summaryrefslogtreecommitdiffstats
path: root/sys-utils/hwclock-parse-date.y
diff options
context:
space:
mode:
Diffstat (limited to 'sys-utils/hwclock-parse-date.y')
-rw-r--r--sys-utils/hwclock-parse-date.y1629
1 files changed, 1629 insertions, 0 deletions
diff --git a/sys-utils/hwclock-parse-date.y b/sys-utils/hwclock-parse-date.y
new file mode 100644
index 0000000..f1740a2
--- /dev/null
+++ b/sys-utils/hwclock-parse-date.y
@@ -0,0 +1,1629 @@
+%{
+/**
+ * SPDX-License-Identifier: GPL-3.0-or-later
+ *
+ * Parse a string into an internal timestamp.
+ *
+ * This file is based on gnulib parse-datetime.y-dd7a871 with
+ * the other gnulib dependencies removed for use in util-linux.
+ *
+ * Copyright (C) 1999-2000, 2002-2017 Free Software Foundation, Inc.
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
+ * Originally written by Steven M. Bellovin <smb@research.att.com> while
+ * at the University of North Carolina at Chapel Hill. Later tweaked by
+ * a couple of people on Usenet. Completely overhauled by Rich $alz
+ * <rsalz@bbn.com> and Jim Berets <jberets@bbn.com> in August, 1990.
+ *
+ * Modified by Paul Eggert <eggert@twinsun.com> in August 1999 to do
+ * the right thing about local DST. Also modified by Paul Eggert
+ * <eggert@cs.ucla.edu> in February 2004 to support
+ * nanosecond-resolution timestamps, and in October 2004 to support
+ * TZ strings in dates.
+ */
+
+/**
+ * FIXME: Check for arithmetic overflow in all cases, not just
+ * some of them.
+ */
+
+#include <sys/time.h>
+#include <time.h>
+
+#include "c.h"
+#include "timeutils.h"
+#include "hwclock.h"
+
+/**
+ * There's no need to extend the stack, so there's no need to involve
+ * alloca.
+ */
+#define YYSTACK_USE_ALLOCA 0
+
+/**
+ * Tell Bison how much stack space is needed. 20 should be plenty for
+ * this grammar, which is not right recursive. Beware setting it too
+ * high, since that might cause problems on machines whose
+ * implementations have lame stack-overflow checking.
+ */
+#define YYMAXDEPTH 20
+#define YYINITDEPTH YYMAXDEPTH
+
+/**
+ * Since the code of parse-datetime.y is not included in the Emacs executable
+ * itself, there is no need to #define static in this file. Even if
+ * the code were included in the Emacs executable, it probably
+ * wouldn't do any harm to #undef it here; this will only cause
+ * problems if we try to write to a static variable, which I don't
+ * think this code needs to do.
+ */
+#ifdef emacs
+# undef static
+#endif
+
+#include <inttypes.h>
+#include <limits.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#include <stdarg.h>
+#include "cctype.h"
+#include "nls.h"
+
+/**
+ * Bison's skeleton tests _STDLIB_H, while some stdlib.h headers
+ * use _STDLIB_H_ as witness. Map the latter to the one bison uses.
+ * FIXME: this is temporary. Remove when we have a mechanism to ensure
+ * that the version we're using is fixed, too.
+ */
+#ifdef _STDLIB_H_
+# undef _STDLIB_H
+# define _STDLIB_H 1
+#endif
+
+/**
+ * Shift A right by B bits portably, by dividing A by 2**B and
+ * truncating towards minus infinity. A and B should be free of side
+ * effects, and B should be in the range 0 <= B <= INT_BITS - 2, where
+ * INT_BITS is the number of useful bits in an int. GNU code can
+ * assume that INT_BITS is at least 32.
+ *
+ * ISO C99 says that A >> B is implementation-defined if A < 0. Some
+ * implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
+ * right in the usual way when A < 0, so SHR falls back on division if
+ * ordinary A >> B doesn't seem to be the usual signed shift.
+ */
+#define SHR(a, b) \
+ (-1 >> 1 == -1 \
+ ? (a) >> (b) \
+ : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0))
+
+#define TM_YEAR_BASE 1900
+
+#define HOUR(x) ((x) * 60)
+
+#define STREQ(a, b) (strcmp (a, b) == 0)
+
+/**
+ * Convert a possibly-signed character to an unsigned character. This is
+ * a bit safer than casting to unsigned char, since it catches some type
+ * errors that the cast doesn't.
+ */
+static unsigned char to_uchar (char ch) { return ch; }
+
+/**
+ * FIXME: It also assumes that signed integer overflow silently wraps around,
+ * but this is not true any more with recent versions of GCC 4.
+ */
+
+/**
+ * An integer value, and the number of digits in its textual
+ * representation.
+ */
+typedef struct {
+ int negative;
+ intmax_t value;
+ size_t digits;
+} textint;
+
+/* An entry in the lexical lookup table. */
+typedef struct {
+ char const *name;
+ int type;
+ int value;
+} table;
+
+/* Meridian: am, pm, or 24-hour style. */
+enum { MERam, MERpm, MER24 };
+
+enum { BILLION = 1000000000, LOG10_BILLION = 9 };
+
+/* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */
+typedef struct {
+ intmax_t year;
+ intmax_t month;
+ intmax_t day;
+ intmax_t hour;
+ intmax_t minutes;
+ time_t seconds;
+ long ns;
+} relative_time;
+
+#if HAVE_COMPOUND_LITERALS
+# define RELATIVE_TIME_0 ((relative_time) { 0, 0, 0, 0, 0, 0, 0 })
+#else
+static relative_time const RELATIVE_TIME_0;
+#endif
+
+/* Information passed to and from the parser. */
+typedef struct {
+ /* The input string remaining to be parsed. */
+ const char *input;
+
+ /* N, if this is the Nth Tuesday. */
+ intmax_t day_ordinal;
+
+ /* Day of week; Sunday is 0. */
+ int day_number;
+
+ /* tm_isdst flag for the local zone. */
+ int local_isdst;
+
+ /* Time zone, in minutes east of UTC. */
+ int time_zone;
+
+ /* Style used for time. */
+ int meridian;
+
+ /* Gregorian year, month, day, hour, minutes, seconds, and ns. */
+ textint year;
+ intmax_t month;
+ intmax_t day;
+ intmax_t hour;
+ intmax_t minutes;
+ struct timespec seconds; /* includes nanoseconds */
+
+ /* Relative year, month, day, hour, minutes, seconds, and ns. */
+ relative_time rel;
+
+ /* Presence or counts of some nonterminals parsed so far. */
+ int timespec_seen;
+ int rels_seen;
+ size_t dates_seen;
+ size_t days_seen;
+ size_t local_zones_seen;
+ size_t dsts_seen;
+ size_t times_seen;
+ size_t zones_seen;
+
+ /* Table of local time zone abbreviations, null terminated. */
+ table local_time_zone_table[3];
+} parser_control;
+
+union YYSTYPE;
+static int yylex (union YYSTYPE *, parser_control *);
+static int yyerror (parser_control const *, char const *);
+static int time_zone_hhmm (parser_control *, textint, textint);
+
+/**
+ * Extract into *PC any date and time info from a string of digits
+ * of the form e.g., YYYYMMDD, YYMMDD, HHMM, HH (and sometimes YYY,
+ * YYYY, ...).
+ */
+static void digits_to_date_time(parser_control *pc, textint text_int)
+{
+ if (pc->dates_seen && ! pc->year.digits
+ && ! pc->rels_seen && (pc->times_seen || 2 < text_int.digits)) {
+ pc->year = text_int;
+ } else {
+ if (4 < text_int.digits) {
+ pc->dates_seen++;
+ pc->day = text_int.value % 100;
+ pc->month = (text_int.value / 100) % 100;
+ pc->year.value = text_int.value / 10000;
+ pc->year.digits = text_int.digits - 4;
+ } else {
+ pc->times_seen++;
+ if (text_int.digits <= 2) {
+ pc->hour = text_int.value;
+ pc->minutes = 0;
+ }
+ else {
+ pc->hour = text_int.value / 100;
+ pc->minutes = text_int.value % 100;
+ }
+ pc->seconds.tv_sec = 0;
+ pc->seconds.tv_nsec = 0;
+ pc->meridian = MER24;
+ }
+ }
+}
+
+/* Increment PC->rel by FACTOR * REL (FACTOR is 1 or -1). */
+static void apply_relative_time(parser_control *pc, relative_time rel,
+ int factor)
+{
+ pc->rel.ns += factor * rel.ns;
+ pc->rel.seconds += factor * rel.seconds;
+ pc->rel.minutes += factor * rel.minutes;
+ pc->rel.hour += factor * rel.hour;
+ pc->rel.day += factor * rel.day;
+ pc->rel.month += factor * rel.month;
+ pc->rel.year += factor * rel.year;
+ pc->rels_seen = 1;
+}
+
+/* Set PC-> hour, minutes, seconds and nanoseconds members from arguments. */
+static void
+set_hhmmss(parser_control *pc, intmax_t hour, intmax_t minutes,
+ time_t sec, long nsec)
+{
+ pc->hour = hour;
+ pc->minutes = minutes;
+ pc->seconds.tv_sec = sec;
+ pc->seconds.tv_nsec = nsec;
+}
+
+%}
+
+/**
+ * We want a reentrant parser, even if the TZ manipulation and the calls to
+ * localtime and gmtime are not reentrant.
+ */
+%define api.pure
+%parse-param { parser_control *pc }
+%lex-param { parser_control *pc }
+
+/* This grammar has 31 shift/reduce conflicts. */
+%expect 31
+
+%union {
+ intmax_t intval;
+ textint textintval;
+ struct timespec timespec;
+ relative_time rel;
+}
+
+%token <intval> tAGO
+%token tDST
+
+%token tYEAR_UNIT tMONTH_UNIT tHOUR_UNIT tMINUTE_UNIT tSEC_UNIT
+%token <intval> tDAY_UNIT tDAY_SHIFT
+
+%token <intval> tDAY tDAYZONE tLOCAL_ZONE tMERIDIAN
+%token <intval> tMONTH tORDINAL tZONE
+
+%token <textintval> tSNUMBER tUNUMBER
+%token <timespec> tSDECIMAL_NUMBER tUDECIMAL_NUMBER
+
+%type <textintval> o_colon_minutes
+%type <timespec> seconds signed_seconds unsigned_seconds
+
+%type <rel> relunit relunit_snumber dayshift
+
+%%
+
+spec:
+ timespec
+ | items
+;
+
+timespec:
+ '@' seconds {
+ pc->seconds = $2;
+ pc->timespec_seen = 1;
+ }
+;
+
+items:
+ /* empty */
+ | items item
+;
+
+item:
+ datetime {
+ pc->times_seen++; pc->dates_seen++;
+ }
+ | time {
+ pc->times_seen++;
+ }
+ | local_zone {
+ pc->local_zones_seen++;
+ }
+ | zone {
+ pc->zones_seen++;
+ }
+ | date {
+ pc->dates_seen++;
+ }
+ | day {
+ pc->days_seen++;
+ }
+ | rel
+ | number
+ | hybrid
+;
+
+datetime:
+ iso_8601_datetime
+;
+
+iso_8601_datetime:
+ iso_8601_date 'T' iso_8601_time
+;
+
+time:
+ tUNUMBER tMERIDIAN {
+ set_hhmmss (pc, $1.value, 0, 0, 0);
+ pc->meridian = $2;
+ }
+ | tUNUMBER ':' tUNUMBER tMERIDIAN {
+ set_hhmmss (pc, $1.value, $3.value, 0, 0);
+ pc->meridian = $4;
+ }
+ | tUNUMBER ':' tUNUMBER ':' unsigned_seconds tMERIDIAN {
+ set_hhmmss (pc, $1.value, $3.value, $5.tv_sec, $5.tv_nsec);
+ pc->meridian = $6;
+ }
+ | iso_8601_time
+;
+
+iso_8601_time:
+ tUNUMBER zone_offset {
+ set_hhmmss (pc, $1.value, 0, 0, 0);
+ pc->meridian = MER24;
+ }
+ | tUNUMBER ':' tUNUMBER o_zone_offset {
+ set_hhmmss (pc, $1.value, $3.value, 0, 0);
+ pc->meridian = MER24;
+ }
+ | tUNUMBER ':' tUNUMBER ':' unsigned_seconds o_zone_offset {
+ set_hhmmss (pc, $1.value, $3.value, $5.tv_sec, $5.tv_nsec);
+ pc->meridian = MER24;
+ }
+;
+
+o_zone_offset:
+ /* empty */
+ | zone_offset
+;
+
+zone_offset:
+ tSNUMBER o_colon_minutes {
+ pc->zones_seen++;
+ if (! time_zone_hhmm (pc, $1, $2)) YYABORT;
+ }
+;
+
+/**
+ * Local zone strings only affect DST setting,
+ * and only take affect if the current TZ setting is relevant.
+ *
+ * Example 1:
+ * 'EEST' is parsed as tLOCAL_ZONE, as it relates to the effective TZ:
+ * TZ=Europe/Helsinki date -d '2016-12-30 EEST'
+ *
+ * Example 2:
+ * 'EEST' is parsed as 'zone' (TZ=+03:00):
+ * TZ=Asia/Tokyo ./src/date --debug -d '2011-06-11 EEST'
+ *
+ * This is implemented by probing the next three calendar quarters
+ * of the effective timezone and looking for DST changes -
+ * if found, the timezone name (EEST) is inserted into
+ * the lexical lookup table with type tLOCAL_ZONE.
+ * (Search for 'quarter' comment in 'parse_date').
+ */
+local_zone:
+ tLOCAL_ZONE {
+ pc->local_isdst = $1;
+ pc->dsts_seen += (0 < $1);
+ }
+ | tLOCAL_ZONE tDST {
+ pc->local_isdst = 1;
+ pc->dsts_seen += (0 < $1) + 1;
+ }
+;
+
+/**
+ * Note 'T' is a special case, as it is used as the separator in ISO
+ * 8601 date and time of day representation.
+ */
+zone:
+ tZONE {
+ pc->time_zone = $1;
+ }
+ | 'T' {
+ pc->time_zone = HOUR(7);
+ }
+ | tZONE relunit_snumber {
+ pc->time_zone = $1;
+ apply_relative_time (pc, $2, 1);
+ }
+ | 'T' relunit_snumber {
+ pc->time_zone = HOUR(7);
+ apply_relative_time (pc, $2, 1);
+ }
+ | tZONE tSNUMBER o_colon_minutes {
+ if (! time_zone_hhmm (pc, $2, $3)) YYABORT;
+ pc->time_zone += $1;
+ }
+ | tDAYZONE {
+ pc->time_zone = $1 + 60;
+ }
+ | tZONE tDST {
+ pc->time_zone = $1 + 60;
+ }
+;
+
+day:
+ tDAY {
+ pc->day_ordinal = 0;
+ pc->day_number = $1;
+ }
+ | tDAY ',' {
+ pc->day_ordinal = 0;
+ pc->day_number = $1;
+ }
+ | tORDINAL tDAY {
+ pc->day_ordinal = $1;
+ pc->day_number = $2;
+ }
+ | tUNUMBER tDAY {
+ pc->day_ordinal = $1.value;
+ pc->day_number = $2;
+ }
+;
+
+date:
+ tUNUMBER '/' tUNUMBER {
+ pc->month = $1.value;
+ pc->day = $3.value;
+ }
+ | tUNUMBER '/' tUNUMBER '/' tUNUMBER {
+ /**
+ * Interpret as YYYY/MM/DD if the first value has 4 or more digits,
+ * otherwise as MM/DD/YY.
+ * The goal in recognizing YYYY/MM/DD is solely to support legacy
+ * machine-generated dates like those in an RCS log listing. If
+ * you want portability, use the ISO 8601 format.
+ */
+ if (4 <= $1.digits) {
+ pc->year = $1;
+ pc->month = $3.value;
+ pc->day = $5.value;
+ } else {
+ pc->month = $1.value;
+ pc->day = $3.value;
+ pc->year = $5;
+ }
+ }
+ | tUNUMBER tMONTH tSNUMBER {
+ /* e.g. 17-JUN-1992. */
+ pc->day = $1.value;
+ pc->month = $2;
+ pc->year.value = -$3.value;
+ pc->year.digits = $3.digits;
+ }
+ | tMONTH tSNUMBER tSNUMBER {
+ /* e.g. JUN-17-1992. */
+ pc->month = $1;
+ pc->day = -$2.value;
+ pc->year.value = -$3.value;
+ pc->year.digits = $3.digits;
+ }
+ | tMONTH tUNUMBER {
+ pc->month = $1;
+ pc->day = $2.value;
+ }
+ | tMONTH tUNUMBER ',' tUNUMBER {
+ pc->month = $1;
+ pc->day = $2.value;
+ pc->year = $4;
+ }
+ | tUNUMBER tMONTH {
+ pc->day = $1.value;
+ pc->month = $2;
+ }
+ | tUNUMBER tMONTH tUNUMBER {
+ pc->day = $1.value;
+ pc->month = $2;
+ pc->year = $3;
+ }
+ | iso_8601_date
+;
+
+iso_8601_date:
+ tUNUMBER tSNUMBER tSNUMBER {
+ /* ISO 8601 format.YYYY-MM-DD. */
+ pc->year = $1;
+ pc->month = -$2.value;
+ pc->day = -$3.value;
+ }
+;
+
+rel:
+ relunit tAGO
+ { apply_relative_time (pc, $1, $2); }
+ | relunit
+ { apply_relative_time (pc, $1, 1); }
+ | dayshift
+ { apply_relative_time (pc, $1, 1); }
+;
+
+relunit:
+ tORDINAL tYEAR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.year = $1; }
+ | tUNUMBER tYEAR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.year = $1.value; }
+ | tYEAR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.year = 1; }
+ | tORDINAL tMONTH_UNIT
+ { $$ = RELATIVE_TIME_0; $$.month = $1; }
+ | tUNUMBER tMONTH_UNIT
+ { $$ = RELATIVE_TIME_0; $$.month = $1.value; }
+ | tMONTH_UNIT
+ { $$ = RELATIVE_TIME_0; $$.month = 1; }
+ | tORDINAL tDAY_UNIT
+ { $$ = RELATIVE_TIME_0; $$.day = $1 * $2; }
+ | tUNUMBER tDAY_UNIT
+ { $$ = RELATIVE_TIME_0; $$.day = $1.value * $2; }
+ | tDAY_UNIT
+ { $$ = RELATIVE_TIME_0; $$.day = $1; }
+ | tORDINAL tHOUR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.hour = $1; }
+ | tUNUMBER tHOUR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.hour = $1.value; }
+ | tHOUR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.hour = 1; }
+ | tORDINAL tMINUTE_UNIT
+ { $$ = RELATIVE_TIME_0; $$.minutes = $1; }
+ | tUNUMBER tMINUTE_UNIT
+ { $$ = RELATIVE_TIME_0; $$.minutes = $1.value; }
+ | tMINUTE_UNIT
+ { $$ = RELATIVE_TIME_0; $$.minutes = 1; }
+ | tORDINAL tSEC_UNIT
+ { $$ = RELATIVE_TIME_0; $$.seconds = $1; }
+ | tUNUMBER tSEC_UNIT
+ { $$ = RELATIVE_TIME_0; $$.seconds = $1.value; }
+ | tSDECIMAL_NUMBER tSEC_UNIT {
+ $$ = RELATIVE_TIME_0;
+ $$.seconds = $1.tv_sec;
+ $$.ns = $1.tv_nsec;
+ }
+ | tUDECIMAL_NUMBER tSEC_UNIT {
+ $$ = RELATIVE_TIME_0;
+ $$.seconds = $1.tv_sec;
+ $$.ns = $1.tv_nsec;
+ }
+ | tSEC_UNIT
+ { $$ = RELATIVE_TIME_0; $$.seconds = 1; }
+ | relunit_snumber
+;
+
+relunit_snumber:
+ tSNUMBER tYEAR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.year = $1.value; }
+ | tSNUMBER tMONTH_UNIT
+ { $$ = RELATIVE_TIME_0; $$.month = $1.value; }
+ | tSNUMBER tDAY_UNIT
+ { $$ = RELATIVE_TIME_0; $$.day = $1.value * $2; }
+ | tSNUMBER tHOUR_UNIT
+ { $$ = RELATIVE_TIME_0; $$.hour = $1.value; }
+ | tSNUMBER tMINUTE_UNIT
+ { $$ = RELATIVE_TIME_0; $$.minutes = $1.value; }
+ | tSNUMBER tSEC_UNIT
+ { $$ = RELATIVE_TIME_0; $$.seconds = $1.value; }
+;
+
+dayshift:
+ tDAY_SHIFT
+ { $$ = RELATIVE_TIME_0; $$.day = $1; }
+;
+
+seconds: signed_seconds | unsigned_seconds;
+
+signed_seconds:
+ tSDECIMAL_NUMBER
+ | tSNUMBER
+ { $$.tv_sec = $1.value; $$.tv_nsec = 0; }
+;
+
+unsigned_seconds:
+ tUDECIMAL_NUMBER
+ | tUNUMBER
+ { $$.tv_sec = $1.value; $$.tv_nsec = 0; }
+;
+
+number:
+ tUNUMBER
+ { digits_to_date_time (pc, $1); }
+;
+
+hybrid:
+ tUNUMBER relunit_snumber {
+ /**
+ * Hybrid all-digit and relative offset, so that we accept e.g.,
+ * "YYYYMMDD +N days" as well as "YYYYMMDD N days".
+ */
+ digits_to_date_time (pc, $1);
+ apply_relative_time (pc, $2, 1);
+ }
+;
+
+o_colon_minutes:
+ /* empty */
+ { $$.value = $$.digits = 0; }
+ | ':' tUNUMBER {
+ $$ = $2;
+ }
+;
+
+%%
+
+static table const meridian_table[] = {
+ { "AM", tMERIDIAN, MERam },
+ { "A.M.", tMERIDIAN, MERam },
+ { "PM", tMERIDIAN, MERpm },
+ { "P.M.", tMERIDIAN, MERpm },
+ { NULL, 0, 0 }
+};
+
+static table const dst_table[] = {
+ { "DST", tDST, 0 }
+};
+
+static table const month_and_day_table[] = {
+ { "JANUARY", tMONTH, 1 },
+ { "FEBRUARY", tMONTH, 2 },
+ { "MARCH", tMONTH, 3 },
+ { "APRIL", tMONTH, 4 },
+ { "MAY", tMONTH, 5 },
+ { "JUNE", tMONTH, 6 },
+ { "JULY", tMONTH, 7 },
+ { "AUGUST", tMONTH, 8 },
+ { "SEPTEMBER",tMONTH, 9 },
+ { "SEPT", tMONTH, 9 },
+ { "OCTOBER", tMONTH, 10 },
+ { "NOVEMBER", tMONTH, 11 },
+ { "DECEMBER", tMONTH, 12 },
+ { "SUNDAY", tDAY, 0 },
+ { "MONDAY", tDAY, 1 },
+ { "TUESDAY", tDAY, 2 },
+ { "TUES", tDAY, 2 },
+ { "WEDNESDAY",tDAY, 3 },
+ { "WEDNES", tDAY, 3 },
+ { "THURSDAY", tDAY, 4 },
+ { "THUR", tDAY, 4 },
+ { "THURS", tDAY, 4 },
+ { "FRIDAY", tDAY, 5 },
+ { "SATURDAY", tDAY, 6 },
+ { NULL, 0, 0 }
+};
+
+static table const time_units_table[] = {
+ { "YEAR", tYEAR_UNIT, 1 },
+ { "MONTH", tMONTH_UNIT, 1 },
+ { "FORTNIGHT",tDAY_UNIT, 14 },
+ { "WEEK", tDAY_UNIT, 7 },
+ { "DAY", tDAY_UNIT, 1 },
+ { "HOUR", tHOUR_UNIT, 1 },
+ { "MINUTE", tMINUTE_UNIT, 1 },
+ { "MIN", tMINUTE_UNIT, 1 },
+ { "SECOND", tSEC_UNIT, 1 },
+ { "SEC", tSEC_UNIT, 1 },
+ { NULL, 0, 0 }
+};
+
+/* Assorted relative-time words. */
+static table const relative_time_table[] = {
+ { "TOMORROW", tDAY_SHIFT, 1 },
+ { "YESTERDAY",tDAY_SHIFT, -1 },
+ { "TODAY", tDAY_SHIFT, 0 },
+ { "NOW", tDAY_SHIFT, 0 },
+ { "LAST", tORDINAL, -1 },
+ { "THIS", tORDINAL, 0 },
+ { "NEXT", tORDINAL, 1 },
+ { "FIRST", tORDINAL, 1 },
+ /*{ "SECOND", tORDINAL, 2 }, */
+ { "THIRD", tORDINAL, 3 },
+ { "FOURTH", tORDINAL, 4 },
+ { "FIFTH", tORDINAL, 5 },
+ { "SIXTH", tORDINAL, 6 },
+ { "SEVENTH", tORDINAL, 7 },
+ { "EIGHTH", tORDINAL, 8 },
+ { "NINTH", tORDINAL, 9 },
+ { "TENTH", tORDINAL, 10 },
+ { "ELEVENTH", tORDINAL, 11 },
+ { "TWELFTH", tORDINAL, 12 },
+ { "AGO", tAGO, -1 },
+ { "HENCE", tAGO, 1 },
+ { NULL, 0, 0 }
+};
+
+/**
+ * The universal time zone table. These labels can be used even for
+ * timestamps that would not otherwise be valid, e.g., GMT timestamps
+ * in London during summer.
+ */
+static table const universal_time_zone_table[] = {
+ { "GMT", tZONE, HOUR ( 0) }, /* Greenwich Mean */
+ { "UT", tZONE, HOUR ( 0) }, /* Universal (Coordinated) */
+ { "UTC", tZONE, HOUR ( 0) },
+ { NULL, 0, 0 }
+};
+
+/**
+ * The time zone table. This table is necessarily incomplete, as time
+ * zone abbreviations are ambiguous; e.g. Australians interpret "EST"
+ * as Eastern time in Australia, not as US Eastern Standard Time.
+ * You cannot rely on parse_date to handle arbitrary time zone
+ * abbreviations; use numeric abbreviations like "-0500" instead.
+ */
+static table const time_zone_table[] = {
+ { "WET", tZONE, HOUR ( 0) }, /* Western European */
+ { "WEST", tDAYZONE, HOUR ( 0) }, /* Western European Summer */
+ { "BST", tDAYZONE, HOUR ( 0) }, /* British Summer */
+ { "ART", tZONE, -HOUR ( 3) }, /* Argentina */
+ { "BRT", tZONE, -HOUR ( 3) }, /* Brazil */
+ { "BRST", tDAYZONE, -HOUR ( 3) }, /* Brazil Summer */
+ { "NST", tZONE, -(HOUR ( 3) + 30) }, /* Newfoundland Standard */
+ { "NDT", tDAYZONE,-(HOUR ( 3) + 30) }, /* Newfoundland Daylight */
+ { "AST", tZONE, -HOUR ( 4) }, /* Atlantic Standard */
+ { "ADT", tDAYZONE, -HOUR ( 4) }, /* Atlantic Daylight */
+ { "CLT", tZONE, -HOUR ( 4) }, /* Chile */
+ { "CLST", tDAYZONE, -HOUR ( 4) }, /* Chile Summer */
+ { "EST", tZONE, -HOUR ( 5) }, /* Eastern Standard */
+ { "EDT", tDAYZONE, -HOUR ( 5) }, /* Eastern Daylight */
+ { "CST", tZONE, -HOUR ( 6) }, /* Central Standard */
+ { "CDT", tDAYZONE, -HOUR ( 6) }, /* Central Daylight */
+ { "MST", tZONE, -HOUR ( 7) }, /* Mountain Standard */
+ { "MDT", tDAYZONE, -HOUR ( 7) }, /* Mountain Daylight */
+ { "PST", tZONE, -HOUR ( 8) }, /* Pacific Standard */
+ { "PDT", tDAYZONE, -HOUR ( 8) }, /* Pacific Daylight */
+ { "AKST", tZONE, -HOUR ( 9) }, /* Alaska Standard */
+ { "AKDT", tDAYZONE, -HOUR ( 9) }, /* Alaska Daylight */
+ { "HST", tZONE, -HOUR (10) }, /* Hawaii Standard */
+ { "HAST", tZONE, -HOUR (10) }, /* Hawaii-Aleutian Standard */
+ { "HADT", tDAYZONE, -HOUR (10) }, /* Hawaii-Aleutian Daylight */
+ { "SST", tZONE, -HOUR (12) }, /* Samoa Standard */
+ { "WAT", tZONE, HOUR ( 1) }, /* West Africa */
+ { "CET", tZONE, HOUR ( 1) }, /* Central European */
+ { "CEST", tDAYZONE, HOUR ( 1) }, /* Central European Summer */
+ { "MET", tZONE, HOUR ( 1) }, /* Middle European */
+ { "MEZ", tZONE, HOUR ( 1) }, /* Middle European */
+ { "MEST", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */
+ { "MESZ", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */
+ { "EET", tZONE, HOUR ( 2) }, /* Eastern European */
+ { "EEST", tDAYZONE, HOUR ( 2) }, /* Eastern European Summer */
+ { "CAT", tZONE, HOUR ( 2) }, /* Central Africa */
+ { "SAST", tZONE, HOUR ( 2) }, /* South Africa Standard */
+ { "EAT", tZONE, HOUR ( 3) }, /* East Africa */
+ { "MSK", tZONE, HOUR ( 3) }, /* Moscow */
+ { "MSD", tDAYZONE, HOUR ( 3) }, /* Moscow Daylight */
+ { "IST", tZONE, (HOUR ( 5) + 30) }, /* India Standard */
+ { "SGT", tZONE, HOUR ( 8) }, /* Singapore */
+ { "KST", tZONE, HOUR ( 9) }, /* Korea Standard */
+ { "JST", tZONE, HOUR ( 9) }, /* Japan Standard */
+ { "GST", tZONE, HOUR (10) }, /* Guam Standard */
+ { "NZST", tZONE, HOUR (12) }, /* New Zealand Standard */
+ { "NZDT", tDAYZONE, HOUR (12) }, /* New Zealand Daylight */
+ { NULL, 0, 0 }
+};
+
+/**
+ * Military time zone table.
+ *
+ * Note 'T' is a special case, as it is used as the separator in ISO
+ * 8601 date and time of day representation.
+ */
+static table const military_table[] = {
+ { "A", tZONE, -HOUR ( 1) },
+ { "B", tZONE, -HOUR ( 2) },
+ { "C", tZONE, -HOUR ( 3) },
+ { "D", tZONE, -HOUR ( 4) },
+ { "E", tZONE, -HOUR ( 5) },
+ { "F", tZONE, -HOUR ( 6) },
+ { "G", tZONE, -HOUR ( 7) },
+ { "H", tZONE, -HOUR ( 8) },
+ { "I", tZONE, -HOUR ( 9) },
+ { "K", tZONE, -HOUR (10) },
+ { "L", tZONE, -HOUR (11) },
+ { "M", tZONE, -HOUR (12) },
+ { "N", tZONE, HOUR ( 1) },
+ { "O", tZONE, HOUR ( 2) },
+ { "P", tZONE, HOUR ( 3) },
+ { "Q", tZONE, HOUR ( 4) },
+ { "R", tZONE, HOUR ( 5) },
+ { "S", tZONE, HOUR ( 6) },
+ { "T", 'T', 0 },
+ { "U", tZONE, HOUR ( 8) },
+ { "V", tZONE, HOUR ( 9) },
+ { "W", tZONE, HOUR (10) },
+ { "X", tZONE, HOUR (11) },
+ { "Y", tZONE, HOUR (12) },
+ { "Z", tZONE, HOUR ( 0) },
+ { NULL, 0, 0 }
+};
+
+/**
+ * Convert a time offset expressed as HH:MM or HHMM into an integer count of
+ * minutes. If hh is more than 2 digits then it is of the form HHMM and must be
+ * delimited; in that case 'mm' is required to be absent. Otherwise, hh and mm
+ * are used ('mm' contains digits that were prefixed with a colon).
+ *
+ * POSIX TZ and ISO 8601 both define the maximum offset as 24:59. POSIX also
+ * allows seconds, but currently the parser rejects them. Both require minutes
+ * to be zero padded (2 digits). ISO requires hours to be zero padded, POSIX
+ * does not, either is accepted; which means an invalid ISO offset could pass.
+ */
+
+static int time_zone_hhmm(parser_control *pc, textint hh, textint mm)
+{
+ int h, m;
+
+ if (hh.digits > 2 && hh.digits < 5 && mm.digits == 0) {
+ h = hh.value / 100;
+ m = hh.value % 100;
+ } else if (hh.digits < 3 && (mm.digits == 0 || mm.digits == 2)) {
+ h = hh.value;
+ m = hh.negative ? -mm.value : mm.value;
+ } else
+ return 0;
+
+ if (abs(h) > 24 || abs(m) > 59)
+ return 0;
+
+ pc->time_zone = h * 60 + m;
+ return 1;
+}
+
+static int to_hour(intmax_t hours, int meridian)
+{
+ switch (meridian) {
+ default: /* Pacify GCC. */
+ case MER24:
+ return 0 <= hours && hours < 24 ? hours : -1;
+ case MERam:
+ return 0 < hours && hours < 12 ? hours : hours == 12 ? 0 : -1;
+ case MERpm:
+ return 0 < hours && hours < 12 ? hours + 12 : hours == 12 ? 12 : -1;
+ }
+}
+
+static long int to_year(textint textyear)
+{
+ intmax_t year = textyear.value;
+
+ if (year < 0)
+ year = -year;
+
+ /**
+ * XPG4 suggests that years 00-68 map to 2000-2068, and
+ * years 69-99 map to 1969-1999.
+ */
+ else if (textyear.digits == 2)
+ year += year < 69 ? 2000 : 1900;
+
+ return year;
+}
+
+static table const * lookup_zone(parser_control const *pc, char const *name)
+{
+ table const *tp;
+
+ for (tp = universal_time_zone_table; tp->name; tp++)
+ if (strcmp (name, tp->name) == 0)
+ return tp;
+
+ /**
+ * Try local zone abbreviations before those in time_zone_table, as
+ * the local ones are more likely to be right.
+ */
+ for (tp = pc->local_time_zone_table; tp->name; tp++)
+ if (strcmp (name, tp->name) == 0)
+ return tp;
+
+ for (tp = time_zone_table; tp->name; tp++)
+ if (strcmp (name, tp->name) == 0)
+ return tp;
+
+ return NULL;
+}
+
+#if ! HAVE_TM_GMTOFF
+/**
+ * Yield the difference between *A and *B,
+ * measured in seconds, ignoring leap seconds.
+ * The body of this function is taken directly from the GNU C Library;
+ * see src/strftime.c.
+ */
+static int tm_diff(struct tm const *a, struct tm const *b)
+{
+ /**
+ * Compute intervening leap days correctly even if year is negative.
+ * Take care to avoid int overflow in leap day calculations.
+ */
+ int a4 = SHR (a->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (a->tm_year & 3);
+ int b4 = SHR (b->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (b->tm_year & 3);
+ int a100 = a4 / 25 - (a4 % 25 < 0);
+ int b100 = b4 / 25 - (b4 % 25 < 0);
+ int a400 = SHR (a100, 2);
+ int b400 = SHR (b100, 2);
+ int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
+ int years = a->tm_year - b->tm_year;
+ int days = (365 * years + intervening_leap_days
+ + (a->tm_yday - b->tm_yday));
+ return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
+ + (a->tm_min - b->tm_min))
+ + (a->tm_sec - b->tm_sec));
+}
+#endif /* ! HAVE_TM_GMTOFF */
+
+static table const * lookup_word(parser_control const *pc, char *word)
+{
+ char *p;
+ char *q;
+ size_t wordlen;
+ table const *tp;
+ int period_found;
+ int abbrev;
+
+ /* Make it uppercase. */
+ for (p = word; *p; p++)
+ *p = c_toupper (to_uchar (*p));
+
+ for (tp = meridian_table; tp->name; tp++)
+ if (strcmp (word, tp->name) == 0)
+ return tp;
+
+ /* See if we have an abbreviation for a month. */
+ wordlen = strlen (word);
+ abbrev = wordlen == 3 || (wordlen == 4 && word[3] == '.');
+
+ for (tp = month_and_day_table; tp->name; tp++)
+ if ((abbrev ? strncmp (word, tp->name, 3) :
+ strcmp (word, tp->name)) == 0)
+ return tp;
+
+ if ((tp = lookup_zone (pc, word)))
+ return tp;
+
+ if (strcmp (word, dst_table[0].name) == 0)
+ return dst_table;
+
+ for (tp = time_units_table; tp->name; tp++)
+ if (strcmp (word, tp->name) == 0)
+ return tp;
+
+ /* Strip off any plural and try the units table again. */
+ if (word[wordlen - 1] == 'S') {
+ word[wordlen - 1] = '\0';
+ for (tp = time_units_table; tp->name; tp++)
+ if (strcmp (word, tp->name) == 0)
+ return tp;
+ word[wordlen - 1] = 'S'; /* For "this" in relative_time_table. */
+ }
+
+ for (tp = relative_time_table; tp->name; tp++)
+ if (strcmp (word, tp->name) == 0)
+ return tp;
+
+ /* Military time zones. */
+ if (wordlen == 1)
+ for (tp = military_table; tp->name; tp++)
+ if (word[0] == tp->name[0])
+ return tp;
+
+ /* Drop out any periods and try the time zone table again. */
+ for (period_found = 0, p = q = word; (*p = *q); q++)
+ if (*q == '.')
+ period_found = 1;
+ else
+ p++;
+ if (period_found && (tp = lookup_zone (pc, word)))
+ return tp;
+
+ return NULL;
+}
+
+static int yylex (union YYSTYPE *lvalp, parser_control *pc)
+{
+ unsigned char c;
+ size_t count;
+
+ for (;;) {
+ while (c = *pc->input, c_isspace (c))
+ pc->input++;
+
+ if (c_isdigit (c) || c == '-' || c == '+') {
+ char const *p;
+ int sign;
+ uintmax_t value;
+ if (c == '-' || c == '+') {
+ sign = c == '-' ? -1 : 1;
+ while (c = *++pc->input, c_isspace (c))
+ continue;
+ if (! c_isdigit (c))
+ /* skip the '-' sign */
+ continue;
+ } else
+ sign = 0;
+ p = pc->input;
+ for (value = 0; ; value *= 10) {
+ uintmax_t value1 = value + (c - '0');
+ if (value1 < value)
+ return '?';
+ value = value1;
+ c = *++p;
+ if (! c_isdigit (c))
+ break;
+ if (UINTMAX_MAX / 10 < value)
+ return '?';
+ }
+ if ((c == '.' || c == ',') && c_isdigit (p[1])) {
+ time_t s;
+ long ns;
+ int digits;
+ uintmax_t value1;
+
+ /* Check for overflow when converting value to
+ * time_t.
+ */
+ if (sign < 0) {
+ s = - value;
+ if (0 < s)
+ return '?';
+ value1 = -s;
+ } else {
+ s = value;
+ if (s < 0)
+ return '?';
+ value1 = s;
+ }
+ if (value != value1)
+ return '?';
+
+ /* Accumulate fraction, to ns precision. */
+ p++;
+ ns = *p++ - '0';
+ for (digits = 2;
+ digits <= LOG10_BILLION; digits++) {
+ ns *= 10;
+ if (c_isdigit (*p))
+ ns += *p++ - '0';
+ }
+
+ /* Skip excess digits, truncating toward
+ * -Infinity.
+ */
+ if (sign < 0)
+ for (; c_isdigit (*p); p++)
+ if (*p != '0') {
+ ns++;
+ break;
+ }
+ while (c_isdigit (*p))
+ p++;
+
+ /* Adjust to the timespec convention, which is
+ * that tv_nsec is always a positive offset even
+ * if tv_sec is negative.
+ */
+ if (sign < 0 && ns) {
+ s--;
+ if (! (s < 0))
+ return '?';
+ ns = BILLION - ns;
+ }
+
+ lvalp->timespec.tv_sec = s;
+ lvalp->timespec.tv_nsec = ns;
+ pc->input = p;
+ return
+ sign ? tSDECIMAL_NUMBER : tUDECIMAL_NUMBER;
+ } else {
+ lvalp->textintval.negative = sign < 0;
+ if (sign < 0) {
+ lvalp->textintval.value = - value;
+ if (0 < lvalp->textintval.value)
+ return '?';
+ } else {
+ lvalp->textintval.value = value;
+ if (lvalp->textintval.value < 0)
+ return '?';
+ }
+ lvalp->textintval.digits = p - pc->input;
+ pc->input = p;
+ return sign ? tSNUMBER : tUNUMBER;
+ }
+ }
+
+ if (c_isalpha (c)) {
+ char buff[20];
+ char *p = buff;
+ table const *tp;
+
+ do {
+ if (p < buff + sizeof buff - 1)
+ *p++ = c;
+ c = *++pc->input;
+ }
+ while (c_isalpha (c) || c == '.');
+
+ *p = '\0';
+ tp = lookup_word (pc, buff);
+ if (! tp) {
+ return '?';
+ }
+ lvalp->intval = tp->value;
+ return tp->type;
+ }
+
+ if (c != '(')
+ return to_uchar (*pc->input++);
+
+ count = 0;
+ do {
+ c = *pc->input++;
+ if (c == '\0')
+ return c;
+ if (c == '(')
+ count++;
+ else if (c == ')')
+ count--;
+ }
+ while (count != 0);
+ }
+}
+
+/* Do nothing if the parser reports an error. */
+static int yyerror(parser_control const *pc __attribute__((__unused__)),
+ char const *s __attribute__((__unused__)))
+{
+ return 0;
+}
+
+/**
+ * If *TM0 is the old and *TM1 is the new value of a struct tm after
+ * passing it to mktime, return 1 if it's OK that mktime returned T.
+ * It's not OK if *TM0 has out-of-range members.
+ */
+
+static int mktime_ok(struct tm const *tm0, struct tm const *tm1, time_t t)
+{
+ if (t == (time_t) -1) {
+ /**
+ * Guard against falsely reporting an error when parsing a
+ * timestamp that happens to equal (time_t) -1, on a host that
+ * supports such a timestamp.
+ */
+ tm1 = localtime (&t);
+ if (!tm1)
+ return 0;
+ }
+
+ return ! ((tm0->tm_sec ^ tm1->tm_sec)
+ | (tm0->tm_min ^ tm1->tm_min)
+ | (tm0->tm_hour ^ tm1->tm_hour)
+ | (tm0->tm_mday ^ tm1->tm_mday)
+ | (tm0->tm_mon ^ tm1->tm_mon)
+ | (tm0->tm_year ^ tm1->tm_year));
+}
+
+/**
+ * A reasonable upper bound for the size of ordinary TZ strings.
+ * Use heap allocation if TZ's length exceeds this.
+ */
+enum { TZBUFSIZE = 100 };
+
+/**
+ * Return a copy of TZ, stored in TZBUF if it fits, and heap-allocated
+ * otherwise.
+ */
+static char * get_tz(char tzbuf[TZBUFSIZE])
+{
+ char *tz = getenv ("TZ");
+ if (tz) {
+ size_t tzsize = strlen (tz) + 1;
+ tz = (tzsize <= TZBUFSIZE
+ ? memcpy (tzbuf, tz, tzsize)
+ : strdup (tz));
+ }
+ return tz;
+}
+
+/**
+ * Parse a date/time string, storing the resulting time value into *result.
+ * The string itself is pointed to by *p. Return 1 if successful.
+ * *p can be an incomplete or relative time specification; if so, use
+ * *now as the basis for the returned time.
+ */
+int parse_date(struct timespec *result, char const *p,
+ struct timespec const *now)
+{
+ time_t Start;
+ intmax_t Start_ns;
+ struct tm const *tmp;
+ struct tm tm;
+ struct tm tm0;
+ parser_control pc;
+ struct timespec gettime_buffer;
+ unsigned char c;
+ int tz_was_altered = 0;
+ char *tz0 = NULL;
+ char tz0buf[TZBUFSIZE];
+ int ok = 1;
+ struct timeval tv;
+
+ if (! now) {
+ gettimeofday (&tv, NULL);
+ gettime_buffer.tv_sec = tv.tv_sec;
+ gettime_buffer.tv_nsec = tv.tv_usec * 1000;
+ now = &gettime_buffer;
+ }
+
+ Start = now->tv_sec;
+ Start_ns = now->tv_nsec;
+
+ tmp = localtime (&now->tv_sec);
+ if (! tmp)
+ return 0;
+
+ while (c = *p, c_isspace (c))
+ p++;
+
+ if (strncmp (p, "TZ=\"", 4) == 0) {
+ char const *tzbase = p + 4;
+ size_t tzsize = 1;
+ char const *s;
+
+ for (s = tzbase; *s; s++, tzsize++)
+ if (*s == '\\') {
+ s++;
+ if (! (*s == '\\' || *s == '"'))
+ break;
+ } else if (*s == '"') {
+ char *z;
+ char *tz1 = NULL;
+ char tz1buf[TZBUFSIZE] = { '\0' };
+ int large_tz = TZBUFSIZE < tzsize;
+ int setenv_ok;
+
+ tz0 = get_tz (tz0buf);
+ if (!tz0)
+ goto fail;
+
+ if (large_tz) {
+ z = tz1 = malloc (tzsize);
+ if (!tz1)
+ goto fail;
+ } else
+ z = tz1 = tz1buf;
+
+ for (s = tzbase; *s != '"'; s++)
+ *z++ = *(s += *s == '\\');
+ *z = '\0';
+ setenv_ok = setenv ("TZ", tz1, 1) == 0;
+ if (large_tz)
+ free (tz1);
+ if (!setenv_ok)
+ goto fail;
+ tz_was_altered = 1;
+
+ p = s + 1;
+ while (c = *p, c_isspace (c))
+ p++;
+
+ break;
+ }
+ }
+
+ /**
+ * As documented, be careful to treat the empty string just like
+ * a date string of "0". Without this, an empty string would be
+ * declared invalid when parsed during a DST transition.
+ */
+ if (*p == '\0')
+ p = "0";
+
+ pc.input = p;
+ pc.year.value = tmp->tm_year;
+ pc.year.value += TM_YEAR_BASE;
+ pc.year.digits = 0;
+ pc.month = tmp->tm_mon + 1;
+ pc.day = tmp->tm_mday;
+ pc.hour = tmp->tm_hour;
+ pc.minutes = tmp->tm_min;
+ pc.seconds.tv_sec = tmp->tm_sec;
+ pc.seconds.tv_nsec = Start_ns;
+ tm.tm_isdst = tmp->tm_isdst;
+
+ pc.meridian = MER24;
+ pc.rel = RELATIVE_TIME_0;
+ pc.timespec_seen = 0;
+ pc.rels_seen = 0;
+ pc.dates_seen = 0;
+ pc.days_seen = 0;
+ pc.times_seen = 0;
+ pc.local_zones_seen = 0;
+ pc.dsts_seen = 0;
+ pc.zones_seen = 0;
+
+#if HAVE_STRUCT_TM_TM_ZONE
+ pc.local_time_zone_table[0].name = tmp->tm_zone;
+ pc.local_time_zone_table[0].type = tLOCAL_ZONE;
+ pc.local_time_zone_table[0].value = tmp->tm_isdst;
+ pc.local_time_zone_table[1].name = NULL;
+
+ /**
+ * Probe the names used in the next three calendar quarters, looking
+ * for a tm_isdst different from the one we already have.
+ */
+ {
+ int quarter;
+ for (quarter = 1; quarter <= 3; quarter++) {
+ time_t probe = Start + quarter * (90 * 24 * 60 * 60);
+ struct tm const *probe_tm = localtime (&probe);
+ if (probe_tm && probe_tm->tm_zone
+ && probe_tm->tm_isdst
+ != pc.local_time_zone_table[0].value) {
+ {
+ pc.local_time_zone_table[1].name
+ = probe_tm->tm_zone;
+ pc.local_time_zone_table[1].type
+ = tLOCAL_ZONE;
+ pc.local_time_zone_table[1].value
+ = probe_tm->tm_isdst;
+ pc.local_time_zone_table[2].name
+ = NULL;
+ }
+ break;
+ }
+ }
+ }
+#else
+#if HAVE_TZNAME
+ {
+# if !HAVE_DECL_TZNAME
+ extern char *tzname[];
+# endif
+ int i;
+ for (i = 0; i < 2; i++) {
+ pc.local_time_zone_table[i].name = tzname[i];
+ pc.local_time_zone_table[i].type = tLOCAL_ZONE;
+ pc.local_time_zone_table[i].value = i;
+ }
+ pc.local_time_zone_table[i].name = NULL;
+ }
+#else
+ pc.local_time_zone_table[0].name = NULL;
+#endif
+#endif
+
+ if (pc.local_time_zone_table[0].name && pc.local_time_zone_table[1].name
+ && ! strcmp (pc.local_time_zone_table[0].name,
+ pc.local_time_zone_table[1].name)) {
+ /**
+ * This locale uses the same abbreviation for standard and
+ * daylight times. So if we see that abbreviation, we don't
+ * know whether it's daylight time.
+ */
+ pc.local_time_zone_table[0].value = -1;
+ pc.local_time_zone_table[1].name = NULL;
+ }
+
+ if (yyparse (&pc) != 0) {
+ goto fail;
+ }
+
+ if (pc.timespec_seen)
+ *result = pc.seconds;
+ else {
+ if (1 < (pc.times_seen | pc.dates_seen | pc.days_seen
+ | pc.dsts_seen
+ | (pc.local_zones_seen + pc.zones_seen))) {
+ goto fail;
+ }
+
+ tm.tm_year = to_year (pc.year) - TM_YEAR_BASE;
+ tm.tm_mon = pc.month - 1;
+ tm.tm_mday = pc.day;
+ if (pc.times_seen || (pc.rels_seen &&
+ ! pc.dates_seen && ! pc.days_seen)) {
+ tm.tm_hour = to_hour (pc.hour, pc.meridian);
+ if (tm.tm_hour < 0) {
+ goto fail;
+ }
+ tm.tm_min = pc.minutes;
+ tm.tm_sec = pc.seconds.tv_sec;
+ } else {
+ tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
+ pc.seconds.tv_nsec = 0;
+ }
+
+ /**
+ * Let mktime deduce tm_isdst if we have an absolute timestamp.
+ */
+ if (pc.dates_seen | pc.days_seen | pc.times_seen)
+ tm.tm_isdst = -1;
+
+ /**
+ * But if the input explicitly specifies local time with or
+ * without DST, give mktime that information.
+ */
+ if (pc.local_zones_seen)
+ tm.tm_isdst = pc.local_isdst;
+
+ tm0 = tm;
+
+ Start = mktime (&tm);
+
+ if (! mktime_ok (&tm0, &tm, Start)) {
+ if (! pc.zones_seen) {
+ goto fail;
+ } else {
+ /** Guard against falsely reporting errors near
+ * the time_t boundaries when parsing times in
+ * other time zones. For example, suppose the
+ * input string "1969-12-31 23:00:00 -0100", the
+ * current time zone is 8 hours ahead of UTC,
+ * and the min time_t value is 1970-01-01
+ * 00:00:00 UTC. Then the min localtime value
+ * is 1970-01-01 08:00:00, and mktime will
+ * therefore fail on 1969-12-31 23:00:00. To
+ * work around the problem, set the time zone to
+ * 1 hour behind UTC temporarily by setting
+ * TZ="XXX1:00" and try mktime again.
+ */
+
+ intmax_t time_zone = pc.time_zone;
+
+ intmax_t abs_time_zone = time_zone < 0
+ ? - time_zone : time_zone;
+
+ intmax_t abs_time_zone_hour
+ = abs_time_zone / 60;
+
+ int abs_time_zone_min = abs_time_zone % 60;
+
+ char tz1buf[sizeof "XXX+0:00"
+ + sizeof pc.time_zone
+ * CHAR_BIT / 3];
+
+ if (!tz_was_altered)
+ tz0 = get_tz (tz0buf);
+ sprintf (tz1buf, "XXX%s%jd:%02d",
+ &"-"[time_zone < 0],
+ abs_time_zone_hour,
+ abs_time_zone_min);
+ if (setenv ("TZ", tz1buf, 1) != 0) {
+ goto fail;
+ }
+ tz_was_altered = 1;
+ tm = tm0;
+ Start = mktime (&tm);
+ if (! mktime_ok (&tm0, &tm, Start)) {
+ goto fail;
+ }
+ }
+ }
+
+ if (pc.days_seen && ! pc.dates_seen) {
+ tm.tm_mday += ((pc.day_number - tm.tm_wday + 7) % 7 + 7
+ * (pc.day_ordinal
+ - (0 < pc.day_ordinal
+ && tm.tm_wday != pc.day_number)));
+ tm.tm_isdst = -1;
+ Start = mktime (&tm);
+ if (Start == (time_t) -1) {
+ goto fail;
+ }
+ }
+ /* Add relative date. */
+ if (pc.rel.year | pc.rel.month | pc.rel.day) {
+ int year = tm.tm_year + pc.rel.year;
+ int month = tm.tm_mon + pc.rel.month;
+ int day = tm.tm_mday + pc.rel.day;
+ if (((year < tm.tm_year) ^ (pc.rel.year < 0))
+ | ((month < tm.tm_mon) ^ (pc.rel.month < 0))
+ | ((day < tm.tm_mday) ^ (pc.rel.day < 0))) {
+ goto fail;
+ }
+ tm.tm_year = year;
+ tm.tm_mon = month;
+ tm.tm_mday = day;
+ tm.tm_hour = tm0.tm_hour;
+ tm.tm_min = tm0.tm_min;
+ tm.tm_sec = tm0.tm_sec;
+ tm.tm_isdst = tm0.tm_isdst;
+ Start = mktime (&tm);
+ if (Start == (time_t) -1) {
+ goto fail;
+ }
+ }
+
+ /**
+ * The only "output" of this if-block is an updated Start value,
+ * so this block must follow others that clobber Start.
+ */
+ if (pc.zones_seen) {
+ intmax_t delta = pc.time_zone * 60;
+ time_t t1;
+#ifdef HAVE_TM_GMTOFF
+ delta -= tm.tm_gmtoff;
+#else
+ time_t t = Start;
+ struct tm const *gmt = gmtime (&t);
+ if (! gmt) {
+ goto fail;
+ }
+ delta -= tm_diff (&tm, gmt);
+#endif
+ t1 = Start - delta;
+ if ((Start < t1) != (delta < 0)) {
+ goto fail; /* time_t overflow */
+ }
+ Start = t1;
+ }
+
+ /**
+ * Add relative hours, minutes, and seconds. On hosts that
+ * support leap seconds, ignore the possibility of leap seconds;
+ * e.g., "+ 10 minutes" adds 600 seconds, even if one of them is
+ * a leap second. Typically this is not what the user wants,
+ * but it's too hard to do it the other way, because the time
+ * zone indicator must be applied before relative times, and if
+ * mktime is applied again the time zone will be lost.
+ */
+ intmax_t sum_ns = pc.seconds.tv_nsec + pc.rel.ns;
+ intmax_t normalized_ns = (sum_ns % BILLION + BILLION) % BILLION;
+ time_t t0 = Start;
+ intmax_t d1 = 60 * 60 * pc.rel.hour;
+ time_t t1 = t0 + d1;
+ intmax_t d2 = 60 * pc.rel.minutes;
+ time_t t2 = t1 + d2;
+ time_t d3 = pc.rel.seconds;
+ time_t t3 = t2 + d3;
+ intmax_t d4 = (sum_ns - normalized_ns) / BILLION;
+ time_t t4 = t3 + d4;
+ time_t t5 = t4;
+
+ if ((d1 / (60 * 60) ^ pc.rel.hour)
+ | (d2 / 60 ^ pc.rel.minutes)
+ | ((t1 < t0) ^ (d1 < 0))
+ | ((t2 < t1) ^ (d2 < 0))
+ | ((t3 < t2) ^ (d3 < 0))
+ | ((t4 < t3) ^ (d4 < 0))
+ | (t5 != t4)) {
+ goto fail;
+ }
+ result->tv_sec = t5;
+ result->tv_nsec = normalized_ns;
+ }
+
+ goto done;
+
+ fail:
+ ok = 0;
+ done:
+ if (tz_was_altered)
+ ok &= (tz0 ? setenv ("TZ", tz0, 1)
+ : unsetenv ("TZ")) == 0;
+ if (tz0 != tz0buf)
+ free (tz0);
+ return ok;
+}