/* * Copyright (C) 2008 Karel Zak * Copyright (C) 1999-2008 by Theodore Ts'o * * This file may be redistributed under the terms of the * GNU Lesser General Public License. * * (based on list.h from e2fsprogs) * Merge sort based on kernel's implementation. */ #ifndef UTIL_LINUX_LIST_H #define UTIL_LINUX_LIST_H #include "c.h" /* TODO: use AC_C_INLINE */ #ifdef __GNUC__ #define _INLINE_ static __inline__ #else /* For Watcom C */ #define _INLINE_ static inline #endif /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ struct list_head { struct list_head *next, *prev; }; #define INIT_LIST_HEAD(ptr) do { \ (ptr)->next = (ptr); (ptr)->prev = (ptr); \ } while (0) /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ _INLINE_ void __list_add(struct list_head * add, struct list_head * prev, struct list_head * next) { next->prev = add; add->next = next; add->prev = prev; prev->next = add; } /** * list_add - add a new entry * @add: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ _INLINE_ void list_add(struct list_head *add, struct list_head *head) { __list_add(add, head, head->next); } /** * list_add_tail - add a new entry * @add: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ _INLINE_ void list_add_tail(struct list_head *add, struct list_head *head) { __list_add(add, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ _INLINE_ void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; prev->next = next; } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * * list_empty() on @entry does not return true after this, @entry is * in an undefined state. */ _INLINE_ void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ _INLINE_ void list_del_init(struct list_head *entry) { __list_del(entry->prev, entry->next); INIT_LIST_HEAD(entry); } /** * list_empty - tests whether a list is empty * @head: the list to test. */ _INLINE_ int list_empty(struct list_head *head) { return head->next == head; } /** * list_entry_is_last - tests whether is entry last in the list * @entry: the entry to test. * @head: the list to test. */ _INLINE_ int list_entry_is_last(struct list_head *entry, struct list_head *head) { return head->prev == entry; } /** * list_entry_is_first - tests whether is entry first in the list * @entry: the entry to test. * @head: the list to test. */ _INLINE_ int list_entry_is_first(struct list_head *entry, struct list_head *head) { return head->next == entry; } /** * list_splice - join two lists * @list: the new list to add. * @head: the place to add it in the first list. */ _INLINE_ void list_splice(struct list_head *list, struct list_head *head) { struct list_head *first = list->next; if (first != list) { struct list_head *last = list->prev; struct list_head *at = head->next; first->prev = head; head->next = first; last->next = at; at->prev = last; } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. */ #define list_entry(ptr, type, member) container_of(ptr, type, member) #define list_first_entry(head, type, member) \ ((head) && (head)->next != (head) ? list_entry((head)->next, type, member) : NULL) #define list_last_entry(head, type, member) \ ((head) && (head)->prev != (head) ? list_entry((head)->prev, type, member) : NULL) /** * list_for_each - iterate over elements in a list * @pos: the &struct list_head to use as a loop counter. * @head: the head for your list. */ #define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /** * list_for_each_backwardly - iterate over elements in a list in reverse * @pos: the &struct list_head to use as a loop counter. * @head: the head for your list. */ #define list_for_each_backwardly(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev) /** * list_for_each_safe - iterate over elements in a list, but don't dereference * pos after the body is done (in case it is freed) * @pos: the &struct list_head to use as a loop counter. * @pnext: the &struct list_head to use as a pointer to the next item. * @head: the head for your list (not included in iteration). */ #define list_for_each_safe(pos, pnext, head) \ for (pos = (head)->next, pnext = pos->next; pos != (head); \ pos = pnext, pnext = pos->next) /** * list_free - remove all entries from list and call freefunc() * for each entry * @head: the head for your list * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. * @freefunc: the list entry deallocator */ #define list_free(head, type, member, freefunc) \ do { \ struct list_head *__p, *__pnext; \ \ list_for_each_safe (__p, __pnext, (head)) { \ type *__elt = list_entry(__p, type, member); \ list_del(__p); \ freefunc(__elt); \ } \ } while (0) _INLINE_ size_t list_count_entries(struct list_head *head) { struct list_head *pos; size_t ct = 0; list_for_each(pos, head) ct++; return ct; } #define MAX_LIST_LENGTH_BITS 20 /* * Returns a list organized in an intermediate format suited * to chaining of merge() calls: null-terminated, no reserved or * sentinel head node, "prev" links not maintained. */ _INLINE_ struct list_head *merge(int (*cmp)(struct list_head *a, struct list_head *b, void *data), void *data, struct list_head *a, struct list_head *b) { struct list_head head, *tail = &head; while (a && b) { /* if equal, take 'a' -- important for sort stability */ if ((*cmp)(a, b, data) <= 0) { tail->next = a; a = a->next; } else { tail->next = b; b = b->next; } tail = tail->next; } tail->next = a ? a : b; return head.next; } /* * Combine final list merge with restoration of standard doubly-linked * list structure. This approach duplicates code from merge(), but * runs faster than the tidier alternatives of either a separate final * prev-link restoration pass, or maintaining the prev links * throughout. */ _INLINE_ void merge_and_restore_back_links(int (*cmp)(struct list_head *a, struct list_head *b, void *data), void *data, struct list_head *head, struct list_head *a, struct list_head *b) { struct list_head *tail = head; while (a && b) { /* if equal, take 'a' -- important for sort stability */ if ((*cmp)(a, b, data) <= 0) { tail->next = a; a->prev = tail; a = a->next; } else { tail->next = b; b->prev = tail; b = b->next; } tail = tail->next; } tail->next = a ? a : b; do { /* * In worst cases this loop may run many iterations. * Continue callbacks to the client even though no * element comparison is needed, so the client's cmp() * routine can invoke cond_resched() periodically. */ (*cmp)(tail->next, tail->next, data); tail->next->prev = tail; tail = tail->next; } while (tail->next); tail->next = head; head->prev = tail; } /** * list_sort - sort a list * @head: the list to sort * @cmp: the elements comparison function * * This function implements "merge sort", which has O(nlog(n)) * complexity. * * The comparison function @cmp must return a negative value if @a * should sort before @b, and a positive value if @a should sort after * @b. If @a and @b are equivalent, and their original relative * ordering is to be preserved, @cmp must return 0. */ _INLINE_ void list_sort(struct list_head *head, int (*cmp)(struct list_head *a, struct list_head *b, void *data), void *data) { struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists -- last slot is a sentinel */ size_t lev; /* index into part[] */ size_t max_lev = 0; struct list_head *list; if (list_empty(head)) return; memset(part, 0, sizeof(part)); head->prev->next = NULL; list = head->next; while (list) { struct list_head *cur = list; list = list->next; cur->next = NULL; for (lev = 0; part[lev]; lev++) { cur = merge(cmp, data, part[lev], cur); part[lev] = NULL; } if (lev > max_lev) { /* list passed to list_sort() too long for efficiency */ if (lev >= ARRAY_SIZE(part) - 1) lev--; max_lev = lev; } part[lev] = cur; } for (lev = 0; lev < max_lev; lev++) if (part[lev]) list = merge(cmp, data, part[lev], list); merge_and_restore_back_links(cmp, data, head, part[max_lev], list); } #undef _INLINE_ #endif /* UTIL_LINUX_LIST_H */