%{ /** * SPDX-License-Identifier: GPL-3.0-or-later * * Parse a string into an internal timestamp. * * This file is based on gnulib parse-datetime.y-dd7a871 with * the other gnulib dependencies removed for use in util-linux. * * Copyright (C) 1999-2000, 2002-2017 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Originally written by Steven M. Bellovin while * at the University of North Carolina at Chapel Hill. Later tweaked by * a couple of people on Usenet. Completely overhauled by Rich $alz * and Jim Berets in August, 1990. * * Modified by Paul Eggert in August 1999 to do * the right thing about local DST. Also modified by Paul Eggert * in February 2004 to support * nanosecond-resolution timestamps, and in October 2004 to support * TZ strings in dates. */ /** * FIXME: Check for arithmetic overflow in all cases, not just * some of them. */ #include #include #include "c.h" #include "timeutils.h" #include "hwclock.h" /** * There's no need to extend the stack, so there's no need to involve * alloca. */ #define YYSTACK_USE_ALLOCA 0 /** * Tell Bison how much stack space is needed. 20 should be plenty for * this grammar, which is not right recursive. Beware setting it too * high, since that might cause problems on machines whose * implementations have lame stack-overflow checking. */ #define YYMAXDEPTH 20 #define YYINITDEPTH YYMAXDEPTH /** * Since the code of parse-datetime.y is not included in the Emacs executable * itself, there is no need to #define static in this file. Even if * the code were included in the Emacs executable, it probably * wouldn't do any harm to #undef it here; this will only cause * problems if we try to write to a static variable, which I don't * think this code needs to do. */ #ifdef emacs # undef static #endif #include #include #include #include #include #include #include "cctype.h" #include "nls.h" /** * Bison's skeleton tests _STDLIB_H, while some stdlib.h headers * use _STDLIB_H_ as witness. Map the latter to the one bison uses. * FIXME: this is temporary. Remove when we have a mechanism to ensure * that the version we're using is fixed, too. */ #ifdef _STDLIB_H_ # undef _STDLIB_H # define _STDLIB_H 1 #endif /** * Shift A right by B bits portably, by dividing A by 2**B and * truncating towards minus infinity. A and B should be free of side * effects, and B should be in the range 0 <= B <= INT_BITS - 2, where * INT_BITS is the number of useful bits in an int. GNU code can * assume that INT_BITS is at least 32. * * ISO C99 says that A >> B is implementation-defined if A < 0. Some * implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift * right in the usual way when A < 0, so SHR falls back on division if * ordinary A >> B doesn't seem to be the usual signed shift. */ #define SHR(a, b) \ (-1 >> 1 == -1 \ ? (a) >> (b) \ : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0)) #define TM_YEAR_BASE 1900 #define HOUR(x) ((x) * 60) #define STREQ(a, b) (strcmp (a, b) == 0) /** * Convert a possibly-signed character to an unsigned character. This is * a bit safer than casting to unsigned char, since it catches some type * errors that the cast doesn't. */ static unsigned char to_uchar (char ch) { return ch; } /** * FIXME: It also assumes that signed integer overflow silently wraps around, * but this is not true any more with recent versions of GCC 4. */ /** * An integer value, and the number of digits in its textual * representation. */ typedef struct { int negative; intmax_t value; size_t digits; } textint; /* An entry in the lexical lookup table. */ typedef struct { char const *name; int type; int value; } table; /* Meridian: am, pm, or 24-hour style. */ enum { MERam, MERpm, MER24 }; enum { BILLION = 1000000000, LOG10_BILLION = 9 }; /* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */ typedef struct { intmax_t year; intmax_t month; intmax_t day; intmax_t hour; intmax_t minutes; time_t seconds; long ns; } relative_time; #if HAVE_COMPOUND_LITERALS # define RELATIVE_TIME_0 ((relative_time) { 0, 0, 0, 0, 0, 0, 0 }) #else static relative_time const RELATIVE_TIME_0; #endif /* Information passed to and from the parser. */ typedef struct { /* The input string remaining to be parsed. */ const char *input; /* N, if this is the Nth Tuesday. */ intmax_t day_ordinal; /* Day of week; Sunday is 0. */ int day_number; /* tm_isdst flag for the local zone. */ int local_isdst; /* Time zone, in minutes east of UTC. */ int time_zone; /* Style used for time. */ int meridian; /* Gregorian year, month, day, hour, minutes, seconds, and ns. */ textint year; intmax_t month; intmax_t day; intmax_t hour; intmax_t minutes; struct timespec seconds; /* includes nanoseconds */ /* Relative year, month, day, hour, minutes, seconds, and ns. */ relative_time rel; /* Presence or counts of some nonterminals parsed so far. */ int timespec_seen; int rels_seen; size_t dates_seen; size_t days_seen; size_t local_zones_seen; size_t dsts_seen; size_t times_seen; size_t zones_seen; /* Table of local time zone abbreviations, null terminated. */ table local_time_zone_table[3]; } parser_control; union YYSTYPE; static int yylex (union YYSTYPE *, parser_control *); static int yyerror (parser_control const *, char const *); static int time_zone_hhmm (parser_control *, textint, textint); /** * Extract into *PC any date and time info from a string of digits * of the form e.g., YYYYMMDD, YYMMDD, HHMM, HH (and sometimes YYY, * YYYY, ...). */ static void digits_to_date_time(parser_control *pc, textint text_int) { if (pc->dates_seen && ! pc->year.digits && ! pc->rels_seen && (pc->times_seen || 2 < text_int.digits)) { pc->year = text_int; } else { if (4 < text_int.digits) { pc->dates_seen++; pc->day = text_int.value % 100; pc->month = (text_int.value / 100) % 100; pc->year.value = text_int.value / 10000; pc->year.digits = text_int.digits - 4; } else { pc->times_seen++; if (text_int.digits <= 2) { pc->hour = text_int.value; pc->minutes = 0; } else { pc->hour = text_int.value / 100; pc->minutes = text_int.value % 100; } pc->seconds.tv_sec = 0; pc->seconds.tv_nsec = 0; pc->meridian = MER24; } } } /* Increment PC->rel by FACTOR * REL (FACTOR is 1 or -1). */ static void apply_relative_time(parser_control *pc, relative_time rel, int factor) { pc->rel.ns += factor * rel.ns; pc->rel.seconds += factor * rel.seconds; pc->rel.minutes += factor * rel.minutes; pc->rel.hour += factor * rel.hour; pc->rel.day += factor * rel.day; pc->rel.month += factor * rel.month; pc->rel.year += factor * rel.year; pc->rels_seen = 1; } /* Set PC-> hour, minutes, seconds and nanoseconds members from arguments. */ static void set_hhmmss(parser_control *pc, intmax_t hour, intmax_t minutes, time_t sec, long nsec) { pc->hour = hour; pc->minutes = minutes; pc->seconds.tv_sec = sec; pc->seconds.tv_nsec = nsec; } %} /** * We want a reentrant parser, even if the TZ manipulation and the calls to * localtime and gmtime are not reentrant. */ %define api.pure %parse-param { parser_control *pc } %lex-param { parser_control *pc } /* This grammar has 31 shift/reduce conflicts. */ %expect 31 %union { intmax_t intval; textint textintval; struct timespec timespec; relative_time rel; } %token tAGO %token tDST %token tYEAR_UNIT tMONTH_UNIT tHOUR_UNIT tMINUTE_UNIT tSEC_UNIT %token tDAY_UNIT tDAY_SHIFT %token tDAY tDAYZONE tLOCAL_ZONE tMERIDIAN %token tMONTH tORDINAL tZONE %token tSNUMBER tUNUMBER %token tSDECIMAL_NUMBER tUDECIMAL_NUMBER %type o_colon_minutes %type seconds signed_seconds unsigned_seconds %type relunit relunit_snumber dayshift %% spec: timespec | items ; timespec: '@' seconds { pc->seconds = $2; pc->timespec_seen = 1; } ; items: /* empty */ | items item ; item: datetime { pc->times_seen++; pc->dates_seen++; } | time { pc->times_seen++; } | local_zone { pc->local_zones_seen++; } | zone { pc->zones_seen++; } | date { pc->dates_seen++; } | day { pc->days_seen++; } | rel | number | hybrid ; datetime: iso_8601_datetime ; iso_8601_datetime: iso_8601_date 'T' iso_8601_time ; time: tUNUMBER tMERIDIAN { set_hhmmss (pc, $1.value, 0, 0, 0); pc->meridian = $2; } | tUNUMBER ':' tUNUMBER tMERIDIAN { set_hhmmss (pc, $1.value, $3.value, 0, 0); pc->meridian = $4; } | tUNUMBER ':' tUNUMBER ':' unsigned_seconds tMERIDIAN { set_hhmmss (pc, $1.value, $3.value, $5.tv_sec, $5.tv_nsec); pc->meridian = $6; } | iso_8601_time ; iso_8601_time: tUNUMBER zone_offset { set_hhmmss (pc, $1.value, 0, 0, 0); pc->meridian = MER24; } | tUNUMBER ':' tUNUMBER o_zone_offset { set_hhmmss (pc, $1.value, $3.value, 0, 0); pc->meridian = MER24; } | tUNUMBER ':' tUNUMBER ':' unsigned_seconds o_zone_offset { set_hhmmss (pc, $1.value, $3.value, $5.tv_sec, $5.tv_nsec); pc->meridian = MER24; } ; o_zone_offset: /* empty */ | zone_offset ; zone_offset: tSNUMBER o_colon_minutes { pc->zones_seen++; if (! time_zone_hhmm (pc, $1, $2)) YYABORT; } ; /** * Local zone strings only affect DST setting, * and only take affect if the current TZ setting is relevant. * * Example 1: * 'EEST' is parsed as tLOCAL_ZONE, as it relates to the effective TZ: * TZ=Europe/Helsinki date -d '2016-12-30 EEST' * * Example 2: * 'EEST' is parsed as 'zone' (TZ=+03:00): * TZ=Asia/Tokyo ./src/date --debug -d '2011-06-11 EEST' * * This is implemented by probing the next three calendar quarters * of the effective timezone and looking for DST changes - * if found, the timezone name (EEST) is inserted into * the lexical lookup table with type tLOCAL_ZONE. * (Search for 'quarter' comment in 'parse_date'). */ local_zone: tLOCAL_ZONE { pc->local_isdst = $1; pc->dsts_seen += (0 < $1); } | tLOCAL_ZONE tDST { pc->local_isdst = 1; pc->dsts_seen += (0 < $1) + 1; } ; /** * Note 'T' is a special case, as it is used as the separator in ISO * 8601 date and time of day representation. */ zone: tZONE { pc->time_zone = $1; } | 'T' { pc->time_zone = HOUR(7); } | tZONE relunit_snumber { pc->time_zone = $1; apply_relative_time (pc, $2, 1); } | 'T' relunit_snumber { pc->time_zone = HOUR(7); apply_relative_time (pc, $2, 1); } | tZONE tSNUMBER o_colon_minutes { if (! time_zone_hhmm (pc, $2, $3)) YYABORT; pc->time_zone += $1; } | tDAYZONE { pc->time_zone = $1 + 60; } | tZONE tDST { pc->time_zone = $1 + 60; } ; day: tDAY { pc->day_ordinal = 0; pc->day_number = $1; } | tDAY ',' { pc->day_ordinal = 0; pc->day_number = $1; } | tORDINAL tDAY { pc->day_ordinal = $1; pc->day_number = $2; } | tUNUMBER tDAY { pc->day_ordinal = $1.value; pc->day_number = $2; } ; date: tUNUMBER '/' tUNUMBER { pc->month = $1.value; pc->day = $3.value; } | tUNUMBER '/' tUNUMBER '/' tUNUMBER { /** * Interpret as YYYY/MM/DD if the first value has 4 or more digits, * otherwise as MM/DD/YY. * The goal in recognizing YYYY/MM/DD is solely to support legacy * machine-generated dates like those in an RCS log listing. If * you want portability, use the ISO 8601 format. */ if (4 <= $1.digits) { pc->year = $1; pc->month = $3.value; pc->day = $5.value; } else { pc->month = $1.value; pc->day = $3.value; pc->year = $5; } } | tUNUMBER tMONTH tSNUMBER { /* e.g. 17-JUN-1992. */ pc->day = $1.value; pc->month = $2; pc->year.value = -$3.value; pc->year.digits = $3.digits; } | tMONTH tSNUMBER tSNUMBER { /* e.g. JUN-17-1992. */ pc->month = $1; pc->day = -$2.value; pc->year.value = -$3.value; pc->year.digits = $3.digits; } | tMONTH tUNUMBER { pc->month = $1; pc->day = $2.value; } | tMONTH tUNUMBER ',' tUNUMBER { pc->month = $1; pc->day = $2.value; pc->year = $4; } | tUNUMBER tMONTH { pc->day = $1.value; pc->month = $2; } | tUNUMBER tMONTH tUNUMBER { pc->day = $1.value; pc->month = $2; pc->year = $3; } | iso_8601_date ; iso_8601_date: tUNUMBER tSNUMBER tSNUMBER { /* ISO 8601 format.YYYY-MM-DD. */ pc->year = $1; pc->month = -$2.value; pc->day = -$3.value; } ; rel: relunit tAGO { apply_relative_time (pc, $1, $2); } | relunit { apply_relative_time (pc, $1, 1); } | dayshift { apply_relative_time (pc, $1, 1); } ; relunit: tORDINAL tYEAR_UNIT { $$ = RELATIVE_TIME_0; $$.year = $1; } | tUNUMBER tYEAR_UNIT { $$ = RELATIVE_TIME_0; $$.year = $1.value; } | tYEAR_UNIT { $$ = RELATIVE_TIME_0; $$.year = 1; } | tORDINAL tMONTH_UNIT { $$ = RELATIVE_TIME_0; $$.month = $1; } | tUNUMBER tMONTH_UNIT { $$ = RELATIVE_TIME_0; $$.month = $1.value; } | tMONTH_UNIT { $$ = RELATIVE_TIME_0; $$.month = 1; } | tORDINAL tDAY_UNIT { $$ = RELATIVE_TIME_0; $$.day = $1 * $2; } | tUNUMBER tDAY_UNIT { $$ = RELATIVE_TIME_0; $$.day = $1.value * $2; } | tDAY_UNIT { $$ = RELATIVE_TIME_0; $$.day = $1; } | tORDINAL tHOUR_UNIT { $$ = RELATIVE_TIME_0; $$.hour = $1; } | tUNUMBER tHOUR_UNIT { $$ = RELATIVE_TIME_0; $$.hour = $1.value; } | tHOUR_UNIT { $$ = RELATIVE_TIME_0; $$.hour = 1; } | tORDINAL tMINUTE_UNIT { $$ = RELATIVE_TIME_0; $$.minutes = $1; } | tUNUMBER tMINUTE_UNIT { $$ = RELATIVE_TIME_0; $$.minutes = $1.value; } | tMINUTE_UNIT { $$ = RELATIVE_TIME_0; $$.minutes = 1; } | tORDINAL tSEC_UNIT { $$ = RELATIVE_TIME_0; $$.seconds = $1; } | tUNUMBER tSEC_UNIT { $$ = RELATIVE_TIME_0; $$.seconds = $1.value; } | tSDECIMAL_NUMBER tSEC_UNIT { $$ = RELATIVE_TIME_0; $$.seconds = $1.tv_sec; $$.ns = $1.tv_nsec; } | tUDECIMAL_NUMBER tSEC_UNIT { $$ = RELATIVE_TIME_0; $$.seconds = $1.tv_sec; $$.ns = $1.tv_nsec; } | tSEC_UNIT { $$ = RELATIVE_TIME_0; $$.seconds = 1; } | relunit_snumber ; relunit_snumber: tSNUMBER tYEAR_UNIT { $$ = RELATIVE_TIME_0; $$.year = $1.value; } | tSNUMBER tMONTH_UNIT { $$ = RELATIVE_TIME_0; $$.month = $1.value; } | tSNUMBER tDAY_UNIT { $$ = RELATIVE_TIME_0; $$.day = $1.value * $2; } | tSNUMBER tHOUR_UNIT { $$ = RELATIVE_TIME_0; $$.hour = $1.value; } | tSNUMBER tMINUTE_UNIT { $$ = RELATIVE_TIME_0; $$.minutes = $1.value; } | tSNUMBER tSEC_UNIT { $$ = RELATIVE_TIME_0; $$.seconds = $1.value; } ; dayshift: tDAY_SHIFT { $$ = RELATIVE_TIME_0; $$.day = $1; } ; seconds: signed_seconds | unsigned_seconds; signed_seconds: tSDECIMAL_NUMBER | tSNUMBER { $$.tv_sec = $1.value; $$.tv_nsec = 0; } ; unsigned_seconds: tUDECIMAL_NUMBER | tUNUMBER { $$.tv_sec = $1.value; $$.tv_nsec = 0; } ; number: tUNUMBER { digits_to_date_time (pc, $1); } ; hybrid: tUNUMBER relunit_snumber { /** * Hybrid all-digit and relative offset, so that we accept e.g., * "YYYYMMDD +N days" as well as "YYYYMMDD N days". */ digits_to_date_time (pc, $1); apply_relative_time (pc, $2, 1); } ; o_colon_minutes: /* empty */ { $$.value = $$.digits = 0; } | ':' tUNUMBER { $$ = $2; } ; %% static table const meridian_table[] = { { "AM", tMERIDIAN, MERam }, { "A.M.", tMERIDIAN, MERam }, { "PM", tMERIDIAN, MERpm }, { "P.M.", tMERIDIAN, MERpm }, { NULL, 0, 0 } }; static table const dst_table[] = { { "DST", tDST, 0 } }; static table const month_and_day_table[] = { { "JANUARY", tMONTH, 1 }, { "FEBRUARY", tMONTH, 2 }, { "MARCH", tMONTH, 3 }, { "APRIL", tMONTH, 4 }, { "MAY", tMONTH, 5 }, { "JUNE", tMONTH, 6 }, { "JULY", tMONTH, 7 }, { "AUGUST", tMONTH, 8 }, { "SEPTEMBER",tMONTH, 9 }, { "SEPT", tMONTH, 9 }, { "OCTOBER", tMONTH, 10 }, { "NOVEMBER", tMONTH, 11 }, { "DECEMBER", tMONTH, 12 }, { "SUNDAY", tDAY, 0 }, { "MONDAY", tDAY, 1 }, { "TUESDAY", tDAY, 2 }, { "TUES", tDAY, 2 }, { "WEDNESDAY",tDAY, 3 }, { "WEDNES", tDAY, 3 }, { "THURSDAY", tDAY, 4 }, { "THUR", tDAY, 4 }, { "THURS", tDAY, 4 }, { "FRIDAY", tDAY, 5 }, { "SATURDAY", tDAY, 6 }, { NULL, 0, 0 } }; static table const time_units_table[] = { { "YEAR", tYEAR_UNIT, 1 }, { "MONTH", tMONTH_UNIT, 1 }, { "FORTNIGHT",tDAY_UNIT, 14 }, { "WEEK", tDAY_UNIT, 7 }, { "DAY", tDAY_UNIT, 1 }, { "HOUR", tHOUR_UNIT, 1 }, { "MINUTE", tMINUTE_UNIT, 1 }, { "MIN", tMINUTE_UNIT, 1 }, { "SECOND", tSEC_UNIT, 1 }, { "SEC", tSEC_UNIT, 1 }, { NULL, 0, 0 } }; /* Assorted relative-time words. */ static table const relative_time_table[] = { { "TOMORROW", tDAY_SHIFT, 1 }, { "YESTERDAY",tDAY_SHIFT, -1 }, { "TODAY", tDAY_SHIFT, 0 }, { "NOW", tDAY_SHIFT, 0 }, { "LAST", tORDINAL, -1 }, { "THIS", tORDINAL, 0 }, { "NEXT", tORDINAL, 1 }, { "FIRST", tORDINAL, 1 }, /*{ "SECOND", tORDINAL, 2 }, */ { "THIRD", tORDINAL, 3 }, { "FOURTH", tORDINAL, 4 }, { "FIFTH", tORDINAL, 5 }, { "SIXTH", tORDINAL, 6 }, { "SEVENTH", tORDINAL, 7 }, { "EIGHTH", tORDINAL, 8 }, { "NINTH", tORDINAL, 9 }, { "TENTH", tORDINAL, 10 }, { "ELEVENTH", tORDINAL, 11 }, { "TWELFTH", tORDINAL, 12 }, { "AGO", tAGO, -1 }, { "HENCE", tAGO, 1 }, { NULL, 0, 0 } }; /** * The universal time zone table. These labels can be used even for * timestamps that would not otherwise be valid, e.g., GMT timestamps * in London during summer. */ static table const universal_time_zone_table[] = { { "GMT", tZONE, HOUR ( 0) }, /* Greenwich Mean */ { "UT", tZONE, HOUR ( 0) }, /* Universal (Coordinated) */ { "UTC", tZONE, HOUR ( 0) }, { NULL, 0, 0 } }; /** * The time zone table. This table is necessarily incomplete, as time * zone abbreviations are ambiguous; e.g. Australians interpret "EST" * as Eastern time in Australia, not as US Eastern Standard Time. * You cannot rely on parse_date to handle arbitrary time zone * abbreviations; use numeric abbreviations like "-0500" instead. */ static table const time_zone_table[] = { { "WET", tZONE, HOUR ( 0) }, /* Western European */ { "WEST", tDAYZONE, HOUR ( 0) }, /* Western European Summer */ { "BST", tDAYZONE, HOUR ( 0) }, /* British Summer */ { "ART", tZONE, -HOUR ( 3) }, /* Argentina */ { "BRT", tZONE, -HOUR ( 3) }, /* Brazil */ { "BRST", tDAYZONE, -HOUR ( 3) }, /* Brazil Summer */ { "NST", tZONE, -(HOUR ( 3) + 30) }, /* Newfoundland Standard */ { "NDT", tDAYZONE,-(HOUR ( 3) + 30) }, /* Newfoundland Daylight */ { "AST", tZONE, -HOUR ( 4) }, /* Atlantic Standard */ { "ADT", tDAYZONE, -HOUR ( 4) }, /* Atlantic Daylight */ { "CLT", tZONE, -HOUR ( 4) }, /* Chile */ { "CLST", tDAYZONE, -HOUR ( 4) }, /* Chile Summer */ { "EST", tZONE, -HOUR ( 5) }, /* Eastern Standard */ { "EDT", tDAYZONE, -HOUR ( 5) }, /* Eastern Daylight */ { "CST", tZONE, -HOUR ( 6) }, /* Central Standard */ { "CDT", tDAYZONE, -HOUR ( 6) }, /* Central Daylight */ { "MST", tZONE, -HOUR ( 7) }, /* Mountain Standard */ { "MDT", tDAYZONE, -HOUR ( 7) }, /* Mountain Daylight */ { "PST", tZONE, -HOUR ( 8) }, /* Pacific Standard */ { "PDT", tDAYZONE, -HOUR ( 8) }, /* Pacific Daylight */ { "AKST", tZONE, -HOUR ( 9) }, /* Alaska Standard */ { "AKDT", tDAYZONE, -HOUR ( 9) }, /* Alaska Daylight */ { "HST", tZONE, -HOUR (10) }, /* Hawaii Standard */ { "HAST", tZONE, -HOUR (10) }, /* Hawaii-Aleutian Standard */ { "HADT", tDAYZONE, -HOUR (10) }, /* Hawaii-Aleutian Daylight */ { "SST", tZONE, -HOUR (12) }, /* Samoa Standard */ { "WAT", tZONE, HOUR ( 1) }, /* West Africa */ { "CET", tZONE, HOUR ( 1) }, /* Central European */ { "CEST", tDAYZONE, HOUR ( 1) }, /* Central European Summer */ { "MET", tZONE, HOUR ( 1) }, /* Middle European */ { "MEZ", tZONE, HOUR ( 1) }, /* Middle European */ { "MEST", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "MESZ", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "EET", tZONE, HOUR ( 2) }, /* Eastern European */ { "EEST", tDAYZONE, HOUR ( 2) }, /* Eastern European Summer */ { "CAT", tZONE, HOUR ( 2) }, /* Central Africa */ { "SAST", tZONE, HOUR ( 2) }, /* South Africa Standard */ { "EAT", tZONE, HOUR ( 3) }, /* East Africa */ { "MSK", tZONE, HOUR ( 3) }, /* Moscow */ { "MSD", tDAYZONE, HOUR ( 3) }, /* Moscow Daylight */ { "IST", tZONE, (HOUR ( 5) + 30) }, /* India Standard */ { "SGT", tZONE, HOUR ( 8) }, /* Singapore */ { "KST", tZONE, HOUR ( 9) }, /* Korea Standard */ { "JST", tZONE, HOUR ( 9) }, /* Japan Standard */ { "GST", tZONE, HOUR (10) }, /* Guam Standard */ { "NZST", tZONE, HOUR (12) }, /* New Zealand Standard */ { "NZDT", tDAYZONE, HOUR (12) }, /* New Zealand Daylight */ { NULL, 0, 0 } }; /** * Military time zone table. * * Note 'T' is a special case, as it is used as the separator in ISO * 8601 date and time of day representation. */ static table const military_table[] = { { "A", tZONE, -HOUR ( 1) }, { "B", tZONE, -HOUR ( 2) }, { "C", tZONE, -HOUR ( 3) }, { "D", tZONE, -HOUR ( 4) }, { "E", tZONE, -HOUR ( 5) }, { "F", tZONE, -HOUR ( 6) }, { "G", tZONE, -HOUR ( 7) }, { "H", tZONE, -HOUR ( 8) }, { "I", tZONE, -HOUR ( 9) }, { "K", tZONE, -HOUR (10) }, { "L", tZONE, -HOUR (11) }, { "M", tZONE, -HOUR (12) }, { "N", tZONE, HOUR ( 1) }, { "O", tZONE, HOUR ( 2) }, { "P", tZONE, HOUR ( 3) }, { "Q", tZONE, HOUR ( 4) }, { "R", tZONE, HOUR ( 5) }, { "S", tZONE, HOUR ( 6) }, { "T", 'T', 0 }, { "U", tZONE, HOUR ( 8) }, { "V", tZONE, HOUR ( 9) }, { "W", tZONE, HOUR (10) }, { "X", tZONE, HOUR (11) }, { "Y", tZONE, HOUR (12) }, { "Z", tZONE, HOUR ( 0) }, { NULL, 0, 0 } }; /** * Convert a time offset expressed as HH:MM or HHMM into an integer count of * minutes. If hh is more than 2 digits then it is of the form HHMM and must be * delimited; in that case 'mm' is required to be absent. Otherwise, hh and mm * are used ('mm' contains digits that were prefixed with a colon). * * POSIX TZ and ISO 8601 both define the maximum offset as 24:59. POSIX also * allows seconds, but currently the parser rejects them. Both require minutes * to be zero padded (2 digits). ISO requires hours to be zero padded, POSIX * does not, either is accepted; which means an invalid ISO offset could pass. */ static int time_zone_hhmm(parser_control *pc, textint hh, textint mm) { int h, m; if (hh.digits > 2 && hh.digits < 5 && mm.digits == 0) { h = hh.value / 100; m = hh.value % 100; } else if (hh.digits < 3 && (mm.digits == 0 || mm.digits == 2)) { h = hh.value; m = hh.negative ? -mm.value : mm.value; } else return 0; if (abs(h) > 24 || abs(m) > 59) return 0; pc->time_zone = h * 60 + m; return 1; } static int to_hour(intmax_t hours, int meridian) { switch (meridian) { default: /* Pacify GCC. */ case MER24: return 0 <= hours && hours < 24 ? hours : -1; case MERam: return 0 < hours && hours < 12 ? hours : hours == 12 ? 0 : -1; case MERpm: return 0 < hours && hours < 12 ? hours + 12 : hours == 12 ? 12 : -1; } } static long int to_year(textint textyear) { intmax_t year = textyear.value; if (year < 0) year = -year; /** * XPG4 suggests that years 00-68 map to 2000-2068, and * years 69-99 map to 1969-1999. */ else if (textyear.digits == 2) year += year < 69 ? 2000 : 1900; return year; } static table const * lookup_zone(parser_control const *pc, char const *name) { table const *tp; for (tp = universal_time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; /** * Try local zone abbreviations before those in time_zone_table, as * the local ones are more likely to be right. */ for (tp = pc->local_time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; for (tp = time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; return NULL; } #if ! HAVE_TM_GMTOFF /** * Yield the difference between *A and *B, * measured in seconds, ignoring leap seconds. * The body of this function is taken directly from the GNU C Library; * see src/strftime.c. */ static int tm_diff(struct tm const *a, struct tm const *b) { /** * Compute intervening leap days correctly even if year is negative. * Take care to avoid int overflow in leap day calculations. */ int a4 = SHR (a->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (a->tm_year & 3); int b4 = SHR (b->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (b->tm_year & 3); int a100 = a4 / 25 - (a4 % 25 < 0); int b100 = b4 / 25 - (b4 % 25 < 0); int a400 = SHR (a100, 2); int b400 = SHR (b100, 2); int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); int years = a->tm_year - b->tm_year; int days = (365 * years + intervening_leap_days + (a->tm_yday - b->tm_yday)); return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) + (a->tm_min - b->tm_min)) + (a->tm_sec - b->tm_sec)); } #endif /* ! HAVE_TM_GMTOFF */ static table const * lookup_word(parser_control const *pc, char *word) { char *p; char *q; size_t wordlen; table const *tp; int period_found; int abbrev; /* Make it uppercase. */ for (p = word; *p; p++) *p = c_toupper (to_uchar (*p)); for (tp = meridian_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* See if we have an abbreviation for a month. */ wordlen = strlen (word); abbrev = wordlen == 3 || (wordlen == 4 && word[3] == '.'); for (tp = month_and_day_table; tp->name; tp++) if ((abbrev ? strncmp (word, tp->name, 3) : strcmp (word, tp->name)) == 0) return tp; if ((tp = lookup_zone (pc, word))) return tp; if (strcmp (word, dst_table[0].name) == 0) return dst_table; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Strip off any plural and try the units table again. */ if (word[wordlen - 1] == 'S') { word[wordlen - 1] = '\0'; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; word[wordlen - 1] = 'S'; /* For "this" in relative_time_table. */ } for (tp = relative_time_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Military time zones. */ if (wordlen == 1) for (tp = military_table; tp->name; tp++) if (word[0] == tp->name[0]) return tp; /* Drop out any periods and try the time zone table again. */ for (period_found = 0, p = q = word; (*p = *q); q++) if (*q == '.') period_found = 1; else p++; if (period_found && (tp = lookup_zone (pc, word))) return tp; return NULL; } static int yylex (union YYSTYPE *lvalp, parser_control *pc) { unsigned char c; size_t count; for (;;) { while (c = *pc->input, c_isspace (c)) pc->input++; if (c_isdigit (c) || c == '-' || c == '+') { char const *p; int sign; uintmax_t value; if (c == '-' || c == '+') { sign = c == '-' ? -1 : 1; while (c = *++pc->input, c_isspace (c)) continue; if (! c_isdigit (c)) /* skip the '-' sign */ continue; } else sign = 0; p = pc->input; for (value = 0; ; value *= 10) { uintmax_t value1 = value + (c - '0'); if (value1 < value) return '?'; value = value1; c = *++p; if (! c_isdigit (c)) break; if (UINTMAX_MAX / 10 < value) return '?'; } if ((c == '.' || c == ',') && c_isdigit (p[1])) { time_t s; long ns; int digits; uintmax_t value1; /* Check for overflow when converting value to * time_t. */ if (sign < 0) { s = - value; if (0 < s) return '?'; value1 = -s; } else { s = value; if (s < 0) return '?'; value1 = s; } if (value != value1) return '?'; /* Accumulate fraction, to ns precision. */ p++; ns = *p++ - '0'; for (digits = 2; digits <= LOG10_BILLION; digits++) { ns *= 10; if (c_isdigit (*p)) ns += *p++ - '0'; } /* Skip excess digits, truncating toward * -Infinity. */ if (sign < 0) for (; c_isdigit (*p); p++) if (*p != '0') { ns++; break; } while (c_isdigit (*p)) p++; /* Adjust to the timespec convention, which is * that tv_nsec is always a positive offset even * if tv_sec is negative. */ if (sign < 0 && ns) { s--; if (! (s < 0)) return '?'; ns = BILLION - ns; } lvalp->timespec.tv_sec = s; lvalp->timespec.tv_nsec = ns; pc->input = p; return sign ? tSDECIMAL_NUMBER : tUDECIMAL_NUMBER; } else { lvalp->textintval.negative = sign < 0; if (sign < 0) { lvalp->textintval.value = - value; if (0 < lvalp->textintval.value) return '?'; } else { lvalp->textintval.value = value; if (lvalp->textintval.value < 0) return '?'; } lvalp->textintval.digits = p - pc->input; pc->input = p; return sign ? tSNUMBER : tUNUMBER; } } if (c_isalpha (c)) { char buff[20]; char *p = buff; table const *tp; do { if (p < buff + sizeof buff - 1) *p++ = c; c = *++pc->input; } while (c_isalpha (c) || c == '.'); *p = '\0'; tp = lookup_word (pc, buff); if (! tp) { return '?'; } lvalp->intval = tp->value; return tp->type; } if (c != '(') return to_uchar (*pc->input++); count = 0; do { c = *pc->input++; if (c == '\0') return c; if (c == '(') count++; else if (c == ')') count--; } while (count != 0); } } /* Do nothing if the parser reports an error. */ static int yyerror(parser_control const *pc __attribute__((__unused__)), char const *s __attribute__((__unused__))) { return 0; } /** * If *TM0 is the old and *TM1 is the new value of a struct tm after * passing it to mktime, return 1 if it's OK that mktime returned T. * It's not OK if *TM0 has out-of-range members. */ static int mktime_ok(struct tm const *tm0, struct tm const *tm1, time_t t) { if (t == (time_t) -1) { /** * Guard against falsely reporting an error when parsing a * timestamp that happens to equal (time_t) -1, on a host that * supports such a timestamp. */ tm1 = localtime (&t); if (!tm1) return 0; } return ! ((tm0->tm_sec ^ tm1->tm_sec) | (tm0->tm_min ^ tm1->tm_min) | (tm0->tm_hour ^ tm1->tm_hour) | (tm0->tm_mday ^ tm1->tm_mday) | (tm0->tm_mon ^ tm1->tm_mon) | (tm0->tm_year ^ tm1->tm_year)); } /** * A reasonable upper bound for the size of ordinary TZ strings. * Use heap allocation if TZ's length exceeds this. */ enum { TZBUFSIZE = 100 }; /** * Return a copy of TZ, stored in TZBUF if it fits, and heap-allocated * otherwise. */ static char * get_tz(char tzbuf[TZBUFSIZE]) { char *tz = getenv ("TZ"); if (tz) { size_t tzsize = strlen (tz) + 1; tz = (tzsize <= TZBUFSIZE ? memcpy (tzbuf, tz, tzsize) : strdup (tz)); } return tz; } /** * Parse a date/time string, storing the resulting time value into *result. * The string itself is pointed to by *p. Return 1 if successful. * *p can be an incomplete or relative time specification; if so, use * *now as the basis for the returned time. */ int parse_date(struct timespec *result, char const *p, struct timespec const *now) { time_t Start; intmax_t Start_ns; struct tm const *tmp; struct tm tm; struct tm tm0; parser_control pc; struct timespec gettime_buffer; unsigned char c; int tz_was_altered = 0; char *tz0 = NULL; char tz0buf[TZBUFSIZE]; int ok = 1; struct timeval tv; if (! now) { gettimeofday (&tv, NULL); gettime_buffer.tv_sec = tv.tv_sec; gettime_buffer.tv_nsec = tv.tv_usec * 1000; now = &gettime_buffer; } Start = now->tv_sec; Start_ns = now->tv_nsec; tmp = localtime (&now->tv_sec); if (! tmp) return 0; while (c = *p, c_isspace (c)) p++; if (strncmp (p, "TZ=\"", 4) == 0) { char const *tzbase = p + 4; size_t tzsize = 1; char const *s; for (s = tzbase; *s; s++, tzsize++) if (*s == '\\') { s++; if (! (*s == '\\' || *s == '"')) break; } else if (*s == '"') { char *z; char *tz1 = NULL; char tz1buf[TZBUFSIZE] = { '\0' }; int large_tz = TZBUFSIZE < tzsize; int setenv_ok; tz0 = get_tz (tz0buf); if (!tz0) goto fail; if (large_tz) { z = tz1 = malloc (tzsize); if (!tz1) goto fail; } else z = tz1 = tz1buf; for (s = tzbase; *s != '"'; s++) *z++ = *(s += *s == '\\'); *z = '\0'; setenv_ok = setenv ("TZ", tz1, 1) == 0; if (large_tz) free (tz1); if (!setenv_ok) goto fail; tz_was_altered = 1; p = s + 1; while (c = *p, c_isspace (c)) p++; break; } } /** * As documented, be careful to treat the empty string just like * a date string of "0". Without this, an empty string would be * declared invalid when parsed during a DST transition. */ if (*p == '\0') p = "0"; pc.input = p; pc.year.value = tmp->tm_year; pc.year.value += TM_YEAR_BASE; pc.year.digits = 0; pc.month = tmp->tm_mon + 1; pc.day = tmp->tm_mday; pc.hour = tmp->tm_hour; pc.minutes = tmp->tm_min; pc.seconds.tv_sec = tmp->tm_sec; pc.seconds.tv_nsec = Start_ns; tm.tm_isdst = tmp->tm_isdst; pc.meridian = MER24; pc.rel = RELATIVE_TIME_0; pc.timespec_seen = 0; pc.rels_seen = 0; pc.dates_seen = 0; pc.days_seen = 0; pc.times_seen = 0; pc.local_zones_seen = 0; pc.dsts_seen = 0; pc.zones_seen = 0; #if HAVE_STRUCT_TM_TM_ZONE pc.local_time_zone_table[0].name = tmp->tm_zone; pc.local_time_zone_table[0].type = tLOCAL_ZONE; pc.local_time_zone_table[0].value = tmp->tm_isdst; pc.local_time_zone_table[1].name = NULL; /** * Probe the names used in the next three calendar quarters, looking * for a tm_isdst different from the one we already have. */ { int quarter; for (quarter = 1; quarter <= 3; quarter++) { time_t probe = Start + quarter * (90 * 24 * 60 * 60); struct tm const *probe_tm = localtime (&probe); if (probe_tm && probe_tm->tm_zone && probe_tm->tm_isdst != pc.local_time_zone_table[0].value) { { pc.local_time_zone_table[1].name = probe_tm->tm_zone; pc.local_time_zone_table[1].type = tLOCAL_ZONE; pc.local_time_zone_table[1].value = probe_tm->tm_isdst; pc.local_time_zone_table[2].name = NULL; } break; } } } #else #if HAVE_TZNAME { # if !HAVE_DECL_TZNAME extern char *tzname[]; # endif int i; for (i = 0; i < 2; i++) { pc.local_time_zone_table[i].name = tzname[i]; pc.local_time_zone_table[i].type = tLOCAL_ZONE; pc.local_time_zone_table[i].value = i; } pc.local_time_zone_table[i].name = NULL; } #else pc.local_time_zone_table[0].name = NULL; #endif #endif if (pc.local_time_zone_table[0].name && pc.local_time_zone_table[1].name && ! strcmp (pc.local_time_zone_table[0].name, pc.local_time_zone_table[1].name)) { /** * This locale uses the same abbreviation for standard and * daylight times. So if we see that abbreviation, we don't * know whether it's daylight time. */ pc.local_time_zone_table[0].value = -1; pc.local_time_zone_table[1].name = NULL; } if (yyparse (&pc) != 0) { goto fail; } if (pc.timespec_seen) *result = pc.seconds; else { if (1 < (pc.times_seen | pc.dates_seen | pc.days_seen | pc.dsts_seen | (pc.local_zones_seen + pc.zones_seen))) { goto fail; } tm.tm_year = to_year (pc.year) - TM_YEAR_BASE; tm.tm_mon = pc.month - 1; tm.tm_mday = pc.day; if (pc.times_seen || (pc.rels_seen && ! pc.dates_seen && ! pc.days_seen)) { tm.tm_hour = to_hour (pc.hour, pc.meridian); if (tm.tm_hour < 0) { goto fail; } tm.tm_min = pc.minutes; tm.tm_sec = pc.seconds.tv_sec; } else { tm.tm_hour = tm.tm_min = tm.tm_sec = 0; pc.seconds.tv_nsec = 0; } /** * Let mktime deduce tm_isdst if we have an absolute timestamp. */ if (pc.dates_seen | pc.days_seen | pc.times_seen) tm.tm_isdst = -1; /** * But if the input explicitly specifies local time with or * without DST, give mktime that information. */ if (pc.local_zones_seen) tm.tm_isdst = pc.local_isdst; tm0 = tm; Start = mktime (&tm); if (! mktime_ok (&tm0, &tm, Start)) { if (! pc.zones_seen) { goto fail; } else { /** Guard against falsely reporting errors near * the time_t boundaries when parsing times in * other time zones. For example, suppose the * input string "1969-12-31 23:00:00 -0100", the * current time zone is 8 hours ahead of UTC, * and the min time_t value is 1970-01-01 * 00:00:00 UTC. Then the min localtime value * is 1970-01-01 08:00:00, and mktime will * therefore fail on 1969-12-31 23:00:00. To * work around the problem, set the time zone to * 1 hour behind UTC temporarily by setting * TZ="XXX1:00" and try mktime again. */ intmax_t time_zone = pc.time_zone; intmax_t abs_time_zone = time_zone < 0 ? - time_zone : time_zone; intmax_t abs_time_zone_hour = abs_time_zone / 60; int abs_time_zone_min = abs_time_zone % 60; char tz1buf[sizeof "XXX+0:00" + sizeof pc.time_zone * CHAR_BIT / 3]; if (!tz_was_altered) tz0 = get_tz (tz0buf); sprintf (tz1buf, "XXX%s%jd:%02d", &"-"[time_zone < 0], abs_time_zone_hour, abs_time_zone_min); if (setenv ("TZ", tz1buf, 1) != 0) { goto fail; } tz_was_altered = 1; tm = tm0; Start = mktime (&tm); if (! mktime_ok (&tm0, &tm, Start)) { goto fail; } } } if (pc.days_seen && ! pc.dates_seen) { tm.tm_mday += ((pc.day_number - tm.tm_wday + 7) % 7 + 7 * (pc.day_ordinal - (0 < pc.day_ordinal && tm.tm_wday != pc.day_number))); tm.tm_isdst = -1; Start = mktime (&tm); if (Start == (time_t) -1) { goto fail; } } /* Add relative date. */ if (pc.rel.year | pc.rel.month | pc.rel.day) { int year = tm.tm_year + pc.rel.year; int month = tm.tm_mon + pc.rel.month; int day = tm.tm_mday + pc.rel.day; if (((year < tm.tm_year) ^ (pc.rel.year < 0)) | ((month < tm.tm_mon) ^ (pc.rel.month < 0)) | ((day < tm.tm_mday) ^ (pc.rel.day < 0))) { goto fail; } tm.tm_year = year; tm.tm_mon = month; tm.tm_mday = day; tm.tm_hour = tm0.tm_hour; tm.tm_min = tm0.tm_min; tm.tm_sec = tm0.tm_sec; tm.tm_isdst = tm0.tm_isdst; Start = mktime (&tm); if (Start == (time_t) -1) { goto fail; } } /** * The only "output" of this if-block is an updated Start value, * so this block must follow others that clobber Start. */ if (pc.zones_seen) { intmax_t delta = pc.time_zone * 60; time_t t1; #ifdef HAVE_TM_GMTOFF delta -= tm.tm_gmtoff; #else time_t t = Start; struct tm const *gmt = gmtime (&t); if (! gmt) { goto fail; } delta -= tm_diff (&tm, gmt); #endif t1 = Start - delta; if ((Start < t1) != (delta < 0)) { goto fail; /* time_t overflow */ } Start = t1; } /** * Add relative hours, minutes, and seconds. On hosts that * support leap seconds, ignore the possibility of leap seconds; * e.g., "+ 10 minutes" adds 600 seconds, even if one of them is * a leap second. Typically this is not what the user wants, * but it's too hard to do it the other way, because the time * zone indicator must be applied before relative times, and if * mktime is applied again the time zone will be lost. */ intmax_t sum_ns = pc.seconds.tv_nsec + pc.rel.ns; intmax_t normalized_ns = (sum_ns % BILLION + BILLION) % BILLION; time_t t0 = Start; intmax_t d1 = 60 * 60 * pc.rel.hour; time_t t1 = t0 + d1; intmax_t d2 = 60 * pc.rel.minutes; time_t t2 = t1 + d2; time_t d3 = pc.rel.seconds; time_t t3 = t2 + d3; intmax_t d4 = (sum_ns - normalized_ns) / BILLION; time_t t4 = t3 + d4; time_t t5 = t4; if ((d1 / (60 * 60) ^ pc.rel.hour) | (d2 / 60 ^ pc.rel.minutes) | ((t1 < t0) ^ (d1 < 0)) | ((t2 < t1) ^ (d2 < 0)) | ((t3 < t2) ^ (d3 < 0)) | ((t4 < t3) ^ (d4 < 0)) | (t5 != t4)) { goto fail; } result->tv_sec = t5; result->tv_nsec = normalized_ns; } goto done; fail: ok = 0; done: if (tz_was_altered) ok &= (tz0 ? setenv ("TZ", tz0, 1) : unsetenv ("TZ")) == 0; if (tz0 != tz0buf) free (tz0); return ok; }