#include #include #include #include #include #include #include #include #include "lscpu.h" /* add @set to the @ary, unnecessary set is deallocated. */ static int add_cpuset_to_array(cpu_set_t **ary, size_t *items, cpu_set_t *set, size_t setsize) { size_t i; if (!ary) return -EINVAL; for (i = 0; i < *items; i++) { if (CPU_EQUAL_S(setsize, set, ary[i])) break; } if (i == *items) { ary[*items] = set; ++*items; return 0; } CPU_FREE(set); return 1; } static void free_cpuset_array(cpu_set_t **ary, int items) { int i; if (!ary) return; for (i = 0; i < items; i++) free(ary[i]); free(ary); } void lscpu_cputype_free_topology(struct lscpu_cputype *ct) { if (!ct) return; free_cpuset_array(ct->coremaps, ct->ncores); free_cpuset_array(ct->socketmaps, ct->nsockets); free_cpuset_array(ct->bookmaps, ct->nbooks); free_cpuset_array(ct->drawermaps, ct->ndrawers); } void lscpu_free_caches(struct lscpu_cache *caches, size_t n) { size_t i; if (!caches) return; for (i = 0; i < n; i++) { struct lscpu_cache *c = &caches[i]; DBG(MISC, ul_debug(" freeing cache #%zu %s::%d", i, c->name, c->id)); free(c->name); free(c->type); free(c->allocation_policy); free(c->write_policy); free(c->sharedmap); } free(caches); } static int cmp_cache(const void *a0, const void *b0) { const struct lscpu_cache *a = (const struct lscpu_cache *) a0, *b = (const struct lscpu_cache *) b0; return strcmp(a->name, b->name); } void lscpu_sort_caches(struct lscpu_cache *caches, size_t n) { if (caches && n) qsort(caches, n, sizeof(struct lscpu_cache), cmp_cache); } /* Read topology for specified type */ static int cputype_read_topology(struct lscpu_cxt *cxt, struct lscpu_cputype *ct) { size_t i, npos; struct path_cxt *sys; int nthreads = 0, sw_topo = 0; FILE *fd; sys = cxt->syscpu; /* /sys/devices/system/cpu/ */ npos = cxt->npossibles; /* possible CPUs */ DBG(TYPE, ul_debugobj(ct, "reading %s/%s/%s topology", ct->vendor ?: "", ct->model ?: "", ct->modelname ?:"")); for (i = 0; i < cxt->npossibles; i++) { struct lscpu_cpu *cpu = cxt->cpus[i]; cpu_set_t *thread_siblings = NULL, *core_siblings = NULL; cpu_set_t *book_siblings = NULL, *drawer_siblings = NULL; int num, n; if (!cpu || cpu->type != ct) continue; num = cpu->logical_id; if (ul_path_accessf(sys, F_OK, "cpu%d/topology/thread_siblings", num) != 0) continue; /* read topology maps */ ul_path_readf_cpuset(sys, &thread_siblings, cxt->maxcpus, "cpu%d/topology/thread_siblings", num); ul_path_readf_cpuset(sys, &core_siblings, cxt->maxcpus, "cpu%d/topology/core_siblings", num); ul_path_readf_cpuset(sys, &book_siblings, cxt->maxcpus, "cpu%d/topology/book_siblings", num); ul_path_readf_cpuset(sys, &drawer_siblings, cxt->maxcpus, "cpu%d/topology/drawer_siblings", num); n = CPU_COUNT_S(cxt->setsize, thread_siblings); if (!n) n = 1; if (n > nthreads) nthreads = n; /* Allocate arrays for topology maps. * * For each map we make sure that it can have up to ncpuspos * entries. This is because we cannot reliably calculate the * number of cores, sockets and books on all architectures. * E.g. completely virtualized architectures like s390 may * have multiple sockets of different sizes. */ if (!ct->coremaps) ct->coremaps = xcalloc(npos, sizeof(cpu_set_t *)); if (!ct->socketmaps) ct->socketmaps = xcalloc(npos, sizeof(cpu_set_t *)); if (!ct->bookmaps && book_siblings) ct->bookmaps = xcalloc(npos, sizeof(cpu_set_t *)); if (!ct->drawermaps && drawer_siblings) ct->drawermaps = xcalloc(npos, sizeof(cpu_set_t *)); /* add to topology maps */ add_cpuset_to_array(ct->coremaps, &ct->ncores, thread_siblings, cxt->setsize); add_cpuset_to_array(ct->socketmaps, &ct->nsockets, core_siblings, cxt->setsize); if (book_siblings) add_cpuset_to_array(ct->bookmaps, &ct->nbooks, book_siblings, cxt->setsize); if (drawer_siblings) add_cpuset_to_array(ct->drawermaps, &ct->ndrawers, drawer_siblings, cxt->setsize); } /* s390 detects its cpu topology via /proc/sysinfo, if present. * Using simply the cpu topology masks in sysfs will not give * usable results since everything is virtualized. E.g. * virtual core 0 may have only 1 cpu, but virtual core 2 may * five cpus. * If the cpu topology is not exported (e.g. 2nd level guest) * fall back to old calculation scheme. */ if ((fd = ul_path_fopen(cxt->procfs, "r", "sysinfo"))) { int t0, t1; char buf[BUFSIZ]; DBG(TYPE, ul_debugobj(ct, " reading sysinfo")); while (fgets(buf, sizeof(buf), fd) != NULL) { if (sscanf(buf, "CPU Topology SW: %d %d %zu %zu %zu %zu", &t0, &t1, &ct->ndrawers_per_system, &ct->nbooks_per_drawer, &ct->nsockets_per_book, &ct->ncores_per_socket) == 6) { sw_topo = 1; DBG(TYPE, ul_debugobj(ct, " using SW topology")); break; } } if (fd) fclose(fd); } ct->nthreads_per_core = nthreads; if (ct->mtid) { uint64_t x; if (ul_strtou64(ct->mtid, &x, 10) == 0 && x <= ULONG_MAX) ct->nthreads_per_core = (size_t) x + 1; } if (!sw_topo) { ct->ncores_per_socket = ct->nsockets ? ct->ncores / ct->nsockets : 0; ct->nsockets_per_book = ct->nbooks ? ct->nsockets / ct->nbooks : 0; ct->nbooks_per_drawer = ct->ndrawers ? ct->nbooks / ct->ndrawers : 0; ct->ndrawers_per_system = ct->ndrawers; } DBG(TYPE, ul_debugobj(ct, " nthreads: %zu (per core)", ct->nthreads_per_core)); DBG(TYPE, ul_debugobj(ct, " ncores: %zu (%zu per socket)", ct->ncores, ct->ncores_per_socket)); DBG(TYPE, ul_debugobj(ct, " nsockets: %zu (%zu per books)", ct->nsockets, ct->nsockets_per_book)); DBG(TYPE, ul_debugobj(ct, " nbooks: %zu (%zu per drawer)", ct->nbooks, ct->nbooks_per_drawer)); DBG(TYPE, ul_debugobj(ct, " ndrawers: %zu (%zu per system)", ct->ndrawers, ct->ndrawers_per_system)); return 0; } /* count size of all instancess of the "name" */ size_t lscpu_get_cache_full_size(struct lscpu_cxt *cxt, const char *name, int *instances) { size_t i, sz = 0; if (instances) *instances = 0; for (i = 0; i < cxt->ncaches; i++) { if (strcmp(cxt->caches[i].name, name) == 0) { sz += cxt->caches[i].size; if (instances) (*instances)++; } } return sz; } struct lscpu_cache *lscpu_cpu_get_cache(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu, const char *name) { size_t i; for (i = 0; i < cxt->ncaches; i++) { struct lscpu_cache *ca = &cxt->caches[i]; if (strcmp(ca->name, name) == 0 && CPU_ISSET_S(cpu->logical_id, cxt->setsize, ca->sharedmap)) return ca; } return NULL; } /* * The cache is identifued by type+level+id. */ static struct lscpu_cache *get_cache(struct lscpu_cxt *cxt, const char *type, int level, int id) { size_t i; for (i = 0; i < cxt->ncaches; i++) { struct lscpu_cache *ca = &cxt->caches[i]; if (ca->id == id && ca->level == level && strcmp(ca->type, type) == 0) return ca; } return NULL; } static struct lscpu_cache *add_cache(struct lscpu_cxt *cxt, const char *type, int level, int id) { struct lscpu_cache *ca; cxt->ncaches++; cxt->caches = xrealloc(cxt->caches, cxt->ncaches * sizeof(*cxt->caches)); ca = &cxt->caches[cxt->ncaches - 1]; memset(ca, 0 , sizeof(*ca)); ca->id = id; ca->level = level; ca->type = xstrdup(type); DBG(GATHER, ul_debugobj(cxt, "add cache %s%d::%d", type, level, id)); return ca; } static int mk_cache_id(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu, char *type, int level) { size_t i; int idx = 0; for (i = 0; i < cxt->ncaches; i++) { struct lscpu_cache *ca = &cxt->caches[i]; if (ca->level != level || strcmp(ca->type, type) != 0) continue; if (ca->sharedmap && CPU_ISSET_S(cpu->logical_id, cxt->setsize, ca->sharedmap)) return idx; idx++; } return idx; } static int read_sparc_onecache(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu, int level, char *typestr, int type) { struct lscpu_cache *ca; struct path_cxt *sys = cxt->syscpu; int num = cpu->logical_id; uint32_t size; int rc, id; char buf[32]; if (type) snprintf(buf, sizeof(buf), "l%d_%c", level, type); else snprintf(buf, sizeof(buf), "l%d_", level); rc = ul_path_readf_u32(sys, &size, "cpu%d/%scache_size", num, buf); if (rc != 0) return rc; DBG(CPU, ul_debugobj(cpu, "#%d reading sparc %s cache", num, buf)); id = mk_cache_id(cxt, cpu, typestr, level); ca = get_cache(cxt, typestr, level, id); if (!ca) ca = add_cache(cxt, typestr, level, id); if (!ca->name) { ul_path_readf_u32(sys, &ca->coherency_line_size, "cpu%d/%scache_line_size", num, buf); assert(ca->type); if (type) snprintf(buf, sizeof(buf), "L%d%c", ca->level, type); else snprintf(buf, sizeof(buf), "L%d", ca->level); ca->name = xstrdup(buf); ca->size = size; } /* There is no sharedmap of the cache in /sys, we assume that caches are * not shared. Send a patch if your /sys provides another information. */ if (!ca->sharedmap) { size_t setsize = 0; ca->sharedmap = cpuset_alloc(cxt->maxcpus, &setsize, NULL); CPU_ZERO_S(setsize, ca->sharedmap); CPU_SET_S(num, setsize, ca->sharedmap); } return 0; } static int read_sparc_caches(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu) { read_sparc_onecache(cxt, cpu, 1, "Instruction", 'i'); read_sparc_onecache(cxt, cpu, 1, "Data", 'd'); read_sparc_onecache(cxt, cpu, 2, "Unified", 0); read_sparc_onecache(cxt, cpu, 2, "Unified", 0); return 0; } static int read_caches(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu) { char buf[256]; struct path_cxt *sys = cxt->syscpu; int num = cpu->logical_id; size_t i, ncaches = 0; while (ul_path_accessf(sys, F_OK, "cpu%d/cache/index%zu", num, ncaches) == 0) ncaches++; if (ncaches == 0 && ul_path_accessf(sys, F_OK, "cpu%d/l1_icache_size", num) == 0) return read_sparc_caches(cxt, cpu); DBG(CPU, ul_debugobj(cpu, "#%d reading %zd caches", num, ncaches)); for (i = 0; i < ncaches; i++) { struct lscpu_cache *ca; int id, level; if (ul_path_readf_s32(sys, &id, "cpu%d/cache/index%zu/id", num, i) != 0) id = -1; if (ul_path_readf_s32(sys, &level, "cpu%d/cache/index%zu/level", num, i) != 0) continue; if (ul_path_readf_buffer(sys, buf, sizeof(buf), "cpu%d/cache/index%zu/type", num, i) <= 0) continue; if (id == -1) id = mk_cache_id(cxt, cpu, buf, level); ca = get_cache(cxt, buf, level, id); if (!ca) ca = add_cache(cxt, buf, level, id); if (!ca->name) { int type = 0; assert(ca->type); if (!strcmp(ca->type, "Data")) type = 'd'; else if (!strcmp(ca->type, "Instruction")) type = 'i'; if (type) snprintf(buf, sizeof(buf), "L%d%c", ca->level, type); else snprintf(buf, sizeof(buf), "L%d", ca->level); ca->name = xstrdup(buf); ul_path_readf_u32(sys, &ca->ways_of_associativity, "cpu%d/cache/index%zu/ways_of_associativity", num, i); ul_path_readf_u32(sys, &ca->physical_line_partition, "cpu%d/cache/index%zu/physical_line_partition", num, i); ul_path_readf_u32(sys, &ca->number_of_sets, "cpu%d/cache/index%zu/number_of_sets", num, i); ul_path_readf_u32(sys, &ca->coherency_line_size, "cpu%d/cache/index%zu/coherency_line_size", num, i); ul_path_readf_string(sys, &ca->allocation_policy, "cpu%d/cache/index%zu/allocation_policy", num, i); ul_path_readf_string(sys, &ca->write_policy, "cpu%d/cache/index%zu/write_policy", num, i); /* cache size */ if (ul_path_readf_buffer(sys, buf, sizeof(buf), "cpu%d/cache/index%zu/size", num, i) > 0) parse_size(buf, &ca->size, NULL); else ca->size = 0; } if (!ca->sharedmap) /* information about how CPUs share different caches */ ul_path_readf_cpuset(sys, &ca->sharedmap, cxt->maxcpus, "cpu%d/cache/index%zu/shared_cpu_map", num, i); } return 0; } static int read_ids(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu) { struct path_cxt *sys = cxt->syscpu; int num = cpu->logical_id; if (ul_path_accessf(sys, F_OK, "cpu%d/topology", num) != 0) return 0; DBG(CPU, ul_debugobj(cpu, "#%d reading IDs", num)); if (ul_path_readf_s32(sys, &cpu->coreid, "cpu%d/topology/core_id", num) != 0) cpu->coreid = -1; if (ul_path_readf_s32(sys, &cpu->socketid, "cpu%d/topology/physical_package_id", num) != 0) cpu->socketid = -1; if (ul_path_readf_s32(sys, &cpu->bookid, "cpu%d/topology/book_id", num) != 0) cpu->bookid = -1; if (ul_path_readf_s32(sys, &cpu->drawerid, "cpu%d/topology/drawer_id", num) != 0) cpu->drawerid = -1; return 0; } static int read_polarization(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu) { struct path_cxt *sys = cxt->syscpu; int num = cpu->logical_id; char mode[64]; if (ul_path_accessf(sys, F_OK, "cpu%d/polarization", num) != 0) return 0; ul_path_readf_buffer(sys, mode, sizeof(mode), "cpu%d/polarization", num); DBG(CPU, ul_debugobj(cpu, "#%d reading polar=%s", num, mode)); if (strncmp(mode, "vertical:low", sizeof(mode)) == 0) cpu->polarization = POLAR_VLOW; else if (strncmp(mode, "vertical:medium", sizeof(mode)) == 0) cpu->polarization = POLAR_VMEDIUM; else if (strncmp(mode, "vertical:high", sizeof(mode)) == 0) cpu->polarization = POLAR_VHIGH; else if (strncmp(mode, "horizontal", sizeof(mode)) == 0) cpu->polarization = POLAR_HORIZONTAL; else cpu->polarization = POLAR_UNKNOWN; if (cpu->type) cpu->type->has_polarization = 1; return 0; } static int read_address(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu) { struct path_cxt *sys = cxt->syscpu; int num = cpu->logical_id; if (ul_path_accessf(sys, F_OK, "cpu%d/address", num) != 0) return 0; DBG(CPU, ul_debugobj(cpu, "#%d reading address", num)); ul_path_readf_s32(sys, &cpu->address, "cpu%d/address", num); if (cpu->type) cpu->type->has_addresses = 1; return 0; } static int read_configure(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu) { struct path_cxt *sys = cxt->syscpu; int num = cpu->logical_id; if (ul_path_accessf(sys, F_OK, "cpu%d/configure", num) != 0) return 0; DBG(CPU, ul_debugobj(cpu, "#%d reading configure", num)); ul_path_readf_s32(sys, &cpu->configured, "cpu%d/configure", num); if (cpu->type) cpu->type->has_configured = 1; return 0; } static int read_mhz(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu) { struct path_cxt *sys = cxt->syscpu; int num = cpu->logical_id; int mhz; DBG(CPU, ul_debugobj(cpu, "#%d reading mhz", num)); if (ul_path_readf_s32(sys, &mhz, "cpu%d/cpufreq/cpuinfo_max_freq", num) == 0) cpu->mhz_max_freq = (float) mhz / 1000; if (ul_path_readf_s32(sys, &mhz, "cpu%d/cpufreq/cpuinfo_min_freq", num) == 0) cpu->mhz_min_freq = (float) mhz / 1000; /* The default current-frequency value comes is from /proc/cpuinfo (if * available). This /proc value is usually based on MSR registers * (APERF/APERF) and it changes pretty often. It seems better to read * frequency from cpufreq subsystem that provides the current frequency * for the current policy. There is also cpuinfo_cur_freq in sysfs, but * it's not always available. */ if (ul_path_readf_s32(sys, &mhz, "cpu%d/cpufreq/scaling_cur_freq", num) == 0) cpu->mhz_cur_freq = (float) mhz / 1000; if (cpu->type && (cpu->mhz_min_freq || cpu->mhz_max_freq)) cpu->type->has_freq = 1; return 0; } float lsblk_cputype_get_maxmhz(struct lscpu_cxt *cxt, struct lscpu_cputype *ct) { size_t i; float res = 0.0; for (i = 0; i < cxt->npossibles; i++) { struct lscpu_cpu *cpu = cxt->cpus[i]; if (!cpu || cpu->type != ct || !is_cpu_present(cxt, cpu)) continue; res = max(res, cpu->mhz_max_freq); } return res; } float lsblk_cputype_get_minmhz(struct lscpu_cxt *cxt, struct lscpu_cputype *ct) { size_t i; float res = -1.0; for (i = 0; i < cxt->npossibles; i++) { struct lscpu_cpu *cpu = cxt->cpus[i]; if (!cpu || cpu->type != ct || !is_cpu_present(cxt, cpu)) continue; if (res < 0.0 || cpu->mhz_min_freq < res) res = cpu->mhz_min_freq; } return res; } /* returns scaling (use) of CPUs freq. in percent */ float lsblk_cputype_get_scalmhz(struct lscpu_cxt *cxt, struct lscpu_cputype *ct) { size_t i; float fmax = 0, fcur = 0; for (i = 0; i < cxt->npossibles; i++) { struct lscpu_cpu *cpu = cxt->cpus[i]; if (!cpu || cpu->type != ct || !is_cpu_present(cxt, cpu)) continue; if (cpu->mhz_max_freq <= 0.0 || cpu->mhz_cur_freq <= 0.0) continue; fmax += cpu->mhz_max_freq; fcur += cpu->mhz_cur_freq; } if (fcur <= 0.0) return 0.0; return fcur / fmax * 100; } int lscpu_read_topology(struct lscpu_cxt *cxt) { size_t i; int rc = 0; for (i = 0; i < cxt->ncputypes; i++) rc += cputype_read_topology(cxt, cxt->cputypes[i]); for (i = 0; rc == 0 && i < cxt->npossibles; i++) { struct lscpu_cpu *cpu = cxt->cpus[i]; if (!cpu || !cpu->type) continue; DBG(CPU, ul_debugobj(cpu, "#%d reading topology", cpu->logical_id)); rc = read_ids(cxt, cpu); if (!rc) rc = read_polarization(cxt, cpu); if (!rc) rc = read_address(cxt, cpu); if (!rc) rc = read_configure(cxt, cpu); if (!rc) rc = read_mhz(cxt, cpu); if (!rc) rc = read_caches(cxt, cpu); } lscpu_sort_caches(cxt->caches, cxt->ncaches); DBG(GATHER, ul_debugobj(cxt, " L1d: %zu", lscpu_get_cache_full_size(cxt, "L1d", NULL))); DBG(GATHER, ul_debugobj(cxt, " L1i: %zu", lscpu_get_cache_full_size(cxt, "L1i", NULL))); DBG(GATHER, ul_debugobj(cxt, " L2: %zu", lscpu_get_cache_full_size(cxt, "L2", NULL))); DBG(GATHER, ul_debugobj(cxt, " L3: %zu", lscpu_get_cache_full_size(cxt, "L3", NULL))); return rc; }