size_t by = pos.y;
      size_t bx = pos.x;
      size_t xsize = ref_pos.xsize;
      JXL_DASSERT(y >= by);
      JXL_DASSERT(y < by + ref_pos.ysize);
      size_t iy = y - by;
      size_t ref = ref_pos.ref;
      const float* JXL_RESTRICT ref_rows[3] = {
          pdic.shared_->reference_frames[ref].frame.color().ConstPlaneRow(
              0, ref_pos.y0 + iy) +
              ref_pos.x0,
          pdic.shared_->reference_frames[ref].frame.color().ConstPlaneRow(
              1, ref_pos.y0 + iy) +
              ref_pos.x0,
          pdic.shared_->reference_frames[ref].frame.color().ConstPlaneRow(
              2, ref_pos.y0 + iy) +
              ref_pos.x0,
      };
      for (size_t ix = 0; ix < xsize; ix++) {
        for (size_t c = 0; c < 3; c++) {
          if (mode == PatchBlendMode::kAdd) {
            rows[c][bx + ix] -= ref_rows[c][ix];
          } else if (mode == PatchBlendMode::kReplace) {
            rows[c][bx + ix] = 0;
          } else if (mode == PatchBlendMode::kNone) {
            // Nothing to do.
          } else {
            JXL_ABORT("Blending mode %u not yet implemented", (uint32_t)mode);
          }
        }
      }
    }
  }
}

namespace {

struct PatchColorspaceInfo {
  float kChannelDequant[3];
  float kChannelWeights[3];

  explicit PatchColorspaceInfo(bool is_xyb) {
    if (is_xyb) {
      kChannelDequant[0] = 0.01615;
      kChannelDequant[1] = 0.08875;
      kChannelDequant[2] = 0.1922;
      kChannelWeights[0] = 30.0;
      kChannelWeights[1] = 3.0;
      kChannelWeights[2] = 1.0;
    } else {
      kChannelDequant[0] = 20.0f / 255;
      kChannelDequant[1] = 22.0f / 255;
      kChannelDequant[2] = 20.0f / 255;
      kChannelWeights[0] = 0.017 * 255;
      kChannelWeights[1] = 0.02 * 255;
      kChannelWeights[2] = 0.017 * 255;
    }
  }

  float ScaleForQuantization(float val, size_t c) {
    return val / kChannelDequant[c];
  }

  int Quantize(float val, size_t c) {
    return truncf(ScaleForQuantization(val, c));
  }

  bool is_similar_v(const float v1[3], const float v2[3], float threshold) {
    float distance = 0;
    for (size_t c = 0; c < 3; c++) {
      distance += std::fabs(v1[c] - v2[c]) * kChannelWeights[c];
    }
    return distance <= threshold;
  }
};

std::vector<PatchInfo> FindTextLikePatches(
    const Image3F& opsin, const PassesEncoderState* JXL_RESTRICT state,
    ThreadPool* pool, AuxOut* aux_out, bool is_xyb) {
  if (state->cparams.patches == Override::kOff) return {};

  PatchColorspaceInfo pci(is_xyb);
  float kSimilarThreshold = 0.8f;

  auto is_similar_impl = [&pci](std::pair<uint32_t, uint32_t> p1,
                                std::pair<uint32_t, uint32_t> p2,
                                const float* JXL_RESTRICT rows[3],
                                size_t stride, float threshold) {
    float v1[3], v2[3];
    for (size_t c = 0; c < 3; c++) {
      v1[c] = rows[c][p1.second * stride + p1.first];
      v2[c] = rows[c][p2.second * stride + p2.first];
    }
    return pci.is_similar_v(v1, v2, threshold);
  };

  std::atomic<bool> has_screenshot_areas{false};
  const size_t opsin_stride = opsin.PixelsPerRow();
  const float* JXL_RESTRICT opsin_rows[3] = {opsin.ConstPlaneRow(0, 0),
                                             opsin.ConstPlaneRow(1, 0),
                                             opsin.ConstPlaneRow(2, 0)};

  auto is_same = [&opsin_rows, opsin_stride](std::pair<uint32_t, uint32_t> p1,
                                             std::pair<uint32_t, uint32_t> p2) {
    for (size_t c = 0; c < 3; c++) {
      float v1 = opsin_rows[c][p1.second * opsin_stride + p1.first];
      float v2 = opsin_rows[c][p2.second * opsin_stride + p2.first];
      if (std::fabs(v1 - v2) > 1e-4) {
        return false;
      }
    }
    return true;
  };

  auto is_similar = [&](std::pair<uint32_t, uint32_t> p1,
                        std::pair<uint32_t, uint32_t> p2) {
    return is_similar_impl(p1, p2, opsin_rows, opsin_stride, kSimilarThreshold);
  };

  constexpr int64_t kPatchSide = 4;
  constexpr int64_t kExtraSide = 4;

  // Look for kPatchSide size squares, naturally aligned, that all have the same
  // pixel values.
  ImageB is_screenshot_like(DivCeil(opsin.xsize(), kPatchSide),
                            DivCeil(opsin.ysize(), kPatchSide));
  ZeroFillImage(&is_screenshot_like);
  uint8_t* JXL_RESTRICT screenshot_row = is_screenshot_like.Row(0);
  const size_t screenshot_stride = is_screenshot_like.PixelsPerRow();
  const auto process_row = [&](const uint32_t y, size_t /* thread */) {
    for (uint64_t x = 0; x < opsin.xsize() / kPatchSide; x++) {
      bool all_same = true;
      for (size_t iy = 0; iy < static_cast<size_t>(kPatchSide); iy++) {
        for (size_t ix = 0; ix < static_cast<size_t>(kPatchSide); ix++) {
          size_t cx = x * kPatchSide + ix;
          size_t cy = y * kPatchSide + iy;
          if (!is_same({cx, cy}, {x * kPatchSide, y * kPatchSide})) {
            all_same = false;
            break;
          }
        }
      }
      if (!all_same) continue;
      size_t num = 0;
      size_t num_same = 0;
      for (int64_t iy = -kExtraSide; iy < kExtraSide + kPatchSide; iy++) {
        for (int64_t ix = -kExtraSide; ix < kExtraSide + kPatchSide; ix++) {
          int64_t cx = x * kPatchSide + ix;
          int64_t cy = y * kPatchSide + iy;
          if (cx < 0 || static_cast<uint64_t>(cx) >= opsin.xsize() ||  //
              cy < 0 || static_cast<uint64_t>(cy) >= opsin.ysize()) {
            continue;
          }
          num++;
          if (is_same({cx, cy}, {x * kPatchSide, y * kPatchSide})) num_same++;
        }
      }
      // Too few equal pixels nearby.
      if (num_same * 8 < num * 7) continue;
      screenshot_row[y * screenshot_stride + x] = 1;
      has_screenshot_areas = true;
    }
  };
  JXL_CHECK(RunOnPool(pool, 0, opsin.ysize() / kPatchSide, ThreadPool::NoInit,
                      process_row, "IsScreenshotLike"));

  // TODO(veluca): also parallelize the rest of this function.
  if (WantDebugOutput(aux_out)) {
    aux_out->DumpPlaneNormalized("screenshot_like", is_screenshot_like);
  }

  constexpr int kSearchRadius = 1;

  if (!ApplyOverride(state->cparams.patches, has_screenshot_areas)) {
    return {};
  }

  // Search for "similar enough" pixels near the screenshot-like areas.
  ImageB is_background(opsin.xsize(), opsin.ysize());
  ZeroFillImage(&is_background);
  Image3F background(opsin.xsize(), opsin.ysize());
  ZeroFillImage(&background);
  constexpr size_t kDistanceLimit = 50;
  float* JXL_RESTRICT background_rows[3] = {
      background.PlaneRow(0, 0),
      background.PlaneRow(1, 0),
      background.PlaneRow(2, 0),
  };
  const size_t background_stride = background.PixelsPerRow();
  uint8_t* JXL_RESTRICT is_background_row = is_background.Row(0);
  const size_t is_background_stride = is_background.PixelsPerRow();
  std::vector<
      std::pair<std::pair<uint32_t, uint32_t>, std::pair<uint32_t, uint32_t>>>
      queue;
  size_t queue_front = 0;
  for (size_t y = 0; y < opsin.ysize(); y++) {
    for (size_t x = 0; x < opsin.xsize(); x++) {
      if (!screenshot_row[screenshot_stride * (y / kPatchSide) +
                          (x / kPatchSide)])
        continue;
      queue.push_back({{x, y}, {x, y}});
    }
  }
  while (queue.size() != queue_front) {
    std::pair<uint32_t, uint32_t> cur = queue[queue_front].first;
    std::pair<uint32_t, uint32_t> src = queue[queue_front].second;
    queue_front++;
    if (is_background_row[cur.second * is_background_stride + cur.first])
      continue;
    is_background_row[cur.second * is_background_stride + cur.first] = 1;
    for (size_t c = 0; c < 3; c++) {
      background_rows[c][cur.second * background_stride + cur.first] =
          opsin_rows[c][src.second * opsin_stride + src.first];
    }
    for (int dx = -kSearchRadius; dx <= kSearchRadius; dx++) {
      for (int dy = -kSearchRadius; dy <= kSearchRadius; dy++) {
        if (dx == 0 && dy == 0) continue;
        int next_first = cur.first + dx;
        int next_second = cur.second + dy;
        if (next_first < 0 || next_second < 0 ||
            static_cast<uint32_t>(next_first) >= opsin.xsize() ||
            static_cast<uint32_t>(next_second) >= opsin.ysize()) {
          continue;
        }
        if (static_cast<uint32_t>(
                std::abs(next_first - static_cast<int>(src.first)) +
                std::abs(next_second - static_cast<int>(src.second))) >
            kDistanceLimit) {
          continue;
        }
        std::pair<uint32_t, uint32_t> next{next_first, next_second};
        if (is_similar(src, next)) {
          if (!screenshot_row[next.second / kPatchSide * screenshot_stride +
                              next.first / kPatchSide] ||
              is_same(src, next)) {
            if (!is_background_row[next.second * is_background_stride +
                                   next.first])
              queue.emplace_back(next, src);
          }
        }
      }
    }
  }
  queue.clear();

  ImageF ccs;
  Rng rng(0);
  bool paint_ccs = false;
  if (WantDebugOutput(aux_out)) {
    aux_out->DumpPlaneNormalized("is_background", is_background);
    if (is_xyb) {
      aux_out->DumpXybImage("background", background);
    } else {
      aux_out->DumpImage("background", background);
    }
    ccs = ImageF(opsin.xsize(), opsin.ysize());
    ZeroFillImage(&ccs);
    paint_ccs = true;
  }

  constexpr float kVerySimilarThreshold = 0.03f;
  constexpr float kHasSimilarThreshold = 0.03f;

  const float* JXL_RESTRICT const_background_rows[3] = {
      background_rows[0], background_rows[1], background_rows[2]};
  auto is_similar_b = [&](std::pair<int, int> p1, std::pair<int, int> p2) {
    return is_similar_impl(p1, p2, const_background_rows, background_stride,
                           kVerySimilarThreshold);
  };

  constexpr int kMinPeak = 2;
  constexpr int kHasSimilarRadius = 2;

  std::vector<PatchInfo> info;

  // Find small CC outside the "similar enough" areas, compute bounding boxes,
  // and run heuristics to exclude some patches.
  ImageB visited(opsin.xsize(), opsin.ysize());
  ZeroFillImage(&visited);
  uint8_t* JXL_RESTRICT visited_row = visited.Row(0);
  const size_t visited_stride = visited.PixelsPerRow();
  std::vector<std::pair<uint32_t, uint32_t>> cc;
  std::vector<std::pair<uint32_t, uint32_t>> stack;
  for (size_t y = 0; y < opsin.ysize(); y++) {
    for (size_t x = 0; x < opsin.xsize(); x++) {
      if (is_background_row[y * is_background_stride + x]) continue;
      cc.clear();
      stack.clear();
      stack.emplace_back(x, y);
      size_t min_x = x;
      size_t max_x = x;
      size_t min_y = y;
      size_t max_y = y;
      std::pair<uint32_t, uint32_t> reference;
      bool found_border = false;
      bool all_similar = true;
      while (!stack.empty()) {
        std::pair<uint32_t, uint32_t> cur = stack.back();
        stack.pop_back();
        if (visited_row[cur.second * visited_stride + cur.first]) continue;
        visited_row[cur.second * visited_stride + cur.first] = 1;
        if (cur.first < min_x) min_x = cur.first;
        if (cur.first > max_x) max_x = cur.first;
        if (cur.second < min_y) min_y = cur.second;
        if (cur.second > max_y) max_y = cur.second;
        if (paint_ccs) {
          cc.push_back(cur);
        }
        for (int dx = -kSearchRadius; dx <= kSearchRadius; dx++) {
          for (int dy = -kSearchRadius; dy <= kSearchRadius; dy++) {
            if (dx == 0 && dy == 0) continue;
            int next_first = static_cast<int32_t>(cur.first) + dx;
            int next_second = static_cast<int32_t>(cur.second) + dy;
            if (next_first < 0 || next_second < 0 ||
                static_cast<uint32_t>(next_first) >= opsin.xsize() ||
                static_cast<uint32_t>(next_second) >= opsin.ysize()) {
              continue;
            }
            std::pair<uint32_t, uint32_t> next{next_first, next_second};
            if (!is_background_row[next.second * is_background_stride +
                                   next.first]) {
              stack.push_back(next);
            } else {
              if (!found_border) {
                reference = next;
                found_border = true;
              } else {
                if (!is_similar_b(next, reference)) all_similar = false;
              }
            }
          }
        }
      }
      if (!found_border || !all_similar || max_x - min_x >= kMaxPatchSize ||
          max_y - min_y >= kMaxPatchSize) {
        continue;
      }
      size_t bpos = background_stride * reference.second + reference.first;
      float ref[3] = {background_rows[0][bpos], background_rows[1][bpos],
                      background_rows[2][bpos]};
      bool has_similar = false;
      for (size_t iy = std::max<int>(
               static_cast<int32_t>(min_y) - kHasSimilarRadius, 0);
           iy < std::min(max_y + kHasSimilarRadius + 1, opsin.ysize()); iy++) {
        for (size_t ix = std::max<int>(
                 static_cast<int32_t>(min_x) - kHasSimilarRadius, 0);
             ix < std::min(max_x + kHasSimilarRadius + 1, opsin.xsize());
             ix++) {
          size_t opos = opsin_stride * iy + ix;
          float px[3] = {opsin_rows[0][opos], opsin_rows[1][opos],
                         opsin_rows[2][opos]};
          if (pci.is_similar_v(ref, px, kHasSimilarThreshold)) {
            has_similar = true;
          }
        }
      }
      if (!has_similar) continue;
      info.emplace_back();
      info.back().second.emplace_back(min_x, min_y);
      QuantizedPatch& patch = info.back().first;
      patch.xsize = max_x - min_x + 1;
      patch.ysize = max_y - min_y + 1;
      int max_value = 0;
      for (size_t c : {1, 0, 2}) {
        for (size_t iy = min_y; iy <= max_y; iy++) {
          for (size_t ix = min_x; ix <= max_x; ix++) {
            size_t offset = (iy - min_y) * patch.xsize + ix - min_x;
            patch.fpixels[c][offset] =
                opsin_rows[c][iy * opsin_stride + ix] - ref[c];
            int val = pci.Quantize(patch.fpixels[c][offset], c);
            patch.pixels[c][offset] = val;
            if (std::abs(val) > max_value) max_value = std::abs(val);
          }
        }
      }
      if (max_value < kMinPeak) {
        info.pop_back();
        continue;
      }
      if (paint_ccs) {
        float cc_color = rng.UniformF(0.5, 1.0);
        for (std::pair<uint32_t, uint32_t> p : cc) {
          ccs.Row(p.second)[p.first] = cc_color;
        }
      }
    }
  }

  if (paint_ccs) {
    JXL_ASSERT(WantDebugOutput(aux_out));
    aux_out->DumpPlaneNormalized("ccs", ccs);
  }
  if (info.empty()) {
    return {};
  }

  // Remove duplicates.
  constexpr size_t kMinPatchOccurrences = 2;
  std::sort(info.begin(), info.end());
  size_t unique = 0;
  for (size_t i = 1; i < info.size(); i++) {
    if (info[i].first == info[unique].first) {
      info[unique].second.insert(info[unique].second.end(),
                                 info[i].second.begin(), info[i].second.end());
    } else {
      if (info[unique].second.size() >= kMinPatchOccurrences) {
        unique++;
      }
      info[unique] = info[i];
    }
  }
  if (info[unique].second.size() >= kMinPatchOccurrences) {
    unique++;
  }
  info.resize(unique);

  size_t max_patch_size = 0;

  for (size_t i = 0; i < info.size(); i++) {
    size_t pixels = info[i].first.xsize * info[i].first.ysize;
    if (pixels > max_patch_size) max_patch_size = pixels;
  }

  // don't use patches if all patches are smaller than this
  constexpr size_t kMinMaxPatchSize = 20;
  if (max_patch_size < kMinMaxPatchSize) return {};

  return info;
}

}  // namespace

void FindBestPatchDictionary(const Image3F& opsin,
                             PassesEncoderState* JXL_RESTRICT state,
                             const JxlCmsInterface& cms, ThreadPool* pool,
                             AuxOut* aux_out, bool is_xyb) {
  std::vector<PatchInfo> info =
      FindTextLikePatches(opsin, state, pool, aux_out, is_xyb);

  // TODO(veluca): this doesn't work if both dots and patches are enabled.
  // For now, since dots and patches are not likely to occur in the same kind of
  // images, disable dots if some patches were found.
  if (info.empty() &&
      ApplyOverride(
          state->cparams.dots,
          state->cparams.speed_tier <= SpeedTier::kSquirrel &&
              state->cparams.butteraugli_distance >= kMinButteraugliForDots)) {
    info = FindDotDictionary(state->cparams, opsin, state->shared.cmap, pool);
  }

  if (info.empty()) return;

  std::sort(
      info.begin(), info.end(), [&](const PatchInfo& a, const PatchInfo& b) {
        return a.first.xsize * a.first.ysize > b.first.xsize * b.first.ysize;
      });

  size_t max_x_size = 0;
  size_t max_y_size = 0;
  size_t total_pixels = 0;

  for (size_t i = 0; i < info.size(); i++) {
    size_t pixels = info[i].first.xsize * info[i].first.ysize;
    if (max_x_size < info[i].first.xsize) max_x_size = info[i].first.xsize;
    if (max_y_size < info[i].first.ysize) max_y_size = info[i].first.ysize;
    total_pixels += pixels;
  }

  // Bin-packing & conversion of patches.
  constexpr float kBinPackingSlackness = 1.05f;
  size_t ref_xsize = std::max<float>(max_x_size, std::sqrt(total_pixels));
  size_t ref_ysize = std::max<float>(max_y_size, std::sqrt(total_pixels));
  std::vector<std::pair<size_t, size_t>> ref_positions(info.size());
  // TODO(veluca): allow partial overlaps of patches that have the same pixels.
  size_t max_y = 0;
  do {
    max_y = 0;
    // Increase packed image size.
    ref_xsize = ref_xsize * kBinPackingSlackness + 1;
    ref_ysize = ref_ysize * kBinPackingSlackness + 1;

    ImageB occupied(ref_xsize, ref_ysize);
    ZeroFillImage(&occupied);
    uint8_t* JXL_RESTRICT occupied_rows = occupied.Row(0);
    size_t occupied_stride = occupied.PixelsPerRow();

    bool success = true;
    // For every patch...
    for (size_t patch = 0; patch < info.size(); patch++) {
      size_t x0 = 0;
      size_t y0 = 0;
      size_t xsize = info[patch].first.xsize;
      size_t ysize = info[patch].first.ysize;
      bool found = false;
      // For every possible start position ...
      for (; y0 + ysize <= ref_ysize; y0++) {
        x0 = 0;
        for (; x0 + xsize <= ref_xsize; x0++) {
          bool has_occupied_pixel = false;
          size_t x = x0;
          // Check if it is possible to place the patch in this position in the
          // reference frame.
          for (size_t y = y0; y < y0 + ysize; y++) {
            x = x0;
            for (; x < x0 + xsize; x++) {
              if (occupied_rows[y * occupied_stride + x]) {
                has_occupied_pixel = true;
                break;
              }
            }
          }  // end of positioning check
          if (!has_occupied_pixel) {
            found = true;
            break;
          }
          x0 = x;  // Jump to next pixel after the occupied one.
        }
        if (found) break;
      }  // end of start position checking

      // We didn't find a possible position: repeat from the beginning with a
      // larger reference frame size.
      if (!found) {
        success = false;
        break;
      }

      // We found a position: mark the corresponding positions in the reference
      // image as used.
      ref_positions[patch] = {x0, y0};
      for (size_t y = y0; y < y0 + ysize; y++) {
        for (size_t x = x0; x < x0 + xsize; x++) {
          occupied_rows[y * occupied_stride + x] = true;
        }
      }
      max_y = std::max(max_y, y0 + ysize);
    }

    if (success) break;
  } while (true);

  JXL_ASSERT(ref_ysize >= max_y);

  ref_ysize = max_y;

  Image3F reference_frame(ref_xsize, ref_ysize);
  // TODO(veluca): figure out a better way to fill the image.
  ZeroFillImage(&reference_frame);
  std::vector<PatchPosition> positions;
  std::vector<PatchReferencePosition> pref_positions;
  std::vector<PatchBlending> blendings;
  float* JXL_RESTRICT ref_rows[3] = {
      reference_frame.PlaneRow(0, 0),
      reference_frame.PlaneRow(1, 0),
      reference_frame.PlaneRow(2, 0),
  };
  size_t ref_stride = reference_frame.PixelsPerRow();
  size_t num_ec = state->shared.metadata->m.num_extra_channels;

  for (size_t i = 0; i < info.size(); i++) {
    PatchReferencePosition ref_pos;
    ref_pos.xsize = info[i].first.xsize;
    ref_pos.ysize = info[i].first.ysize;
    ref_pos.x0 = ref_positions[i].first;
    ref_pos.y0 = ref_positions[i].second;
    ref_pos.ref = kPatchFrameReferenceId;
    for (size_t y = 0; y < ref_pos.ysize; y++) {
      for (size_t x = 0; x < ref_pos.xsize; x++) {
        for (size_t c = 0; c < 3; c++) {
          ref_rows[c][(y + ref_pos.y0) * ref_stride + x + ref_pos.x0] =
              info[i].first.fpixels[c][y * ref_pos.xsize + x];
        }
      }
    }
    for (const auto& pos : info[i].second) {
      positions.emplace_back(
          PatchPosition{pos.first, pos.second, pref_positions.size()});
      // Add blending for color channels, ignore other channels.
      blendings.push_back({PatchBlendMode::kAdd, 0, false});
      for (size_t j = 0; j < num_ec; ++j) {
        blendings.push_back({PatchBlendMode::kNone, 0, false});
      }
    }
    pref_positions.emplace_back(std::move(ref_pos));
  }

  CompressParams cparams = state->cparams;
  // Recursive application of patches could create very weird issues.
  cparams.patches = Override::kOff;

  RoundtripPatchFrame(&reference_frame, state, kPatchFrameReferenceId, cparams,
                      cms, pool, aux_out, /*subtract=*/true);

  // TODO(veluca): this assumes that applying patches is commutative, which is
  // not true for all blending modes. This code only produces kAdd patches, so
  // this works out.
  PatchDictionaryEncoder::SetPositions(
      &state->shared.image_features.patches, std::move(positions),
      std::move(pref_positions), std::move(blendings));
}

void RoundtripPatchFrame(Image3F* reference_frame,
                         PassesEncoderState* JXL_RESTRICT state, int idx,
                         CompressParams& cparams, const JxlCmsInterface& cms,
                         ThreadPool* pool, AuxOut* aux_out, bool subtract) {
  FrameInfo patch_frame_info;
  cparams.resampling = 1;
  cparams.ec_resampling = 1;
  cparams.dots = Override::kOff;
  cparams.noise = Override::kOff;
  cparams.modular_mode = true;
  cparams.responsive = 0;
  cparams.progressive_dc = 0;
  cparams.progressive_mode = false;
  cparams.qprogressive_mode = false;
  // Use gradient predictor and not Predictor::Best.
  cparams.options.predictor = Predictor::Gradient;
  patch_frame_info.save_as_reference = idx;  // always saved.
  patch_frame_info.frame_type = FrameType::kReferenceOnly;
  patch_frame_info.save_before_color_transform = true;
  ImageBundle ib(&state->shared.metadata->m);
  // TODO(veluca): metadata.color_encoding is a lie: ib is in XYB, but there is
  // no simple way to express that yet.
  patch_frame_info.ib_needs_color_transform = false;
  ib.SetFromImage(std::move(*reference_frame),
                  state->shared.metadata->m.color_encoding);
  if (!ib.metadata()->extra_channel_info.empty()) {
    // Add dummy extra channels to the patch image: patch encoding does not yet
    // support extra channels, but the codec expects that the amount of extra
    // channels in frames matches that in the metadata of the codestream.
    std::vector<ImageF> extra_channels;
    extra_channels.reserve(ib.metadata()->extra_channel_info.size());
    for (size_t i = 0; i < ib.metadata()->extra_channel_info.size(); i++) {
      extra_channels.emplace_back(ib.xsize(), ib.ysize());
      // Must initialize the image with data to not affect blending with
      // uninitialized memory.
      // TODO(lode): patches must copy and use the real extra channels instead.
      ZeroFillImage(&extra_channels.back());
    }
    ib.SetExtraChannels(std::move(extra_channels));
  }
  PassesEncoderState roundtrip_state;
  auto special_frame = std::unique_ptr<BitWriter>(new BitWriter());
  AuxOut patch_aux_out;
  JXL_CHECK(EncodeFrame(cparams, patch_frame_info, state->shared.metadata, ib,
                        &roundtrip_state, cms, pool, special_frame.get(),
                        aux_out ? &patch_aux_out : nullptr));
  if (aux_out) {
    for (const auto& l : patch_aux_out.layers) {
      aux_out->layers[kLayerDictionary].Assimilate(l);
    }
  }
  const Span<const uint8_t> encoded = special_frame->GetSpan();
  state->special_frames.emplace_back(std::move(special_frame));
  if (subtract) {
    ImageBundle decoded(&state->shared.metadata->m);
    PassesDecoderState dec_state;
    JXL_CHECK(dec_state.output_encoding_info.SetFromMetadata(
        *state->shared.metadata));
    const uint8_t* frame_start = encoded.data();
    size_t encoded_size = encoded.size();
    JXL_CHECK(DecodeFrame(&dec_state, pool, frame_start, encoded_size, &decoded,
                          *state->shared.metadata));
    frame_start += decoded.decoded_bytes();
    encoded_size -= decoded.decoded_bytes();
    size_t ref_xsize =
        dec_state.shared_storage.reference_frames[idx].frame.color()->xsize();
    // if the frame itself uses patches, we need to decode another frame
    if (!ref_xsize) {
      JXL_CHECK(DecodeFrame(&dec_state, pool, frame_start, encoded_size,
                            &decoded, *state->shared.metadata));
    }
    JXL_CHECK(encoded_size == 0);
    state->shared.reference_frames[idx] =
        std::move(dec_state.shared_storage.reference_frames[idx]);
  } else {
    state->shared.reference_frames[idx].frame = std::move(ib);
  }
}

}  // namespace jxl