diff options
Diffstat (limited to 'src/VBox/Storage/VMDK.cpp')
-rw-r--r-- | src/VBox/Storage/VMDK.cpp | 9249 |
1 files changed, 9249 insertions, 0 deletions
diff --git a/src/VBox/Storage/VMDK.cpp b/src/VBox/Storage/VMDK.cpp new file mode 100644 index 00000000..d802034e --- /dev/null +++ b/src/VBox/Storage/VMDK.cpp @@ -0,0 +1,9249 @@ +/* $Id: VMDK.cpp $ */ +/** @file + * VMDK disk image, core code. + */ + +/* + * Copyright (C) 2006-2022 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <https://www.gnu.org/licenses>. + * + * SPDX-License-Identifier: GPL-3.0-only + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_VD_VMDK +#include <VBox/log.h> /* before VBox/vd-ifs.h */ +#include <VBox/vd-plugin.h> +#include <VBox/err.h> + +#include <iprt/assert.h> +#include <iprt/alloc.h> +#include <iprt/base64.h> +#include <iprt/ctype.h> +#include <iprt/crc.h> +#include <iprt/dvm.h> +#include <iprt/uuid.h> +#include <iprt/path.h> +#include <iprt/rand.h> +#include <iprt/string.h> +#include <iprt/sort.h> +#include <iprt/zip.h> +#include <iprt/asm.h> +#ifdef RT_OS_WINDOWS +# include <iprt/utf16.h> +# include <iprt/uni.h> +# include <iprt/uni.h> +# include <iprt/nt/nt-and-windows.h> +# include <winioctl.h> +#endif +#ifdef RT_OS_LINUX +# include <errno.h> +# include <sys/stat.h> +# include <iprt/dir.h> +# include <iprt/symlink.h> +# include <iprt/linux/sysfs.h> +#endif +#ifdef RT_OS_FREEBSD +#include <libgeom.h> +#include <sys/stat.h> +#include <stdlib.h> +#endif +#ifdef RT_OS_SOLARIS +#include <sys/dkio.h> +#include <sys/vtoc.h> +#include <sys/efi_partition.h> +#include <unistd.h> +#include <errno.h> +#endif +#ifdef RT_OS_DARWIN +# include <sys/stat.h> +# include <sys/disk.h> +# include <errno.h> +/* The following structure and IOCTLs are defined in znu bsd/sys/disk.h but + inside KERNEL ifdefs and thus stripped from the SDK edition of the header. + While we could try include the header from the Kernel.framework, it's a lot + easier to just add the structure and 4 defines here. */ +typedef struct +{ + uint64_t offset; + uint64_t length; + uint8_t reserved0128[12]; + dev_t dev; +} dk_physical_extent_t; +# define DKIOCGETBASE _IOR( 'd', 73, uint64_t) +# define DKIOCLOCKPHYSICALEXTENTS _IO( 'd', 81) +# define DKIOCGETPHYSICALEXTENT _IOWR('d', 82, dk_physical_extent_t) +# define DKIOCUNLOCKPHYSICALEXTENTS _IO( 'd', 83) +#endif /* RT_OS_DARWIN */ + +#include "VDBackends.h" + + +/********************************************************************************************************************************* +* Constants And Macros, Structures and Typedefs * +*********************************************************************************************************************************/ + +/** Maximum encoded string size (including NUL) we allow for VMDK images. + * Deliberately not set high to avoid running out of descriptor space. */ +#define VMDK_ENCODED_COMMENT_MAX 1024 + +/** VMDK descriptor DDB entry for PCHS cylinders. */ +#define VMDK_DDB_GEO_PCHS_CYLINDERS "ddb.geometry.cylinders" + +/** VMDK descriptor DDB entry for PCHS heads. */ +#define VMDK_DDB_GEO_PCHS_HEADS "ddb.geometry.heads" + +/** VMDK descriptor DDB entry for PCHS sectors. */ +#define VMDK_DDB_GEO_PCHS_SECTORS "ddb.geometry.sectors" + +/** VMDK descriptor DDB entry for LCHS cylinders. */ +#define VMDK_DDB_GEO_LCHS_CYLINDERS "ddb.geometry.biosCylinders" + +/** VMDK descriptor DDB entry for LCHS heads. */ +#define VMDK_DDB_GEO_LCHS_HEADS "ddb.geometry.biosHeads" + +/** VMDK descriptor DDB entry for LCHS sectors. */ +#define VMDK_DDB_GEO_LCHS_SECTORS "ddb.geometry.biosSectors" + +/** VMDK descriptor DDB entry for image UUID. */ +#define VMDK_DDB_IMAGE_UUID "ddb.uuid.image" + +/** VMDK descriptor DDB entry for image modification UUID. */ +#define VMDK_DDB_MODIFICATION_UUID "ddb.uuid.modification" + +/** VMDK descriptor DDB entry for parent image UUID. */ +#define VMDK_DDB_PARENT_UUID "ddb.uuid.parent" + +/** VMDK descriptor DDB entry for parent image modification UUID. */ +#define VMDK_DDB_PARENT_MODIFICATION_UUID "ddb.uuid.parentmodification" + +/** No compression for streamOptimized files. */ +#define VMDK_COMPRESSION_NONE 0 + +/** Deflate compression for streamOptimized files. */ +#define VMDK_COMPRESSION_DEFLATE 1 + +/** Marker that the actual GD value is stored in the footer. */ +#define VMDK_GD_AT_END 0xffffffffffffffffULL + +/** Marker for end-of-stream in streamOptimized images. */ +#define VMDK_MARKER_EOS 0 + +/** Marker for grain table block in streamOptimized images. */ +#define VMDK_MARKER_GT 1 + +/** Marker for grain directory block in streamOptimized images. */ +#define VMDK_MARKER_GD 2 + +/** Marker for footer in streamOptimized images. */ +#define VMDK_MARKER_FOOTER 3 + +/** Marker for unknown purpose in streamOptimized images. + * Shows up in very recent images created by vSphere, but only sporadically. + * They "forgot" to document that one in the VMDK specification. */ +#define VMDK_MARKER_UNSPECIFIED 4 + +/** Dummy marker for "don't check the marker value". */ +#define VMDK_MARKER_IGNORE 0xffffffffU + +/** + * Magic number for hosted images created by VMware Workstation 4, VMware + * Workstation 5, VMware Server or VMware Player. Not necessarily sparse. + */ +#define VMDK_SPARSE_MAGICNUMBER 0x564d444b /* 'V' 'M' 'D' 'K' */ + +/** VMDK sector size in bytes. */ +#define VMDK_SECTOR_SIZE 512 +/** Max string buffer size for uint64_t with null term */ +#define UINT64_MAX_BUFF_SIZE 21 +/** Grain directory entry size in bytes */ +#define VMDK_GRAIN_DIR_ENTRY_SIZE 4 +/** Grain table size in bytes */ +#define VMDK_GRAIN_TABLE_SIZE 2048 + +/** + * VMDK hosted binary extent header. The "Sparse" is a total misnomer, as + * this header is also used for monolithic flat images. + */ +#pragma pack(1) +typedef struct SparseExtentHeader +{ + uint32_t magicNumber; + uint32_t version; + uint32_t flags; + uint64_t capacity; + uint64_t grainSize; + uint64_t descriptorOffset; + uint64_t descriptorSize; + uint32_t numGTEsPerGT; + uint64_t rgdOffset; + uint64_t gdOffset; + uint64_t overHead; + bool uncleanShutdown; + char singleEndLineChar; + char nonEndLineChar; + char doubleEndLineChar1; + char doubleEndLineChar2; + uint16_t compressAlgorithm; + uint8_t pad[433]; +} SparseExtentHeader; +#pragma pack() + +/** The maximum allowed descriptor size in the extent header in sectors. */ +#define VMDK_SPARSE_DESCRIPTOR_SIZE_MAX UINT64_C(20480) /* 10MB */ + +/** VMDK capacity for a single chunk when 2G splitting is turned on. Should be + * divisible by the default grain size (64K) */ +#define VMDK_2G_SPLIT_SIZE (2047 * 1024 * 1024) + +/** VMDK streamOptimized file format marker. The type field may or may not + * be actually valid, but there's always data to read there. */ +#pragma pack(1) +typedef struct VMDKMARKER +{ + uint64_t uSector; + uint32_t cbSize; + uint32_t uType; +} VMDKMARKER, *PVMDKMARKER; +#pragma pack() + + +/** Convert sector number/size to byte offset/size. */ +#define VMDK_SECTOR2BYTE(u) ((uint64_t)(u) << 9) + +/** Convert byte offset/size to sector number/size. */ +#define VMDK_BYTE2SECTOR(u) ((u) >> 9) + +/** + * VMDK extent type. + */ +typedef enum VMDKETYPE +{ + /** Hosted sparse extent. */ + VMDKETYPE_HOSTED_SPARSE = 1, + /** Flat extent. */ + VMDKETYPE_FLAT, + /** Zero extent. */ + VMDKETYPE_ZERO, + /** VMFS extent, used by ESX. */ + VMDKETYPE_VMFS +} VMDKETYPE, *PVMDKETYPE; + +/** + * VMDK access type for a extent. + */ +typedef enum VMDKACCESS +{ + /** No access allowed. */ + VMDKACCESS_NOACCESS = 0, + /** Read-only access. */ + VMDKACCESS_READONLY, + /** Read-write access. */ + VMDKACCESS_READWRITE +} VMDKACCESS, *PVMDKACCESS; + +/** Forward declaration for PVMDKIMAGE. */ +typedef struct VMDKIMAGE *PVMDKIMAGE; + +/** + * Extents files entry. Used for opening a particular file only once. + */ +typedef struct VMDKFILE +{ + /** Pointer to file path. Local copy. */ + const char *pszFilename; + /** Pointer to base name. Local copy. */ + const char *pszBasename; + /** File open flags for consistency checking. */ + unsigned fOpen; + /** Handle for sync/async file abstraction.*/ + PVDIOSTORAGE pStorage; + /** Reference counter. */ + unsigned uReferences; + /** Flag whether the file should be deleted on last close. */ + bool fDelete; + /** Pointer to the image we belong to (for debugging purposes). */ + PVMDKIMAGE pImage; + /** Pointer to next file descriptor. */ + struct VMDKFILE *pNext; + /** Pointer to the previous file descriptor. */ + struct VMDKFILE *pPrev; +} VMDKFILE, *PVMDKFILE; + +/** + * VMDK extent data structure. + */ +typedef struct VMDKEXTENT +{ + /** File handle. */ + PVMDKFILE pFile; + /** Base name of the image extent. */ + const char *pszBasename; + /** Full name of the image extent. */ + const char *pszFullname; + /** Number of sectors in this extent. */ + uint64_t cSectors; + /** Number of sectors per block (grain in VMDK speak). */ + uint64_t cSectorsPerGrain; + /** Starting sector number of descriptor. */ + uint64_t uDescriptorSector; + /** Size of descriptor in sectors. */ + uint64_t cDescriptorSectors; + /** Starting sector number of grain directory. */ + uint64_t uSectorGD; + /** Starting sector number of redundant grain directory. */ + uint64_t uSectorRGD; + /** Total number of metadata sectors. */ + uint64_t cOverheadSectors; + /** Nominal size (i.e. as described by the descriptor) of this extent. */ + uint64_t cNominalSectors; + /** Sector offset (i.e. as described by the descriptor) of this extent. */ + uint64_t uSectorOffset; + /** Number of entries in a grain table. */ + uint32_t cGTEntries; + /** Number of sectors reachable via a grain directory entry. */ + uint32_t cSectorsPerGDE; + /** Number of entries in the grain directory. */ + uint32_t cGDEntries; + /** Pointer to the next free sector. Legacy information. Do not use. */ + uint32_t uFreeSector; + /** Number of this extent in the list of images. */ + uint32_t uExtent; + /** Pointer to the descriptor (NULL if no descriptor in this extent). */ + char *pDescData; + /** Pointer to the grain directory. */ + uint32_t *pGD; + /** Pointer to the redundant grain directory. */ + uint32_t *pRGD; + /** VMDK version of this extent. 1=1.0/1.1 */ + uint32_t uVersion; + /** Type of this extent. */ + VMDKETYPE enmType; + /** Access to this extent. */ + VMDKACCESS enmAccess; + /** Flag whether this extent is marked as unclean. */ + bool fUncleanShutdown; + /** Flag whether the metadata in the extent header needs to be updated. */ + bool fMetaDirty; + /** Flag whether there is a footer in this extent. */ + bool fFooter; + /** Compression type for this extent. */ + uint16_t uCompression; + /** Append position for writing new grain. Only for sparse extents. */ + uint64_t uAppendPosition; + /** Last grain which was accessed. Only for streamOptimized extents. */ + uint32_t uLastGrainAccess; + /** Starting sector corresponding to the grain buffer. */ + uint32_t uGrainSectorAbs; + /** Grain number corresponding to the grain buffer. */ + uint32_t uGrain; + /** Actual size of the compressed data, only valid for reading. */ + uint32_t cbGrainStreamRead; + /** Size of compressed grain buffer for streamOptimized extents. */ + size_t cbCompGrain; + /** Compressed grain buffer for streamOptimized extents, with marker. */ + void *pvCompGrain; + /** Decompressed grain buffer for streamOptimized extents. */ + void *pvGrain; + /** Reference to the image in which this extent is used. Do not use this + * on a regular basis to avoid passing pImage references to functions + * explicitly. */ + struct VMDKIMAGE *pImage; +} VMDKEXTENT, *PVMDKEXTENT; + +/** + * Grain table cache size. Allocated per image. + */ +#define VMDK_GT_CACHE_SIZE 256 + +/** + * Grain table block size. Smaller than an actual grain table block to allow + * more grain table blocks to be cached without having to allocate excessive + * amounts of memory for the cache. + */ +#define VMDK_GT_CACHELINE_SIZE 128 + + +/** + * Maximum number of lines in a descriptor file. Not worth the effort of + * making it variable. Descriptor files are generally very short (~20 lines), + * with the exception of sparse files split in 2G chunks, which need for the + * maximum size (almost 2T) exactly 1025 lines for the disk database. + */ +#define VMDK_DESCRIPTOR_LINES_MAX 1100U + +/** + * Parsed descriptor information. Allows easy access and update of the + * descriptor (whether separate file or not). Free form text files suck. + */ +typedef struct VMDKDESCRIPTOR +{ + /** Line number of first entry of the disk descriptor. */ + unsigned uFirstDesc; + /** Line number of first entry in the extent description. */ + unsigned uFirstExtent; + /** Line number of first disk database entry. */ + unsigned uFirstDDB; + /** Total number of lines. */ + unsigned cLines; + /** Total amount of memory available for the descriptor. */ + size_t cbDescAlloc; + /** Set if descriptor has been changed and not yet written to disk. */ + bool fDirty; + /** Array of pointers to the data in the descriptor. */ + char *aLines[VMDK_DESCRIPTOR_LINES_MAX]; + /** Array of line indices pointing to the next non-comment line. */ + unsigned aNextLines[VMDK_DESCRIPTOR_LINES_MAX]; +} VMDKDESCRIPTOR, *PVMDKDESCRIPTOR; + + +/** + * Cache entry for translating extent/sector to a sector number in that + * extent. + */ +typedef struct VMDKGTCACHEENTRY +{ + /** Extent number for which this entry is valid. */ + uint32_t uExtent; + /** GT data block number. */ + uint64_t uGTBlock; + /** Data part of the cache entry. */ + uint32_t aGTData[VMDK_GT_CACHELINE_SIZE]; +} VMDKGTCACHEENTRY, *PVMDKGTCACHEENTRY; + +/** + * Cache data structure for blocks of grain table entries. For now this is a + * fixed size direct mapping cache, but this should be adapted to the size of + * the sparse image and maybe converted to a set-associative cache. The + * implementation below implements a write-through cache with write allocate. + */ +typedef struct VMDKGTCACHE +{ + /** Cache entries. */ + VMDKGTCACHEENTRY aGTCache[VMDK_GT_CACHE_SIZE]; + /** Number of cache entries (currently unused). */ + unsigned cEntries; +} VMDKGTCACHE, *PVMDKGTCACHE; + +/** + * Complete VMDK image data structure. Mainly a collection of extents and a few + * extra global data fields. + */ +typedef struct VMDKIMAGE +{ + /** Image name. */ + const char *pszFilename; + /** Descriptor file if applicable. */ + PVMDKFILE pFile; + + /** Pointer to the per-disk VD interface list. */ + PVDINTERFACE pVDIfsDisk; + /** Pointer to the per-image VD interface list. */ + PVDINTERFACE pVDIfsImage; + + /** Error interface. */ + PVDINTERFACEERROR pIfError; + /** I/O interface. */ + PVDINTERFACEIOINT pIfIo; + + + /** Pointer to the image extents. */ + PVMDKEXTENT pExtents; + /** Number of image extents. */ + unsigned cExtents; + /** Pointer to the files list, for opening a file referenced multiple + * times only once (happens mainly with raw partition access). */ + PVMDKFILE pFiles; + + /** + * Pointer to an array of segment entries for async I/O. + * This is an optimization because the task number to submit is not known + * and allocating/freeing an array in the read/write functions every time + * is too expensive. + */ + PPDMDATASEG paSegments; + /** Entries available in the segments array. */ + unsigned cSegments; + + /** Open flags passed by VBoxHD layer. */ + unsigned uOpenFlags; + /** Image flags defined during creation or determined during open. */ + unsigned uImageFlags; + /** Total size of the image. */ + uint64_t cbSize; + /** Physical geometry of this image. */ + VDGEOMETRY PCHSGeometry; + /** Logical geometry of this image. */ + VDGEOMETRY LCHSGeometry; + /** Image UUID. */ + RTUUID ImageUuid; + /** Image modification UUID. */ + RTUUID ModificationUuid; + /** Parent image UUID. */ + RTUUID ParentUuid; + /** Parent image modification UUID. */ + RTUUID ParentModificationUuid; + + /** Pointer to grain table cache, if this image contains sparse extents. */ + PVMDKGTCACHE pGTCache; + /** Pointer to the descriptor (NULL if no separate descriptor file). */ + char *pDescData; + /** Allocation size of the descriptor file. */ + size_t cbDescAlloc; + /** Parsed descriptor file content. */ + VMDKDESCRIPTOR Descriptor; + /** The static region list. */ + VDREGIONLIST RegionList; +} VMDKIMAGE; + + +/** State for the input/output callout of the inflate reader/deflate writer. */ +typedef struct VMDKCOMPRESSIO +{ + /* Image this operation relates to. */ + PVMDKIMAGE pImage; + /* Current read position. */ + ssize_t iOffset; + /* Size of the compressed grain buffer (available data). */ + size_t cbCompGrain; + /* Pointer to the compressed grain buffer. */ + void *pvCompGrain; +} VMDKCOMPRESSIO; + + +/** Tracks async grain allocation. */ +typedef struct VMDKGRAINALLOCASYNC +{ + /** Flag whether the allocation failed. */ + bool fIoErr; + /** Current number of transfers pending. + * If reached 0 and there is an error the old state is restored. */ + unsigned cIoXfersPending; + /** Sector number */ + uint64_t uSector; + /** Flag whether the grain table needs to be updated. */ + bool fGTUpdateNeeded; + /** Extent the allocation happens. */ + PVMDKEXTENT pExtent; + /** Position of the new grain, required for the grain table update. */ + uint64_t uGrainOffset; + /** Grain table sector. */ + uint64_t uGTSector; + /** Backup grain table sector. */ + uint64_t uRGTSector; +} VMDKGRAINALLOCASYNC, *PVMDKGRAINALLOCASYNC; + +/** + * State information for vmdkRename() and helpers. + */ +typedef struct VMDKRENAMESTATE +{ + /** Array of old filenames. */ + char **apszOldName; + /** Array of new filenames. */ + char **apszNewName; + /** Array of new lines in the extent descriptor. */ + char **apszNewLines; + /** Name of the old descriptor file if not a sparse image. */ + char *pszOldDescName; + /** Flag whether we called vmdkFreeImage(). */ + bool fImageFreed; + /** Flag whther the descriptor is embedded in the image (sparse) or + * in a separate file. */ + bool fEmbeddedDesc; + /** Number of extents in the image. */ + unsigned cExtents; + /** New base filename. */ + char *pszNewBaseName; + /** The old base filename. */ + char *pszOldBaseName; + /** New full filename. */ + char *pszNewFullName; + /** Old full filename. */ + char *pszOldFullName; + /** The old image name. */ + const char *pszOldImageName; + /** Copy of the original VMDK descriptor. */ + VMDKDESCRIPTOR DescriptorCopy; + /** Copy of the extent state for sparse images. */ + VMDKEXTENT ExtentCopy; +} VMDKRENAMESTATE; +/** Pointer to a VMDK rename state. */ +typedef VMDKRENAMESTATE *PVMDKRENAMESTATE; + + +/********************************************************************************************************************************* +* Static Variables * +*********************************************************************************************************************************/ + +/** NULL-terminated array of supported file extensions. */ +static const VDFILEEXTENSION s_aVmdkFileExtensions[] = +{ + {"vmdk", VDTYPE_HDD}, + {NULL, VDTYPE_INVALID} +}; + +/** NULL-terminated array of configuration option. */ +static const VDCONFIGINFO s_aVmdkConfigInfo[] = +{ + /* Options for VMDK raw disks */ + { "RawDrive", NULL, VDCFGVALUETYPE_STRING, 0 }, + { "Partitions", NULL, VDCFGVALUETYPE_STRING, 0 }, + { "BootSector", NULL, VDCFGVALUETYPE_BYTES, 0 }, + { "Relative", NULL, VDCFGVALUETYPE_INTEGER, 0 }, + + /* End of options list */ + { NULL, NULL, VDCFGVALUETYPE_INTEGER, 0 } +}; + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ + +static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent); +static int vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + bool fDelete); + +static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents); +static int vmdkFlushImage(PVMDKIMAGE pImage, PVDIOCTX pIoCtx); +static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment); +static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete, bool fFlush); + +static DECLCALLBACK(int) vmdkAllocGrainComplete(void *pBackendData, PVDIOCTX pIoCtx, + void *pvUser, int rcReq); + +/** + * Internal: open a file (using a file descriptor cache to ensure each file + * is only opened once - anything else can cause locking problems). + */ +static int vmdkFileOpen(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile, + const char *pszBasename, const char *pszFilename, uint32_t fOpen) +{ + int rc = VINF_SUCCESS; + PVMDKFILE pVmdkFile; + + for (pVmdkFile = pImage->pFiles; + pVmdkFile != NULL; + pVmdkFile = pVmdkFile->pNext) + { + if (!strcmp(pszFilename, pVmdkFile->pszFilename)) + { + Assert(fOpen == pVmdkFile->fOpen); + pVmdkFile->uReferences++; + + *ppVmdkFile = pVmdkFile; + + return rc; + } + } + + /* If we get here, there's no matching entry in the cache. */ + pVmdkFile = (PVMDKFILE)RTMemAllocZ(sizeof(VMDKFILE)); + if (!pVmdkFile) + { + *ppVmdkFile = NULL; + return VERR_NO_MEMORY; + } + + pVmdkFile->pszFilename = RTStrDup(pszFilename); + if (!pVmdkFile->pszFilename) + { + RTMemFree(pVmdkFile); + *ppVmdkFile = NULL; + return VERR_NO_MEMORY; + } + + if (pszBasename) + { + pVmdkFile->pszBasename = RTStrDup(pszBasename); + if (!pVmdkFile->pszBasename) + { + RTStrFree((char *)(void *)pVmdkFile->pszFilename); + RTMemFree(pVmdkFile); + *ppVmdkFile = NULL; + return VERR_NO_MEMORY; + } + } + + pVmdkFile->fOpen = fOpen; + + rc = vdIfIoIntFileOpen(pImage->pIfIo, pszFilename, fOpen, + &pVmdkFile->pStorage); + if (RT_SUCCESS(rc)) + { + pVmdkFile->uReferences = 1; + pVmdkFile->pImage = pImage; + pVmdkFile->pNext = pImage->pFiles; + if (pImage->pFiles) + pImage->pFiles->pPrev = pVmdkFile; + pImage->pFiles = pVmdkFile; + *ppVmdkFile = pVmdkFile; + } + else + { + RTStrFree((char *)(void *)pVmdkFile->pszFilename); + RTMemFree(pVmdkFile); + *ppVmdkFile = NULL; + } + + return rc; +} + +/** + * Internal: close a file, updating the file descriptor cache. + */ +static int vmdkFileClose(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile, bool fDelete) +{ + int rc = VINF_SUCCESS; + PVMDKFILE pVmdkFile = *ppVmdkFile; + + AssertPtr(pVmdkFile); + + pVmdkFile->fDelete |= fDelete; + Assert(pVmdkFile->uReferences); + pVmdkFile->uReferences--; + if (pVmdkFile->uReferences == 0) + { + PVMDKFILE pPrev; + PVMDKFILE pNext; + + /* Unchain the element from the list. */ + pPrev = pVmdkFile->pPrev; + pNext = pVmdkFile->pNext; + + if (pNext) + pNext->pPrev = pPrev; + if (pPrev) + pPrev->pNext = pNext; + else + pImage->pFiles = pNext; + + rc = vdIfIoIntFileClose(pImage->pIfIo, pVmdkFile->pStorage); + + bool fFileDel = pVmdkFile->fDelete; + if ( pVmdkFile->pszBasename + && fFileDel) + { + const char *pszSuffix = RTPathSuffix(pVmdkFile->pszBasename); + if ( RTPathHasPath(pVmdkFile->pszBasename) + || !pszSuffix + || ( strcmp(pszSuffix, ".vmdk") + && strcmp(pszSuffix, ".bin") + && strcmp(pszSuffix, ".img"))) + fFileDel = false; + } + + if (fFileDel) + { + int rc2 = vdIfIoIntFileDelete(pImage->pIfIo, pVmdkFile->pszFilename); + if (RT_SUCCESS(rc)) + rc = rc2; + } + else if (pVmdkFile->fDelete) + LogRel(("VMDK: Denying deletion of %s\n", pVmdkFile->pszBasename)); + RTStrFree((char *)(void *)pVmdkFile->pszFilename); + if (pVmdkFile->pszBasename) + RTStrFree((char *)(void *)pVmdkFile->pszBasename); + RTMemFree(pVmdkFile); + } + + *ppVmdkFile = NULL; + return rc; +} + +/*#define VMDK_USE_BLOCK_DECOMP_API - test and enable */ +#ifndef VMDK_USE_BLOCK_DECOMP_API +static DECLCALLBACK(int) vmdkFileInflateHelper(void *pvUser, void *pvBuf, size_t cbBuf, size_t *pcbBuf) +{ + VMDKCOMPRESSIO *pInflateState = (VMDKCOMPRESSIO *)pvUser; + size_t cbInjected = 0; + + Assert(cbBuf); + if (pInflateState->iOffset < 0) + { + *(uint8_t *)pvBuf = RTZIPTYPE_ZLIB; + pvBuf = (uint8_t *)pvBuf + 1; + cbBuf--; + cbInjected = 1; + pInflateState->iOffset = RT_UOFFSETOF(VMDKMARKER, uType); + } + if (!cbBuf) + { + if (pcbBuf) + *pcbBuf = cbInjected; + return VINF_SUCCESS; + } + cbBuf = RT_MIN(cbBuf, pInflateState->cbCompGrain - pInflateState->iOffset); + memcpy(pvBuf, + (uint8_t *)pInflateState->pvCompGrain + pInflateState->iOffset, + cbBuf); + pInflateState->iOffset += cbBuf; + Assert(pcbBuf); + *pcbBuf = cbBuf + cbInjected; + return VINF_SUCCESS; +} +#endif + +/** + * Internal: read from a file and inflate the compressed data, + * distinguishing between async and normal operation + */ +DECLINLINE(int) vmdkFileInflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t uOffset, void *pvBuf, + size_t cbToRead, const void *pcvMarker, + uint64_t *puLBA, uint32_t *pcbMarkerData) +{ + int rc; +#ifndef VMDK_USE_BLOCK_DECOMP_API + PRTZIPDECOMP pZip = NULL; +#endif + VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain; + size_t cbCompSize, cbActuallyRead; + + if (!pcvMarker) + { + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + uOffset, pMarker, RT_UOFFSETOF(VMDKMARKER, uType)); + if (RT_FAILURE(rc)) + return rc; + } + else + { + memcpy(pMarker, pcvMarker, RT_UOFFSETOF(VMDKMARKER, uType)); + /* pcvMarker endianness has already been partially transformed, fix it */ + pMarker->uSector = RT_H2LE_U64(pMarker->uSector); + pMarker->cbSize = RT_H2LE_U32(pMarker->cbSize); + } + + cbCompSize = RT_LE2H_U32(pMarker->cbSize); + if (cbCompSize == 0) + { + AssertMsgFailed(("VMDK: corrupted marker\n")); + return VERR_VD_VMDK_INVALID_FORMAT; + } + + /* Sanity check - the expansion ratio should be much less than 2. */ + Assert(cbCompSize < 2 * cbToRead); + if (cbCompSize >= 2 * cbToRead) + return VERR_VD_VMDK_INVALID_FORMAT; + + /* Compressed grain marker. Data follows immediately. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + uOffset + RT_UOFFSETOF(VMDKMARKER, uType), + (uint8_t *)pExtent->pvCompGrain + + RT_UOFFSETOF(VMDKMARKER, uType), + RT_ALIGN_Z( cbCompSize + + RT_UOFFSETOF(VMDKMARKER, uType), + 512) + - RT_UOFFSETOF(VMDKMARKER, uType)); + + if (puLBA) + *puLBA = RT_LE2H_U64(pMarker->uSector); + if (pcbMarkerData) + *pcbMarkerData = RT_ALIGN( cbCompSize + + RT_UOFFSETOF(VMDKMARKER, uType), + 512); + +#ifdef VMDK_USE_BLOCK_DECOMP_API + rc = RTZipBlockDecompress(RTZIPTYPE_ZLIB, 0 /*fFlags*/, + pExtent->pvCompGrain, cbCompSize + RT_UOFFSETOF(VMDKMARKER, uType), NULL, + pvBuf, cbToRead, &cbActuallyRead); +#else + VMDKCOMPRESSIO InflateState; + InflateState.pImage = pImage; + InflateState.iOffset = -1; + InflateState.cbCompGrain = cbCompSize + RT_UOFFSETOF(VMDKMARKER, uType); + InflateState.pvCompGrain = pExtent->pvCompGrain; + + rc = RTZipDecompCreate(&pZip, &InflateState, vmdkFileInflateHelper); + if (RT_FAILURE(rc)) + return rc; + rc = RTZipDecompress(pZip, pvBuf, cbToRead, &cbActuallyRead); + RTZipDecompDestroy(pZip); +#endif /* !VMDK_USE_BLOCK_DECOMP_API */ + if (RT_FAILURE(rc)) + { + if (rc == VERR_ZIP_CORRUPTED) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: Compressed image is corrupted '%s'"), pExtent->pszFullname); + return rc; + } + if (cbActuallyRead != cbToRead) + rc = VERR_VD_VMDK_INVALID_FORMAT; + return rc; +} + +static DECLCALLBACK(int) vmdkFileDeflateHelper(void *pvUser, const void *pvBuf, size_t cbBuf) +{ + VMDKCOMPRESSIO *pDeflateState = (VMDKCOMPRESSIO *)pvUser; + + Assert(cbBuf); + if (pDeflateState->iOffset < 0) + { + pvBuf = (const uint8_t *)pvBuf + 1; + cbBuf--; + pDeflateState->iOffset = RT_UOFFSETOF(VMDKMARKER, uType); + } + if (!cbBuf) + return VINF_SUCCESS; + if (pDeflateState->iOffset + cbBuf > pDeflateState->cbCompGrain) + return VERR_BUFFER_OVERFLOW; + memcpy((uint8_t *)pDeflateState->pvCompGrain + pDeflateState->iOffset, + pvBuf, cbBuf); + pDeflateState->iOffset += cbBuf; + return VINF_SUCCESS; +} + +/** + * Internal: deflate the uncompressed data and write to a file, + * distinguishing between async and normal operation + */ +DECLINLINE(int) vmdkFileDeflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t uOffset, const void *pvBuf, + size_t cbToWrite, uint64_t uLBA, + uint32_t *pcbMarkerData) +{ + int rc; + PRTZIPCOMP pZip = NULL; + VMDKCOMPRESSIO DeflateState; + + DeflateState.pImage = pImage; + DeflateState.iOffset = -1; + DeflateState.cbCompGrain = pExtent->cbCompGrain; + DeflateState.pvCompGrain = pExtent->pvCompGrain; + + rc = RTZipCompCreate(&pZip, &DeflateState, vmdkFileDeflateHelper, + RTZIPTYPE_ZLIB, RTZIPLEVEL_DEFAULT); + if (RT_FAILURE(rc)) + return rc; + rc = RTZipCompress(pZip, pvBuf, cbToWrite); + if (RT_SUCCESS(rc)) + rc = RTZipCompFinish(pZip); + RTZipCompDestroy(pZip); + if (RT_SUCCESS(rc)) + { + Assert( DeflateState.iOffset > 0 + && (size_t)DeflateState.iOffset <= DeflateState.cbCompGrain); + + /* pad with zeroes to get to a full sector size */ + uint32_t uSize = DeflateState.iOffset; + if (uSize % 512) + { + uint32_t uSizeAlign = RT_ALIGN(uSize, 512); + memset((uint8_t *)pExtent->pvCompGrain + uSize, '\0', + uSizeAlign - uSize); + uSize = uSizeAlign; + } + + if (pcbMarkerData) + *pcbMarkerData = uSize; + + /* Compressed grain marker. Data follows immediately. */ + VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain; + pMarker->uSector = RT_H2LE_U64(uLBA); + pMarker->cbSize = RT_H2LE_U32( DeflateState.iOffset + - RT_UOFFSETOF(VMDKMARKER, uType)); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + uOffset, pMarker, uSize); + if (RT_FAILURE(rc)) + return rc; + } + return rc; +} + + +/** + * Internal: check if all files are closed, prevent leaking resources. + */ +static int vmdkFileCheckAllClose(PVMDKIMAGE pImage) +{ + int rc = VINF_SUCCESS, rc2; + PVMDKFILE pVmdkFile; + + Assert(pImage->pFiles == NULL); + for (pVmdkFile = pImage->pFiles; + pVmdkFile != NULL; + pVmdkFile = pVmdkFile->pNext) + { + LogRel(("VMDK: leaking reference to file \"%s\"\n", + pVmdkFile->pszFilename)); + pImage->pFiles = pVmdkFile->pNext; + + rc2 = vmdkFileClose(pImage, &pVmdkFile, pVmdkFile->fDelete); + + if (RT_SUCCESS(rc)) + rc = rc2; + } + return rc; +} + +/** + * Internal: truncate a string (at a UTF8 code point boundary) and encode the + * critical non-ASCII characters. + */ +static char *vmdkEncodeString(const char *psz) +{ + char szEnc[VMDK_ENCODED_COMMENT_MAX + 3]; + char *pszDst = szEnc; + + AssertPtr(psz); + + for (; *psz; psz = RTStrNextCp(psz)) + { + char *pszDstPrev = pszDst; + RTUNICP Cp = RTStrGetCp(psz); + if (Cp == '\\') + { + pszDst = RTStrPutCp(pszDst, Cp); + pszDst = RTStrPutCp(pszDst, Cp); + } + else if (Cp == '\n') + { + pszDst = RTStrPutCp(pszDst, '\\'); + pszDst = RTStrPutCp(pszDst, 'n'); + } + else if (Cp == '\r') + { + pszDst = RTStrPutCp(pszDst, '\\'); + pszDst = RTStrPutCp(pszDst, 'r'); + } + else + pszDst = RTStrPutCp(pszDst, Cp); + if (pszDst - szEnc >= VMDK_ENCODED_COMMENT_MAX - 1) + { + pszDst = pszDstPrev; + break; + } + } + *pszDst = '\0'; + return RTStrDup(szEnc); +} + +/** + * Internal: decode a string and store it into the specified string. + */ +static int vmdkDecodeString(const char *pszEncoded, char *psz, size_t cb) +{ + int rc = VINF_SUCCESS; + char szBuf[4]; + + if (!cb) + return VERR_BUFFER_OVERFLOW; + + AssertPtr(psz); + + for (; *pszEncoded; pszEncoded = RTStrNextCp(pszEncoded)) + { + char *pszDst = szBuf; + RTUNICP Cp = RTStrGetCp(pszEncoded); + if (Cp == '\\') + { + pszEncoded = RTStrNextCp(pszEncoded); + RTUNICP CpQ = RTStrGetCp(pszEncoded); + if (CpQ == 'n') + RTStrPutCp(pszDst, '\n'); + else if (CpQ == 'r') + RTStrPutCp(pszDst, '\r'); + else if (CpQ == '\0') + { + rc = VERR_VD_VMDK_INVALID_HEADER; + break; + } + else + RTStrPutCp(pszDst, CpQ); + } + else + pszDst = RTStrPutCp(pszDst, Cp); + + /* Need to leave space for terminating NUL. */ + if ((size_t)(pszDst - szBuf) + 1 >= cb) + { + rc = VERR_BUFFER_OVERFLOW; + break; + } + memcpy(psz, szBuf, pszDst - szBuf); + psz += pszDst - szBuf; + } + *psz = '\0'; + return rc; +} + +/** + * Internal: free all buffers associated with grain directories. + */ +static void vmdkFreeGrainDirectory(PVMDKEXTENT pExtent) +{ + if (pExtent->pGD) + { + RTMemFree(pExtent->pGD); + pExtent->pGD = NULL; + } + if (pExtent->pRGD) + { + RTMemFree(pExtent->pRGD); + pExtent->pRGD = NULL; + } +} + +/** + * Internal: allocate the compressed/uncompressed buffers for streamOptimized + * images. + */ +static int vmdkAllocStreamBuffers(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) +{ + int rc = VINF_SUCCESS; + + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + /* streamOptimized extents need a compressed grain buffer, which must + * be big enough to hold uncompressible data (which needs ~8 bytes + * more than the uncompressed data), the marker and padding. */ + pExtent->cbCompGrain = RT_ALIGN_Z( VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) + + 8 + sizeof(VMDKMARKER), 512); + pExtent->pvCompGrain = RTMemAlloc(pExtent->cbCompGrain); + if (RT_LIKELY(pExtent->pvCompGrain)) + { + /* streamOptimized extents need a decompressed grain buffer. */ + pExtent->pvGrain = RTMemAlloc(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + if (!pExtent->pvGrain) + rc = VERR_NO_MEMORY; + } + else + rc = VERR_NO_MEMORY; + } + + if (RT_FAILURE(rc)) + vmdkFreeStreamBuffers(pExtent); + return rc; +} + +/** + * Internal: allocate all buffers associated with grain directories. + */ +static int vmdkAllocGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) +{ + RT_NOREF1(pImage); + int rc = VINF_SUCCESS; + size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t); + + pExtent->pGD = (uint32_t *)RTMemAllocZ(cbGD); + if (RT_LIKELY(pExtent->pGD)) + { + if (pExtent->uSectorRGD) + { + pExtent->pRGD = (uint32_t *)RTMemAllocZ(cbGD); + if (RT_UNLIKELY(!pExtent->pRGD)) + rc = VERR_NO_MEMORY; + } + } + else + rc = VERR_NO_MEMORY; + + if (RT_FAILURE(rc)) + vmdkFreeGrainDirectory(pExtent); + return rc; +} + +/** + * Converts the grain directory from little to host endianess. + * + * @returns nothing. + * @param pGD The grain directory. + * @param cGDEntries Number of entries in the grain directory to convert. + */ +DECLINLINE(void) vmdkGrainDirectoryConvToHost(uint32_t *pGD, uint32_t cGDEntries) +{ + uint32_t *pGDTmp = pGD; + + for (uint32_t i = 0; i < cGDEntries; i++, pGDTmp++) + *pGDTmp = RT_LE2H_U32(*pGDTmp); +} + +/** + * Read the grain directory and allocated grain tables verifying them against + * their back up copies if available. + * + * @returns VBox status code. + * @param pImage Image instance data. + * @param pExtent The VMDK extent. + */ +static int vmdkReadGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) +{ + int rc = VINF_SUCCESS; + size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t); + + AssertReturn(( pExtent->enmType == VMDKETYPE_HOSTED_SPARSE + && pExtent->uSectorGD != VMDK_GD_AT_END + && pExtent->uSectorRGD != VMDK_GD_AT_END), VERR_INTERNAL_ERROR); + + rc = vmdkAllocGrainDirectory(pImage, pExtent); + if (RT_SUCCESS(rc)) + { + /* The VMDK 1.1 spec seems to talk about compressed grain directories, + * but in reality they are not compressed. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorGD), + pExtent->pGD, cbGD); + if (RT_SUCCESS(rc)) + { + vmdkGrainDirectoryConvToHost(pExtent->pGD, pExtent->cGDEntries); + + if ( pExtent->uSectorRGD + && !(pImage->uOpenFlags & VD_OPEN_FLAGS_SKIP_CONSISTENCY_CHECKS)) + { + /* The VMDK 1.1 spec seems to talk about compressed grain directories, + * but in reality they are not compressed. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorRGD), + pExtent->pRGD, cbGD); + if (RT_SUCCESS(rc)) + { + vmdkGrainDirectoryConvToHost(pExtent->pRGD, pExtent->cGDEntries); + + /* Check grain table and redundant grain table for consistency. */ + size_t cbGT = pExtent->cGTEntries * sizeof(uint32_t); + size_t cbGTBuffers = cbGT; /* Start with space for one GT. */ + size_t cbGTBuffersMax = _1M; + + uint32_t *pTmpGT1 = (uint32_t *)RTMemAlloc(cbGTBuffers); + uint32_t *pTmpGT2 = (uint32_t *)RTMemAlloc(cbGTBuffers); + + if ( !pTmpGT1 + || !pTmpGT2) + rc = VERR_NO_MEMORY; + + size_t i = 0; + uint32_t *pGDTmp = pExtent->pGD; + uint32_t *pRGDTmp = pExtent->pRGD; + + /* Loop through all entries. */ + while (i < pExtent->cGDEntries) + { + uint32_t uGTStart = *pGDTmp; + uint32_t uRGTStart = *pRGDTmp; + size_t cbGTRead = cbGT; + + /* If no grain table is allocated skip the entry. */ + if (*pGDTmp == 0 && *pRGDTmp == 0) + { + i++; + continue; + } + + if (*pGDTmp == 0 || *pRGDTmp == 0 || *pGDTmp == *pRGDTmp) + { + /* Just one grain directory entry refers to a not yet allocated + * grain table or both grain directory copies refer to the same + * grain table. Not allowed. */ + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: inconsistent references to grain directory in '%s'"), pExtent->pszFullname); + break; + } + + i++; + pGDTmp++; + pRGDTmp++; + + /* + * Read a few tables at once if adjacent to decrease the number + * of I/O requests. Read at maximum 1MB at once. + */ + while ( i < pExtent->cGDEntries + && cbGTRead < cbGTBuffersMax) + { + /* If no grain table is allocated skip the entry. */ + if (*pGDTmp == 0 && *pRGDTmp == 0) + { + i++; + continue; + } + + if (*pGDTmp == 0 || *pRGDTmp == 0 || *pGDTmp == *pRGDTmp) + { + /* Just one grain directory entry refers to a not yet allocated + * grain table or both grain directory copies refer to the same + * grain table. Not allowed. */ + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: inconsistent references to grain directory in '%s'"), pExtent->pszFullname); + break; + } + + /* Check that the start offsets are adjacent.*/ + if ( VMDK_SECTOR2BYTE(uGTStart) + cbGTRead != VMDK_SECTOR2BYTE(*pGDTmp) + || VMDK_SECTOR2BYTE(uRGTStart) + cbGTRead != VMDK_SECTOR2BYTE(*pRGDTmp)) + break; + + i++; + pGDTmp++; + pRGDTmp++; + cbGTRead += cbGT; + } + + /* Increase buffers if required. */ + if ( RT_SUCCESS(rc) + && cbGTBuffers < cbGTRead) + { + uint32_t *pTmp; + pTmp = (uint32_t *)RTMemRealloc(pTmpGT1, cbGTRead); + if (pTmp) + { + pTmpGT1 = pTmp; + pTmp = (uint32_t *)RTMemRealloc(pTmpGT2, cbGTRead); + if (pTmp) + pTmpGT2 = pTmp; + else + rc = VERR_NO_MEMORY; + } + else + rc = VERR_NO_MEMORY; + + if (rc == VERR_NO_MEMORY) + { + /* Reset to the old values. */ + rc = VINF_SUCCESS; + i -= cbGTRead / cbGT; + cbGTRead = cbGT; + + /* Don't try to increase the buffer again in the next run. */ + cbGTBuffersMax = cbGTBuffers; + } + } + + if (RT_SUCCESS(rc)) + { + /* The VMDK 1.1 spec seems to talk about compressed grain tables, + * but in reality they are not compressed. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGTStart), + pTmpGT1, cbGTRead); + if (RT_FAILURE(rc)) + { + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error reading grain table in '%s'"), pExtent->pszFullname); + break; + } + /* The VMDK 1.1 spec seems to talk about compressed grain tables, + * but in reality they are not compressed. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uRGTStart), + pTmpGT2, cbGTRead); + if (RT_FAILURE(rc)) + { + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error reading backup grain table in '%s'"), pExtent->pszFullname); + break; + } + if (memcmp(pTmpGT1, pTmpGT2, cbGTRead)) + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: inconsistency between grain table and backup grain table in '%s'"), pExtent->pszFullname); + break; + } + } + } /* while (i < pExtent->cGDEntries) */ + + /** @todo figure out what to do for unclean VMDKs. */ + if (pTmpGT1) + RTMemFree(pTmpGT1); + if (pTmpGT2) + RTMemFree(pTmpGT2); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: could not read redundant grain directory in '%s'"), pExtent->pszFullname); + } + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: could not read grain directory in '%s': %Rrc"), pExtent->pszFullname, rc); + } + + if (RT_FAILURE(rc)) + vmdkFreeGrainDirectory(pExtent); + return rc; +} + +/** + * Creates a new grain directory for the given extent at the given start sector. + * + * @returns VBox status code. + * @param pImage Image instance data. + * @param pExtent The VMDK extent. + * @param uStartSector Where the grain directory should be stored in the image. + * @param fPreAlloc Flag whether to pre allocate the grain tables at this point. + */ +static int vmdkCreateGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t uStartSector, bool fPreAlloc) +{ + int rc = VINF_SUCCESS; + unsigned i; + size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t); + size_t cbGDRounded = RT_ALIGN_64(cbGD, 512); + size_t cbGTRounded; + uint64_t cbOverhead; + + if (fPreAlloc) + { + cbGTRounded = RT_ALIGN_64(pExtent->cGDEntries * pExtent->cGTEntries * sizeof(uint32_t), 512); + cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded + cbGTRounded; + } + else + { + /* Use a dummy start sector for layout computation. */ + if (uStartSector == VMDK_GD_AT_END) + uStartSector = 1; + cbGTRounded = 0; + cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded; + } + + /* For streamOptimized extents there is only one grain directory, + * and for all others take redundant grain directory into account. */ + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + cbOverhead = RT_ALIGN_64(cbOverhead, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + } + else + { + cbOverhead += cbGDRounded + cbGTRounded; + cbOverhead = RT_ALIGN_64(cbOverhead, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + rc = vdIfIoIntFileSetSize(pImage->pIfIo, pExtent->pFile->pStorage, cbOverhead); + } + + if (RT_SUCCESS(rc)) + { + pExtent->uAppendPosition = cbOverhead; + pExtent->cOverheadSectors = VMDK_BYTE2SECTOR(cbOverhead); + + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + pExtent->uSectorRGD = 0; + pExtent->uSectorGD = uStartSector; + } + else + { + pExtent->uSectorRGD = uStartSector; + pExtent->uSectorGD = uStartSector + VMDK_BYTE2SECTOR(cbGDRounded + cbGTRounded); + } + + rc = vmdkAllocStreamBuffers(pImage, pExtent); + if (RT_SUCCESS(rc)) + { + rc = vmdkAllocGrainDirectory(pImage, pExtent); + if ( RT_SUCCESS(rc) + && fPreAlloc) + { + uint32_t uGTSectorLE; + uint64_t uOffsetSectors; + + if (pExtent->pRGD) + { + uOffsetSectors = pExtent->uSectorRGD + VMDK_BYTE2SECTOR(cbGDRounded); + for (i = 0; i < pExtent->cGDEntries; i++) + { + pExtent->pRGD[i] = uOffsetSectors; + uGTSectorLE = RT_H2LE_U64(uOffsetSectors); + /* Write the redundant grain directory entry to disk. */ + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + i * sizeof(uGTSectorLE), + &uGTSectorLE, sizeof(uGTSectorLE)); + if (RT_FAILURE(rc)) + { + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write new redundant grain directory entry in '%s'"), pExtent->pszFullname); + break; + } + uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t)); + } + } + + if (RT_SUCCESS(rc)) + { + uOffsetSectors = pExtent->uSectorGD + VMDK_BYTE2SECTOR(cbGDRounded); + for (i = 0; i < pExtent->cGDEntries; i++) + { + pExtent->pGD[i] = uOffsetSectors; + uGTSectorLE = RT_H2LE_U64(uOffsetSectors); + /* Write the grain directory entry to disk. */ + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorGD) + i * sizeof(uGTSectorLE), + &uGTSectorLE, sizeof(uGTSectorLE)); + if (RT_FAILURE(rc)) + { + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write new grain directory entry in '%s'"), pExtent->pszFullname); + break; + } + uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t)); + } + } + } + } + } + + if (RT_FAILURE(rc)) + vmdkFreeGrainDirectory(pExtent); + return rc; +} + +/** + * Unquotes the given string returning the result in a separate buffer. + * + * @returns VBox status code. + * @param pImage The VMDK image state. + * @param pszStr The string to unquote. + * @param ppszUnquoted Where to store the return value, use RTMemTmpFree to + * free. + * @param ppszNext Where to store the pointer to any character following + * the quoted value, optional. + */ +static int vmdkStringUnquote(PVMDKIMAGE pImage, const char *pszStr, + char **ppszUnquoted, char **ppszNext) +{ + const char *pszStart = pszStr; + char *pszQ; + char *pszUnquoted; + + /* Skip over whitespace. */ + while (*pszStr == ' ' || *pszStr == '\t') + pszStr++; + + if (*pszStr != '"') + { + pszQ = (char *)pszStr; + while (*pszQ && *pszQ != ' ' && *pszQ != '\t') + pszQ++; + } + else + { + pszStr++; + pszQ = (char *)strchr(pszStr, '"'); + if (pszQ == NULL) + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrectly quoted value in descriptor in '%s' (raw value %s)"), + pImage->pszFilename, pszStart); + } + + pszUnquoted = (char *)RTMemTmpAlloc(pszQ - pszStr + 1); + if (!pszUnquoted) + return VERR_NO_MEMORY; + memcpy(pszUnquoted, pszStr, pszQ - pszStr); + pszUnquoted[pszQ - pszStr] = '\0'; + *ppszUnquoted = pszUnquoted; + if (ppszNext) + *ppszNext = pszQ + 1; + return VINF_SUCCESS; +} + +static int vmdkDescInitStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszLine) +{ + char *pEnd = pDescriptor->aLines[pDescriptor->cLines]; + ssize_t cbDiff = strlen(pszLine) + 1; + + if ( pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1 + && pEnd - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff) + return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); + + memcpy(pEnd, pszLine, cbDiff); + pDescriptor->cLines++; + pDescriptor->aLines[pDescriptor->cLines] = pEnd + cbDiff; + pDescriptor->fDirty = true; + + return VINF_SUCCESS; +} + +static bool vmdkDescGetStr(PVMDKDESCRIPTOR pDescriptor, unsigned uStart, + const char *pszKey, const char **ppszValue) +{ + size_t cbKey = strlen(pszKey); + const char *pszValue; + + while (uStart != 0) + { + if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey)) + { + /* Key matches, check for a '=' (preceded by whitespace). */ + pszValue = pDescriptor->aLines[uStart] + cbKey; + while (*pszValue == ' ' || *pszValue == '\t') + pszValue++; + if (*pszValue == '=') + { + *ppszValue = pszValue + 1; + break; + } + } + uStart = pDescriptor->aNextLines[uStart]; + } + return !!uStart; +} + +static int vmdkDescSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + unsigned uStart, + const char *pszKey, const char *pszValue) +{ + char *pszTmp = NULL; /* (MSC naturally cannot figure this isn't used uninitialized) */ + size_t cbKey = strlen(pszKey); + unsigned uLast = 0; + + while (uStart != 0) + { + if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey)) + { + /* Key matches, check for a '=' (preceded by whitespace). */ + pszTmp = pDescriptor->aLines[uStart] + cbKey; + while (*pszTmp == ' ' || *pszTmp == '\t') + pszTmp++; + if (*pszTmp == '=') + { + pszTmp++; + /** @todo r=bird: Doesn't skipping trailing blanks here just cause unecessary + * bloat and potentially out of space error? */ + while (*pszTmp == ' ' || *pszTmp == '\t') + pszTmp++; + break; + } + } + if (!pDescriptor->aNextLines[uStart]) + uLast = uStart; + uStart = pDescriptor->aNextLines[uStart]; + } + if (uStart) + { + if (pszValue) + { + /* Key already exists, replace existing value. */ + size_t cbOldVal = strlen(pszTmp); + size_t cbNewVal = strlen(pszValue); + ssize_t cbDiff = cbNewVal - cbOldVal; + /* Check for buffer overflow. */ + if ( pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[0] + > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff) + return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); + + memmove(pszTmp + cbNewVal, pszTmp + cbOldVal, + pDescriptor->aLines[pDescriptor->cLines] - pszTmp - cbOldVal); + memcpy(pszTmp, pszValue, cbNewVal + 1); + for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) + pDescriptor->aLines[i] += cbDiff; + } + else + { + memmove(pDescriptor->aLines[uStart], pDescriptor->aLines[uStart+1], + pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uStart+1] + 1); + for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) + { + pDescriptor->aLines[i-1] = pDescriptor->aLines[i]; + if (pDescriptor->aNextLines[i]) + pDescriptor->aNextLines[i-1] = pDescriptor->aNextLines[i] - 1; + else + pDescriptor->aNextLines[i-1] = 0; + } + pDescriptor->cLines--; + /* Adjust starting line numbers of following descriptor sections. */ + if (uStart < pDescriptor->uFirstExtent) + pDescriptor->uFirstExtent--; + if (uStart < pDescriptor->uFirstDDB) + pDescriptor->uFirstDDB--; + } + } + else + { + /* Key doesn't exist, append after the last entry in this category. */ + if (!pszValue) + { + /* Key doesn't exist, and it should be removed. Simply a no-op. */ + return VINF_SUCCESS; + } + cbKey = strlen(pszKey); + size_t cbValue = strlen(pszValue); + ssize_t cbDiff = cbKey + 1 + cbValue + 1; + /* Check for buffer overflow. */ + if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1) + || ( pDescriptor->aLines[pDescriptor->cLines] + - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)) + return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); + for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--) + { + pDescriptor->aLines[i] = pDescriptor->aLines[i - 1]; + if (pDescriptor->aNextLines[i - 1]) + pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1; + else + pDescriptor->aNextLines[i] = 0; + } + uStart = uLast + 1; + pDescriptor->aNextLines[uLast] = uStart; + pDescriptor->aNextLines[uStart] = 0; + pDescriptor->cLines++; + pszTmp = pDescriptor->aLines[uStart]; + memmove(pszTmp + cbDiff, pszTmp, + pDescriptor->aLines[pDescriptor->cLines] - pszTmp); + memcpy(pDescriptor->aLines[uStart], pszKey, cbKey); + pDescriptor->aLines[uStart][cbKey] = '='; + memcpy(pDescriptor->aLines[uStart] + cbKey + 1, pszValue, cbValue + 1); + for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) + pDescriptor->aLines[i] += cbDiff; + + /* Adjust starting line numbers of following descriptor sections. */ + if (uStart <= pDescriptor->uFirstExtent) + pDescriptor->uFirstExtent++; + if (uStart <= pDescriptor->uFirstDDB) + pDescriptor->uFirstDDB++; + } + pDescriptor->fDirty = true; + return VINF_SUCCESS; +} + +static int vmdkDescBaseGetU32(PVMDKDESCRIPTOR pDescriptor, const char *pszKey, + uint32_t *puValue) +{ + const char *pszValue; + + if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey, + &pszValue)) + return VERR_VD_VMDK_VALUE_NOT_FOUND; + return RTStrToUInt32Ex(pszValue, NULL, 10, puValue); +} + +/** + * Returns the value of the given key as a string allocating the necessary memory. + * + * @returns VBox status code. + * @retval VERR_VD_VMDK_VALUE_NOT_FOUND if the value could not be found. + * @param pImage The VMDK image state. + * @param pDescriptor The descriptor to fetch the value from. + * @param pszKey The key to get the value from. + * @param ppszValue Where to store the return value, use RTMemTmpFree to + * free. + */ +static int vmdkDescBaseGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, char **ppszValue) +{ + const char *pszValue; + char *pszValueUnquoted; + + if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey, + &pszValue)) + return VERR_VD_VMDK_VALUE_NOT_FOUND; + int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); + if (RT_FAILURE(rc)) + return rc; + *ppszValue = pszValueUnquoted; + return rc; +} + +static int vmdkDescBaseSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, const char *pszValue) +{ + char *pszValueQuoted; + + RTStrAPrintf(&pszValueQuoted, "\"%s\"", pszValue); + if (!pszValueQuoted) + return VERR_NO_STR_MEMORY; + int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, pszKey, + pszValueQuoted); + RTStrFree(pszValueQuoted); + return rc; +} + +static void vmdkDescExtRemoveDummy(PVMDKIMAGE pImage, + PVMDKDESCRIPTOR pDescriptor) +{ + RT_NOREF1(pImage); + unsigned uEntry = pDescriptor->uFirstExtent; + ssize_t cbDiff; + + if (!uEntry) + return; + + cbDiff = strlen(pDescriptor->aLines[uEntry]) + 1; + /* Move everything including \0 in the entry marking the end of buffer. */ + memmove(pDescriptor->aLines[uEntry], pDescriptor->aLines[uEntry + 1], + pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uEntry + 1] + 1); + for (unsigned i = uEntry + 1; i <= pDescriptor->cLines; i++) + { + pDescriptor->aLines[i - 1] = pDescriptor->aLines[i] - cbDiff; + if (pDescriptor->aNextLines[i]) + pDescriptor->aNextLines[i - 1] = pDescriptor->aNextLines[i] - 1; + else + pDescriptor->aNextLines[i - 1] = 0; + } + pDescriptor->cLines--; + if (pDescriptor->uFirstDDB) + pDescriptor->uFirstDDB--; + + return; +} + +static void vmdkDescExtRemoveByLine(PVMDKIMAGE pImage, + PVMDKDESCRIPTOR pDescriptor, unsigned uLine) +{ + RT_NOREF1(pImage); + unsigned uEntry = uLine; + ssize_t cbDiff; + if (!uEntry) + return; + cbDiff = strlen(pDescriptor->aLines[uEntry]) + 1; + /* Move everything including \0 in the entry marking the end of buffer. */ + memmove(pDescriptor->aLines[uEntry], pDescriptor->aLines[uEntry + 1], + pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uEntry + 1] + 1); + for (unsigned i = uEntry; i <= pDescriptor->cLines; i++) + { + if (i != uEntry) + pDescriptor->aLines[i - 1] = pDescriptor->aLines[i] - cbDiff; + if (pDescriptor->aNextLines[i]) + pDescriptor->aNextLines[i - 1] = pDescriptor->aNextLines[i] - 1; + else + pDescriptor->aNextLines[i - 1] = 0; + } + pDescriptor->cLines--; + if (pDescriptor->uFirstDDB) + pDescriptor->uFirstDDB--; + return; +} + +static int vmdkDescExtInsert(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + VMDKACCESS enmAccess, uint64_t cNominalSectors, + VMDKETYPE enmType, const char *pszBasename, + uint64_t uSectorOffset) +{ + static const char *apszAccess[] = { "NOACCESS", "RDONLY", "RW" }; + static const char *apszType[] = { "", "SPARSE", "FLAT", "ZERO", "VMFS" }; + char *pszTmp; + unsigned uStart = pDescriptor->uFirstExtent, uLast = 0; + char szExt[1024]; + ssize_t cbDiff; + + Assert((unsigned)enmAccess < RT_ELEMENTS(apszAccess)); + Assert((unsigned)enmType < RT_ELEMENTS(apszType)); + + /* Find last entry in extent description. */ + while (uStart) + { + if (!pDescriptor->aNextLines[uStart]) + uLast = uStart; + uStart = pDescriptor->aNextLines[uStart]; + } + + if (enmType == VMDKETYPE_ZERO) + { + RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s ", apszAccess[enmAccess], + cNominalSectors, apszType[enmType]); + } + else if (enmType == VMDKETYPE_FLAT) + { + RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\" %llu", + apszAccess[enmAccess], cNominalSectors, + apszType[enmType], pszBasename, uSectorOffset); + } + else + { + RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\"", + apszAccess[enmAccess], cNominalSectors, + apszType[enmType], pszBasename); + } + cbDiff = strlen(szExt) + 1; + + /* Check for buffer overflow. */ + if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1) + || ( pDescriptor->aLines[pDescriptor->cLines] + - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)) + { + if ((pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G) + && !(pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1)) + { + pImage->cbDescAlloc *= 2; + pDescriptor->cbDescAlloc *= 2; + } + else + return vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); + } + + for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--) + { + pDescriptor->aLines[i] = pDescriptor->aLines[i - 1]; + if (pDescriptor->aNextLines[i - 1]) + pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1; + else + pDescriptor->aNextLines[i] = 0; + } + uStart = uLast + 1; + pDescriptor->aNextLines[uLast] = uStart; + pDescriptor->aNextLines[uStart] = 0; + pDescriptor->cLines++; + pszTmp = pDescriptor->aLines[uStart]; + memmove(pszTmp + cbDiff, pszTmp, + pDescriptor->aLines[pDescriptor->cLines] - pszTmp); + memcpy(pDescriptor->aLines[uStart], szExt, cbDiff); + for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) + pDescriptor->aLines[i] += cbDiff; + + /* Adjust starting line numbers of following descriptor sections. */ + if (uStart <= pDescriptor->uFirstDDB) + pDescriptor->uFirstDDB++; + + pDescriptor->fDirty = true; + return VINF_SUCCESS; +} + +/** + * Returns the value of the given key from the DDB as a string allocating + * the necessary memory. + * + * @returns VBox status code. + * @retval VERR_VD_VMDK_VALUE_NOT_FOUND if the value could not be found. + * @param pImage The VMDK image state. + * @param pDescriptor The descriptor to fetch the value from. + * @param pszKey The key to get the value from. + * @param ppszValue Where to store the return value, use RTMemTmpFree to + * free. + */ +static int vmdkDescDDBGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, char **ppszValue) +{ + const char *pszValue; + char *pszValueUnquoted; + + if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey, + &pszValue)) + return VERR_VD_VMDK_VALUE_NOT_FOUND; + int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); + if (RT_FAILURE(rc)) + return rc; + *ppszValue = pszValueUnquoted; + return rc; +} + +static int vmdkDescDDBGetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, uint32_t *puValue) +{ + const char *pszValue; + char *pszValueUnquoted; + + if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey, + &pszValue)) + return VERR_VD_VMDK_VALUE_NOT_FOUND; + int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); + if (RT_FAILURE(rc)) + return rc; + rc = RTStrToUInt32Ex(pszValueUnquoted, NULL, 10, puValue); + RTMemTmpFree(pszValueUnquoted); + return rc; +} + +static int vmdkDescDDBGetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, PRTUUID pUuid) +{ + const char *pszValue; + char *pszValueUnquoted; + + if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey, + &pszValue)) + return VERR_VD_VMDK_VALUE_NOT_FOUND; + int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); + if (RT_FAILURE(rc)) + return rc; + rc = RTUuidFromStr(pUuid, pszValueUnquoted); + RTMemTmpFree(pszValueUnquoted); + return rc; +} + +static int vmdkDescDDBSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, const char *pszVal) +{ + int rc; + char *pszValQuoted; + + if (pszVal) + { + RTStrAPrintf(&pszValQuoted, "\"%s\"", pszVal); + if (!pszValQuoted) + return VERR_NO_STR_MEMORY; + } + else + pszValQuoted = NULL; + rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey, + pszValQuoted); + if (pszValQuoted) + RTStrFree(pszValQuoted); + return rc; +} + +static int vmdkDescDDBSetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, PCRTUUID pUuid) +{ + char *pszUuid; + + RTStrAPrintf(&pszUuid, "\"%RTuuid\"", pUuid); + if (!pszUuid) + return VERR_NO_STR_MEMORY; + int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey, + pszUuid); + RTStrFree(pszUuid); + return rc; +} + +static int vmdkDescDDBSetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, + const char *pszKey, uint32_t uValue) +{ + char *pszValue; + + RTStrAPrintf(&pszValue, "\"%d\"", uValue); + if (!pszValue) + return VERR_NO_STR_MEMORY; + int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey, + pszValue); + RTStrFree(pszValue); + return rc; +} + +/** + * Splits the descriptor data into individual lines checking for correct line + * endings and descriptor size. + * + * @returns VBox status code. + * @param pImage The image instance. + * @param pDesc The descriptor. + * @param pszTmp The raw descriptor data from the image. + */ +static int vmdkDescSplitLines(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDesc, char *pszTmp) +{ + unsigned cLine = 0; + int rc = VINF_SUCCESS; + + while ( RT_SUCCESS(rc) + && *pszTmp != '\0') + { + pDesc->aLines[cLine++] = pszTmp; + if (cLine >= VMDK_DESCRIPTOR_LINES_MAX) + { + vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); + rc = VERR_VD_VMDK_INVALID_HEADER; + break; + } + + while (*pszTmp != '\0' && *pszTmp != '\n') + { + if (*pszTmp == '\r') + { + if (*(pszTmp + 1) != '\n') + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: unsupported end of line in descriptor in '%s'"), pImage->pszFilename); + break; + } + else + { + /* Get rid of CR character. */ + *pszTmp = '\0'; + } + } + pszTmp++; + } + + if (RT_FAILURE(rc)) + break; + + /* Get rid of LF character. */ + if (*pszTmp == '\n') + { + *pszTmp = '\0'; + pszTmp++; + } + } + + if (RT_SUCCESS(rc)) + { + pDesc->cLines = cLine; + /* Pointer right after the end of the used part of the buffer. */ + pDesc->aLines[cLine] = pszTmp; + } + + return rc; +} + +static int vmdkPreprocessDescriptor(PVMDKIMAGE pImage, char *pDescData, + size_t cbDescData, PVMDKDESCRIPTOR pDescriptor) +{ + pDescriptor->cbDescAlloc = cbDescData; + int rc = vmdkDescSplitLines(pImage, pDescriptor, pDescData); + if (RT_SUCCESS(rc)) + { + if ( strcmp(pDescriptor->aLines[0], "# Disk DescriptorFile") + && strcmp(pDescriptor->aLines[0], "# Disk Descriptor File") + && strcmp(pDescriptor->aLines[0], "#Disk Descriptor File") + && strcmp(pDescriptor->aLines[0], "#Disk DescriptorFile")) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: descriptor does not start as expected in '%s'"), pImage->pszFilename); + else + { + unsigned uLastNonEmptyLine = 0; + + /* Initialize those, because we need to be able to reopen an image. */ + pDescriptor->uFirstDesc = 0; + pDescriptor->uFirstExtent = 0; + pDescriptor->uFirstDDB = 0; + for (unsigned i = 0; i < pDescriptor->cLines; i++) + { + if (*pDescriptor->aLines[i] != '#' && *pDescriptor->aLines[i] != '\0') + { + if ( !strncmp(pDescriptor->aLines[i], "RW", 2) + || !strncmp(pDescriptor->aLines[i], "RDONLY", 6) + || !strncmp(pDescriptor->aLines[i], "NOACCESS", 8) ) + { + /* An extent descriptor. */ + if (!pDescriptor->uFirstDesc || pDescriptor->uFirstDDB) + { + /* Incorrect ordering of entries. */ + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename); + break; + } + if (!pDescriptor->uFirstExtent) + { + pDescriptor->uFirstExtent = i; + uLastNonEmptyLine = 0; + } + } + else if (!strncmp(pDescriptor->aLines[i], "ddb.", 4)) + { + /* A disk database entry. */ + if (!pDescriptor->uFirstDesc || !pDescriptor->uFirstExtent) + { + /* Incorrect ordering of entries. */ + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename); + break; + } + if (!pDescriptor->uFirstDDB) + { + pDescriptor->uFirstDDB = i; + uLastNonEmptyLine = 0; + } + } + else + { + /* A normal entry. */ + if (pDescriptor->uFirstExtent || pDescriptor->uFirstDDB) + { + /* Incorrect ordering of entries. */ + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename); + break; + } + if (!pDescriptor->uFirstDesc) + { + pDescriptor->uFirstDesc = i; + uLastNonEmptyLine = 0; + } + } + if (uLastNonEmptyLine) + pDescriptor->aNextLines[uLastNonEmptyLine] = i; + uLastNonEmptyLine = i; + } + } + } + } + + return rc; +} + +static int vmdkDescSetPCHSGeometry(PVMDKIMAGE pImage, + PCVDGEOMETRY pPCHSGeometry) +{ + int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_PCHS_CYLINDERS, + pPCHSGeometry->cCylinders); + if (RT_FAILURE(rc)) + return rc; + rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_PCHS_HEADS, + pPCHSGeometry->cHeads); + if (RT_FAILURE(rc)) + return rc; + rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_PCHS_SECTORS, + pPCHSGeometry->cSectors); + return rc; +} + +static int vmdkDescSetLCHSGeometry(PVMDKIMAGE pImage, + PCVDGEOMETRY pLCHSGeometry) +{ + int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_LCHS_CYLINDERS, + pLCHSGeometry->cCylinders); + if (RT_FAILURE(rc)) + return rc; + rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_LCHS_HEADS, + + pLCHSGeometry->cHeads); + if (RT_FAILURE(rc)) + return rc; + rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_LCHS_SECTORS, + pLCHSGeometry->cSectors); + return rc; +} + +static int vmdkCreateDescriptor(PVMDKIMAGE pImage, char *pDescData, + size_t cbDescData, PVMDKDESCRIPTOR pDescriptor) +{ + pDescriptor->uFirstDesc = 0; + pDescriptor->uFirstExtent = 0; + pDescriptor->uFirstDDB = 0; + pDescriptor->cLines = 0; + pDescriptor->cbDescAlloc = cbDescData; + pDescriptor->fDirty = false; + pDescriptor->aLines[pDescriptor->cLines] = pDescData; + memset(pDescriptor->aNextLines, '\0', sizeof(pDescriptor->aNextLines)); + + int rc = vmdkDescInitStr(pImage, pDescriptor, "# Disk DescriptorFile"); + if (RT_SUCCESS(rc)) + rc = vmdkDescInitStr(pImage, pDescriptor, "version=1"); + if (RT_SUCCESS(rc)) + { + pDescriptor->uFirstDesc = pDescriptor->cLines - 1; + rc = vmdkDescInitStr(pImage, pDescriptor, ""); + } + if (RT_SUCCESS(rc)) + rc = vmdkDescInitStr(pImage, pDescriptor, "# Extent description"); + if (RT_SUCCESS(rc)) + rc = vmdkDescInitStr(pImage, pDescriptor, "NOACCESS 0 ZERO "); + if (RT_SUCCESS(rc)) + { + pDescriptor->uFirstExtent = pDescriptor->cLines - 1; + rc = vmdkDescInitStr(pImage, pDescriptor, ""); + } + if (RT_SUCCESS(rc)) + { + /* The trailing space is created by VMware, too. */ + rc = vmdkDescInitStr(pImage, pDescriptor, "# The disk Data Base "); + } + if (RT_SUCCESS(rc)) + rc = vmdkDescInitStr(pImage, pDescriptor, "#DDB"); + if (RT_SUCCESS(rc)) + rc = vmdkDescInitStr(pImage, pDescriptor, ""); + if (RT_SUCCESS(rc)) + rc = vmdkDescInitStr(pImage, pDescriptor, "ddb.virtualHWVersion = \"4\""); + if (RT_SUCCESS(rc)) + { + pDescriptor->uFirstDDB = pDescriptor->cLines - 1; + + /* Now that the framework is in place, use the normal functions to insert + * the remaining keys. */ + char szBuf[9]; + RTStrPrintf(szBuf, sizeof(szBuf), "%08x", RTRandU32()); + rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, + "CID", szBuf); + } + if (RT_SUCCESS(rc)) + rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, + "parentCID", "ffffffff"); + if (RT_SUCCESS(rc)) + rc = vmdkDescDDBSetStr(pImage, pDescriptor, "ddb.adapterType", "ide"); + + return rc; +} + +static int vmdkParseDescriptor(PVMDKIMAGE pImage, char *pDescData, size_t cbDescData) +{ + int rc; + unsigned cExtents; + unsigned uLine; + unsigned i; + + rc = vmdkPreprocessDescriptor(pImage, pDescData, cbDescData, + &pImage->Descriptor); + if (RT_FAILURE(rc)) + return rc; + + /* Check version, must be 1. */ + uint32_t uVersion; + rc = vmdkDescBaseGetU32(&pImage->Descriptor, "version", &uVersion); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error finding key 'version' in descriptor in '%s'"), pImage->pszFilename); + if (uVersion != 1) + return vdIfError(pImage->pIfError, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: unsupported format version in descriptor in '%s'"), pImage->pszFilename); + + /* Get image creation type and determine image flags. */ + char *pszCreateType = NULL; /* initialized to make gcc shut up */ + rc = vmdkDescBaseGetStr(pImage, &pImage->Descriptor, "createType", + &pszCreateType); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot get image type from descriptor in '%s'"), pImage->pszFilename); + if ( !strcmp(pszCreateType, "twoGbMaxExtentSparse") + || !strcmp(pszCreateType, "twoGbMaxExtentFlat")) + pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_SPLIT_2G; + else if ( !strcmp(pszCreateType, "partitionedDevice") + || !strcmp(pszCreateType, "fullDevice")) + pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_RAWDISK; + else if (!strcmp(pszCreateType, "streamOptimized")) + pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED; + else if (!strcmp(pszCreateType, "vmfs")) + pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED | VD_VMDK_IMAGE_FLAGS_ESX; + RTMemTmpFree(pszCreateType); + + /* Count the number of extent config entries. */ + for (uLine = pImage->Descriptor.uFirstExtent, cExtents = 0; + uLine != 0; + uLine = pImage->Descriptor.aNextLines[uLine], cExtents++) + /* nothing */; + + if (!pImage->pDescData && cExtents != 1) + { + /* Monolithic image, must have only one extent (already opened). */ + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image may only have one extent in '%s'"), pImage->pszFilename); + } + + if (pImage->pDescData) + { + /* Non-monolithic image, extents need to be allocated. */ + rc = vmdkCreateExtents(pImage, cExtents); + if (RT_FAILURE(rc)) + return rc; + } + + for (i = 0, uLine = pImage->Descriptor.uFirstExtent; + i < cExtents; i++, uLine = pImage->Descriptor.aNextLines[uLine]) + { + char *pszLine = pImage->Descriptor.aLines[uLine]; + + /* Access type of the extent. */ + if (!strncmp(pszLine, "RW", 2)) + { + pImage->pExtents[i].enmAccess = VMDKACCESS_READWRITE; + pszLine += 2; + } + else if (!strncmp(pszLine, "RDONLY", 6)) + { + pImage->pExtents[i].enmAccess = VMDKACCESS_READONLY; + pszLine += 6; + } + else if (!strncmp(pszLine, "NOACCESS", 8)) + { + pImage->pExtents[i].enmAccess = VMDKACCESS_NOACCESS; + pszLine += 8; + } + else + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + if (*pszLine++ != ' ') + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + + /* Nominal size of the extent. */ + rc = RTStrToUInt64Ex(pszLine, &pszLine, 10, + &pImage->pExtents[i].cNominalSectors); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + if (*pszLine++ != ' ') + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + + /* Type of the extent. */ + if (!strncmp(pszLine, "SPARSE", 6)) + { + pImage->pExtents[i].enmType = VMDKETYPE_HOSTED_SPARSE; + pszLine += 6; + } + else if (!strncmp(pszLine, "FLAT", 4)) + { + pImage->pExtents[i].enmType = VMDKETYPE_FLAT; + pszLine += 4; + } + else if (!strncmp(pszLine, "ZERO", 4)) + { + pImage->pExtents[i].enmType = VMDKETYPE_ZERO; + pszLine += 4; + } + else if (!strncmp(pszLine, "VMFS", 4)) + { + pImage->pExtents[i].enmType = VMDKETYPE_VMFS; + pszLine += 4; + } + else + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + + if (pImage->pExtents[i].enmType == VMDKETYPE_ZERO) + { + /* This one has no basename or offset. */ + if (*pszLine == ' ') + pszLine++; + if (*pszLine != '\0') + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + pImage->pExtents[i].pszBasename = NULL; + } + else + { + /* All other extent types have basename and optional offset. */ + if (*pszLine++ != ' ') + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + + /* Basename of the image. Surrounded by quotes. */ + char *pszBasename; + rc = vmdkStringUnquote(pImage, pszLine, &pszBasename, &pszLine); + if (RT_FAILURE(rc)) + return rc; + pImage->pExtents[i].pszBasename = pszBasename; + if (*pszLine == ' ') + { + pszLine++; + if (*pszLine != '\0') + { + /* Optional offset in extent specified. */ + rc = RTStrToUInt64Ex(pszLine, &pszLine, 10, + &pImage->pExtents[i].uSectorOffset); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + } + } + + if (*pszLine != '\0') + return vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); + } + } + + /* Determine PCHS geometry (autogenerate if necessary). */ + rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_PCHS_CYLINDERS, + &pImage->PCHSGeometry.cCylinders); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + pImage->PCHSGeometry.cCylinders = 0; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename); + rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_PCHS_HEADS, + &pImage->PCHSGeometry.cHeads); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + pImage->PCHSGeometry.cHeads = 0; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename); + rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_PCHS_SECTORS, + &pImage->PCHSGeometry.cSectors); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + pImage->PCHSGeometry.cSectors = 0; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename); + if ( pImage->PCHSGeometry.cCylinders == 0 + || pImage->PCHSGeometry.cHeads == 0 + || pImage->PCHSGeometry.cHeads > 16 + || pImage->PCHSGeometry.cSectors == 0 + || pImage->PCHSGeometry.cSectors > 63) + { + /* Mark PCHS geometry as not yet valid (can't do the calculation here + * as the total image size isn't known yet). */ + pImage->PCHSGeometry.cCylinders = 0; + pImage->PCHSGeometry.cHeads = 16; + pImage->PCHSGeometry.cSectors = 63; + } + + /* Determine LCHS geometry (set to 0 if not specified). */ + rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_LCHS_CYLINDERS, + &pImage->LCHSGeometry.cCylinders); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + pImage->LCHSGeometry.cCylinders = 0; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename); + rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_LCHS_HEADS, + &pImage->LCHSGeometry.cHeads); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + pImage->LCHSGeometry.cHeads = 0; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename); + rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, + VMDK_DDB_GEO_LCHS_SECTORS, + &pImage->LCHSGeometry.cSectors); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + pImage->LCHSGeometry.cSectors = 0; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename); + if ( pImage->LCHSGeometry.cCylinders == 0 + || pImage->LCHSGeometry.cHeads == 0 + || pImage->LCHSGeometry.cSectors == 0) + { + pImage->LCHSGeometry.cCylinders = 0; + pImage->LCHSGeometry.cHeads = 0; + pImage->LCHSGeometry.cSectors = 0; + } + + /* Get image UUID. */ + rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID, + &pImage->ImageUuid); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + { + /* Image without UUID. Probably created by VMware and not yet used + * by VirtualBox. Can only be added for images opened in read/write + * mode, so don't bother producing a sensible UUID otherwise. */ + if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + RTUuidClear(&pImage->ImageUuid); + else + { + rc = RTUuidCreate(&pImage->ImageUuid); + if (RT_FAILURE(rc)) + return rc; + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename); + } + } + else if (RT_FAILURE(rc)) + return rc; + + /* Get image modification UUID. */ + rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_MODIFICATION_UUID, + &pImage->ModificationUuid); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + { + /* Image without UUID. Probably created by VMware and not yet used + * by VirtualBox. Can only be added for images opened in read/write + * mode, so don't bother producing a sensible UUID otherwise. */ + if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + RTUuidClear(&pImage->ModificationUuid); + else + { + rc = RTUuidCreate(&pImage->ModificationUuid); + if (RT_FAILURE(rc)) + return rc; + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_MODIFICATION_UUID, + &pImage->ModificationUuid); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing image modification UUID in descriptor in '%s'"), pImage->pszFilename); + } + } + else if (RT_FAILURE(rc)) + return rc; + + /* Get UUID of parent image. */ + rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID, + &pImage->ParentUuid); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + { + /* Image without UUID. Probably created by VMware and not yet used + * by VirtualBox. Can only be added for images opened in read/write + * mode, so don't bother producing a sensible UUID otherwise. */ + if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + RTUuidClear(&pImage->ParentUuid); + else + { + rc = RTUuidClear(&pImage->ParentUuid); + if (RT_FAILURE(rc)) + return rc; + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_PARENT_UUID, &pImage->ParentUuid); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing parent UUID in descriptor in '%s'"), pImage->pszFilename); + } + } + else if (RT_FAILURE(rc)) + return rc; + + /* Get parent image modification UUID. */ + rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_PARENT_MODIFICATION_UUID, + &pImage->ParentModificationUuid); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + { + /* Image without UUID. Probably created by VMware and not yet used + * by VirtualBox. Can only be added for images opened in read/write + * mode, so don't bother producing a sensible UUID otherwise. */ + if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + RTUuidClear(&pImage->ParentModificationUuid); + else + { + RTUuidClear(&pImage->ParentModificationUuid); + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_PARENT_MODIFICATION_UUID, + &pImage->ParentModificationUuid); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing parent modification UUID in descriptor in '%s'"), pImage->pszFilename); + } + } + else if (RT_FAILURE(rc)) + return rc; + + return VINF_SUCCESS; +} + +/** + * Internal : Prepares the descriptor to write to the image. + */ +static int vmdkDescriptorPrepare(PVMDKIMAGE pImage, uint64_t cbLimit, + void **ppvData, size_t *pcbData) +{ + int rc = VINF_SUCCESS; + + /* + * Allocate temporary descriptor buffer. + * In case there is no limit allocate a default + * and increase if required. + */ + size_t cbDescriptor = cbLimit ? cbLimit : 4 * _1K; + char *pszDescriptor = (char *)RTMemAllocZ(cbDescriptor); + size_t offDescriptor = 0; + + if (!pszDescriptor) + return VERR_NO_MEMORY; + + for (unsigned i = 0; i < pImage->Descriptor.cLines; i++) + { + const char *psz = pImage->Descriptor.aLines[i]; + size_t cb = strlen(psz); + + /* + * Increase the descriptor if there is no limit and + * there is not enough room left for this line. + */ + if (offDescriptor + cb + 1 > cbDescriptor) + { + if (cbLimit) + { + rc = vdIfError(pImage->pIfError, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too long in '%s'"), pImage->pszFilename); + break; + } + else + { + char *pszDescriptorNew = NULL; + LogFlow(("Increasing descriptor cache\n")); + + pszDescriptorNew = (char *)RTMemRealloc(pszDescriptor, cbDescriptor + cb + 4 * _1K); + if (!pszDescriptorNew) + { + rc = VERR_NO_MEMORY; + break; + } + pszDescriptor = pszDescriptorNew; + cbDescriptor += cb + 4 * _1K; + } + } + + if (cb > 0) + { + memcpy(pszDescriptor + offDescriptor, psz, cb); + offDescriptor += cb; + } + + memcpy(pszDescriptor + offDescriptor, "\n", 1); + offDescriptor++; + } + + if (RT_SUCCESS(rc)) + { + *ppvData = pszDescriptor; + *pcbData = offDescriptor; + } + else if (pszDescriptor) + RTMemFree(pszDescriptor); + + return rc; +} + +/** + * Internal: write/update the descriptor part of the image. + */ +static int vmdkWriteDescriptor(PVMDKIMAGE pImage, PVDIOCTX pIoCtx) +{ + int rc = VINF_SUCCESS; + uint64_t cbLimit; + uint64_t uOffset; + PVMDKFILE pDescFile; + void *pvDescriptor = NULL; + size_t cbDescriptor; + + if (pImage->pDescData) + { + /* Separate descriptor file. */ + uOffset = 0; + cbLimit = 0; + pDescFile = pImage->pFile; + } + else + { + /* Embedded descriptor file. */ + uOffset = VMDK_SECTOR2BYTE(pImage->pExtents[0].uDescriptorSector); + cbLimit = VMDK_SECTOR2BYTE(pImage->pExtents[0].cDescriptorSectors); + pDescFile = pImage->pExtents[0].pFile; + } + /* Bail out if there is no file to write to. */ + if (pDescFile == NULL) + return VERR_INVALID_PARAMETER; + + rc = vmdkDescriptorPrepare(pImage, cbLimit, &pvDescriptor, &cbDescriptor); + if (RT_SUCCESS(rc)) + { + rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pDescFile->pStorage, + uOffset, pvDescriptor, + cbLimit ? cbLimit : cbDescriptor, + pIoCtx, NULL, NULL); + if ( RT_FAILURE(rc) + && rc != VERR_VD_ASYNC_IO_IN_PROGRESS) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error writing descriptor in '%s'"), pImage->pszFilename); + } + + if (RT_SUCCESS(rc) && !cbLimit) + { + rc = vdIfIoIntFileSetSize(pImage->pIfIo, pDescFile->pStorage, cbDescriptor); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error truncating descriptor in '%s'"), pImage->pszFilename); + } + + if (RT_SUCCESS(rc)) + pImage->Descriptor.fDirty = false; + + if (pvDescriptor) + RTMemFree(pvDescriptor); + return rc; + +} + +/** + * Internal: validate the consistency check values in a binary header. + */ +static int vmdkValidateHeader(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, const SparseExtentHeader *pHeader) +{ + int rc = VINF_SUCCESS; + if (RT_LE2H_U32(pHeader->magicNumber) != VMDK_SPARSE_MAGICNUMBER) + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect magic in sparse extent header in '%s'"), pExtent->pszFullname); + return rc; + } + if (RT_LE2H_U32(pHeader->version) != 1 && RT_LE2H_U32(pHeader->version) != 3) + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: incorrect version in sparse extent header in '%s', not a VMDK 1.0/1.1 conforming file"), pExtent->pszFullname); + return rc; + } + if ( (RT_LE2H_U32(pHeader->flags) & 1) + && ( pHeader->singleEndLineChar != '\n' + || pHeader->nonEndLineChar != ' ' + || pHeader->doubleEndLineChar1 != '\r' + || pHeader->doubleEndLineChar2 != '\n') ) + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: corrupted by CR/LF translation in '%s'"), pExtent->pszFullname); + return rc; + } + if (RT_LE2H_U64(pHeader->descriptorSize) > VMDK_SPARSE_DESCRIPTOR_SIZE_MAX) + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor size out of bounds (%llu vs %llu) '%s'"), + pExtent->pszFullname, RT_LE2H_U64(pHeader->descriptorSize), VMDK_SPARSE_DESCRIPTOR_SIZE_MAX); + return rc; + } + return rc; +} + +/** + * Internal: read metadata belonging to an extent with binary header, i.e. + * as found in monolithic files. + */ +static int vmdkReadBinaryMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + bool fMagicAlreadyRead) +{ + SparseExtentHeader Header; + int rc; + + if (!fMagicAlreadyRead) + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, 0, + &Header, sizeof(Header)); + else + { + Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER); + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + RT_UOFFSETOF(SparseExtentHeader, version), + &Header.version, + sizeof(Header) + - RT_UOFFSETOF(SparseExtentHeader, version)); + } + + if (RT_SUCCESS(rc)) + { + rc = vmdkValidateHeader(pImage, pExtent, &Header); + if (RT_SUCCESS(rc)) + { + uint64_t cbFile = 0; + + if ( (RT_LE2H_U32(Header.flags) & RT_BIT(17)) + && RT_LE2H_U64(Header.gdOffset) == VMDK_GD_AT_END) + pExtent->fFooter = true; + + if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + || ( pExtent->fFooter + && !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))) + { + rc = vdIfIoIntFileGetSize(pImage->pIfIo, pExtent->pFile->pStorage, &cbFile); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot get size of '%s'"), pExtent->pszFullname); + } + + if (RT_SUCCESS(rc)) + { + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + pExtent->uAppendPosition = RT_ALIGN_64(cbFile, 512); + + if ( pExtent->fFooter + && ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))) + { + /* Read the footer, which comes before the end-of-stream marker. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + cbFile - 2*512, &Header, + sizeof(Header)); + if (RT_FAILURE(rc)) + { + vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error reading extent footer in '%s'"), pExtent->pszFullname); + rc = VERR_VD_VMDK_INVALID_HEADER; + } + + if (RT_SUCCESS(rc)) + rc = vmdkValidateHeader(pImage, pExtent, &Header); + /* Prohibit any writes to this extent. */ + pExtent->uAppendPosition = 0; + } + + if (RT_SUCCESS(rc)) + { + pExtent->uVersion = RT_LE2H_U32(Header.version); + pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; /* Just dummy value, changed later. */ + pExtent->cSectors = RT_LE2H_U64(Header.capacity); + pExtent->cSectorsPerGrain = RT_LE2H_U64(Header.grainSize); + pExtent->uDescriptorSector = RT_LE2H_U64(Header.descriptorOffset); + pExtent->cDescriptorSectors = RT_LE2H_U64(Header.descriptorSize); + pExtent->cGTEntries = RT_LE2H_U32(Header.numGTEsPerGT); + pExtent->cOverheadSectors = RT_LE2H_U64(Header.overHead); + pExtent->fUncleanShutdown = !!Header.uncleanShutdown; + pExtent->uCompression = RT_LE2H_U16(Header.compressAlgorithm); + if (RT_LE2H_U32(Header.flags) & RT_BIT(1)) + { + pExtent->uSectorRGD = RT_LE2H_U64(Header.rgdOffset); + pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset); + } + else + { + pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset); + pExtent->uSectorRGD = 0; + } + + if (pExtent->uDescriptorSector && !pExtent->cDescriptorSectors) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: inconsistent embedded descriptor config in '%s'"), pExtent->pszFullname); + + if ( RT_SUCCESS(rc) + && ( pExtent->uSectorGD == VMDK_GD_AT_END + || pExtent->uSectorRGD == VMDK_GD_AT_END) + && ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: cannot resolve grain directory offset in '%s'"), pExtent->pszFullname); + + if (RT_SUCCESS(rc)) + { + uint64_t cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; + if (!cSectorsPerGDE || cSectorsPerGDE > UINT32_MAX) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: incorrect grain directory size in '%s'"), pExtent->pszFullname); + else + { + pExtent->cSectorsPerGDE = cSectorsPerGDE; + pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; + + /* Fix up the number of descriptor sectors, as some flat images have + * really just one, and this causes failures when inserting the UUID + * values and other extra information. */ + if (pExtent->cDescriptorSectors != 0 && pExtent->cDescriptorSectors < 4) + { + /* Do it the easy way - just fix it for flat images which have no + * other complicated metadata which needs space too. */ + if ( pExtent->uDescriptorSector + 4 < pExtent->cOverheadSectors + && pExtent->cGTEntries * pExtent->cGDEntries == 0) + pExtent->cDescriptorSectors = 4; + } + } + } + } + } + } + } + else + { + vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error reading extent header in '%s'"), pExtent->pszFullname); + rc = VERR_VD_VMDK_INVALID_HEADER; + } + + if (RT_FAILURE(rc)) + vmdkFreeExtentData(pImage, pExtent, false); + + return rc; +} + +/** + * Internal: read additional metadata belonging to an extent. For those + * extents which have no additional metadata just verify the information. + */ +static int vmdkReadMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) +{ + int rc = VINF_SUCCESS; + +/* disabled the check as there are too many truncated vmdk images out there */ +#ifdef VBOX_WITH_VMDK_STRICT_SIZE_CHECK + uint64_t cbExtentSize; + /* The image must be a multiple of a sector in size and contain the data + * area (flat images only). If not, it means the image is at least + * truncated, or even seriously garbled. */ + rc = vdIfIoIntFileGetSize(pImage->pIfIo, pExtent->pFile->pStorage, &cbExtentSize); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error getting size in '%s'"), pExtent->pszFullname); + else if ( cbExtentSize != RT_ALIGN_64(cbExtentSize, 512) + && (pExtent->enmType != VMDKETYPE_FLAT || pExtent->cNominalSectors + pExtent->uSectorOffset > VMDK_BYTE2SECTOR(cbExtentSize))) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: file size is not a multiple of 512 in '%s', file is truncated or otherwise garbled"), pExtent->pszFullname); +#endif /* VBOX_WITH_VMDK_STRICT_SIZE_CHECK */ + if ( RT_SUCCESS(rc) + && pExtent->enmType == VMDKETYPE_HOSTED_SPARSE) + { + /* The spec says that this must be a power of two and greater than 8, + * but probably they meant not less than 8. */ + if ( (pExtent->cSectorsPerGrain & (pExtent->cSectorsPerGrain - 1)) + || pExtent->cSectorsPerGrain < 8) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: invalid extent grain size %u in '%s'"), pExtent->cSectorsPerGrain, pExtent->pszFullname); + else + { + /* This code requires that a grain table must hold a power of two multiple + * of the number of entries per GT cache entry. */ + if ( (pExtent->cGTEntries & (pExtent->cGTEntries - 1)) + || pExtent->cGTEntries < VMDK_GT_CACHELINE_SIZE) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: grain table cache size problem in '%s'"), pExtent->pszFullname); + else + { + rc = vmdkAllocStreamBuffers(pImage, pExtent); + if (RT_SUCCESS(rc)) + { + /* Prohibit any writes to this streamOptimized extent. */ + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + pExtent->uAppendPosition = 0; + + if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) + rc = vmdkReadGrainDirectory(pImage, pExtent); + else + { + pExtent->uGrainSectorAbs = pExtent->cOverheadSectors; + pExtent->cbGrainStreamRead = 0; + } + } + } + } + } + + if (RT_FAILURE(rc)) + vmdkFreeExtentData(pImage, pExtent, false); + + return rc; +} + +/** + * Internal: write/update the metadata for a sparse extent. + */ +static int vmdkWriteMetaSparseExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t uOffset, PVDIOCTX pIoCtx) +{ + SparseExtentHeader Header; + + memset(&Header, '\0', sizeof(Header)); + Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER); + Header.version = RT_H2LE_U32(pExtent->uVersion); + Header.flags = RT_H2LE_U32(RT_BIT(0)); + if (pExtent->pRGD) + Header.flags |= RT_H2LE_U32(RT_BIT(1)); + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + Header.flags |= RT_H2LE_U32(RT_BIT(16) | RT_BIT(17)); + Header.capacity = RT_H2LE_U64(pExtent->cSectors); + Header.grainSize = RT_H2LE_U64(pExtent->cSectorsPerGrain); + Header.descriptorOffset = RT_H2LE_U64(pExtent->uDescriptorSector); + Header.descriptorSize = RT_H2LE_U64(pExtent->cDescriptorSectors); + Header.numGTEsPerGT = RT_H2LE_U32(pExtent->cGTEntries); + if (pExtent->fFooter && uOffset == 0) + { + if (pExtent->pRGD) + { + Assert(pExtent->uSectorRGD); + Header.rgdOffset = RT_H2LE_U64(VMDK_GD_AT_END); + Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END); + } + else + Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END); + } + else + { + if (pExtent->pRGD) + { + Assert(pExtent->uSectorRGD); + Header.rgdOffset = RT_H2LE_U64(pExtent->uSectorRGD); + Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD); + } + else + Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD); + } + Header.overHead = RT_H2LE_U64(pExtent->cOverheadSectors); + Header.uncleanShutdown = pExtent->fUncleanShutdown; + Header.singleEndLineChar = '\n'; + Header.nonEndLineChar = ' '; + Header.doubleEndLineChar1 = '\r'; + Header.doubleEndLineChar2 = '\n'; + Header.compressAlgorithm = RT_H2LE_U16(pExtent->uCompression); + + int rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage, + uOffset, &Header, sizeof(Header), + pIoCtx, NULL, NULL); + if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error writing extent header in '%s'"), pExtent->pszFullname); + return rc; +} + +/** + * Internal: free the buffers used for streamOptimized images. + */ +static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent) +{ + if (pExtent->pvCompGrain) + { + RTMemFree(pExtent->pvCompGrain); + pExtent->pvCompGrain = NULL; + } + if (pExtent->pvGrain) + { + RTMemFree(pExtent->pvGrain); + pExtent->pvGrain = NULL; + } +} + +/** + * Internal: free the memory used by the extent data structure, optionally + * deleting the referenced files. + * + * @returns VBox status code. + * @param pImage Pointer to the image instance data. + * @param pExtent The extent to free. + * @param fDelete Flag whether to delete the backing storage. + */ +static int vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + bool fDelete) +{ + int rc = VINF_SUCCESS; + + vmdkFreeGrainDirectory(pExtent); + if (pExtent->pDescData) + { + RTMemFree(pExtent->pDescData); + pExtent->pDescData = NULL; + } + if (pExtent->pFile != NULL) + { + /* Do not delete raw extents, these have full and base names equal. */ + rc = vmdkFileClose(pImage, &pExtent->pFile, + fDelete + && pExtent->pszFullname + && pExtent->pszBasename + && strcmp(pExtent->pszFullname, pExtent->pszBasename)); + } + if (pExtent->pszBasename) + { + RTMemTmpFree((void *)pExtent->pszBasename); + pExtent->pszBasename = NULL; + } + if (pExtent->pszFullname) + { + RTStrFree((char *)(void *)pExtent->pszFullname); + pExtent->pszFullname = NULL; + } + vmdkFreeStreamBuffers(pExtent); + + return rc; +} + +/** + * Internal: allocate grain table cache if necessary for this image. + */ +static int vmdkAllocateGrainTableCache(PVMDKIMAGE pImage) +{ + PVMDKEXTENT pExtent; + + /* Allocate grain table cache if any sparse extent is present. */ + for (unsigned i = 0; i < pImage->cExtents; i++) + { + pExtent = &pImage->pExtents[i]; + if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE) + { + /* Allocate grain table cache. */ + pImage->pGTCache = (PVMDKGTCACHE)RTMemAllocZ(sizeof(VMDKGTCACHE)); + if (!pImage->pGTCache) + return VERR_NO_MEMORY; + for (unsigned j = 0; j < VMDK_GT_CACHE_SIZE; j++) + { + PVMDKGTCACHEENTRY pGCE = &pImage->pGTCache->aGTCache[j]; + pGCE->uExtent = UINT32_MAX; + } + pImage->pGTCache->cEntries = VMDK_GT_CACHE_SIZE; + break; + } + } + + return VINF_SUCCESS; +} + +/** + * Internal: allocate the given number of extents. + */ +static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents) +{ + int rc = VINF_SUCCESS; + PVMDKEXTENT pExtents = (PVMDKEXTENT)RTMemAllocZ(cExtents * sizeof(VMDKEXTENT)); + if (pExtents) + { + for (unsigned i = 0; i < cExtents; i++) + { + pExtents[i].pFile = NULL; + pExtents[i].pszBasename = NULL; + pExtents[i].pszFullname = NULL; + pExtents[i].pGD = NULL; + pExtents[i].pRGD = NULL; + pExtents[i].pDescData = NULL; + pExtents[i].uVersion = 1; + pExtents[i].uCompression = VMDK_COMPRESSION_NONE; + pExtents[i].uExtent = i; + pExtents[i].pImage = pImage; + } + pImage->pExtents = pExtents; + pImage->cExtents = cExtents; + } + else + rc = VERR_NO_MEMORY; + + return rc; +} + +/** + * Internal: Create an additional file backed extent in split images. + * Supports split sparse and flat images. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param cbSize Desiried size in bytes of new extent. + */ +static int vmdkAddFileBackedExtent(PVMDKIMAGE pImage, uint64_t cbSize) +{ + int rc = VINF_SUCCESS; + unsigned uImageFlags = pImage->uImageFlags; + + /* Check for unsupported image type. */ + if ((uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX) + || (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + || (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK)) + { + return VERR_NOT_SUPPORTED; + } + + /* Allocate array of extents and copy existing extents to it. */ + PVMDKEXTENT pNewExtents = (PVMDKEXTENT)RTMemAllocZ((pImage->cExtents + 1) * sizeof(VMDKEXTENT)); + if (!pNewExtents) + { + return VERR_NO_MEMORY; + } + + memcpy(pNewExtents, pImage->pExtents, pImage->cExtents * sizeof(VMDKEXTENT)); + + /* Locate newly created extent and populate default metadata. */ + PVMDKEXTENT pExtent = &pNewExtents[pImage->cExtents]; + + pExtent->pFile = NULL; + pExtent->pszBasename = NULL; + pExtent->pszFullname = NULL; + pExtent->pGD = NULL; + pExtent->pRGD = NULL; + pExtent->pDescData = NULL; + pExtent->uVersion = 1; + pExtent->uCompression = VMDK_COMPRESSION_NONE; + pExtent->uExtent = pImage->cExtents; + pExtent->pImage = pImage; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize); + pExtent->enmAccess = VMDKACCESS_READWRITE; + pExtent->uSectorOffset = 0; + pExtent->fMetaDirty = true; + + /* Apply image type specific meta data. */ + if (uImageFlags & VD_IMAGE_FLAGS_FIXED) + { + pExtent->enmType = VMDKETYPE_FLAT; + } + else + { + uint64_t cSectorsPerGDE, cSectorsPerGD; + pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; + pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbSize, _64K)); + pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K); + pExtent->cGTEntries = 512; + cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; + pExtent->cSectorsPerGDE = cSectorsPerGDE; + pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; + cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t)); + } + + /* Allocate and set file name for extent. */ + char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename); + AssertPtr(pszBasenameSubstr); + + char *pszBasenameSuff = RTPathSuffix(pszBasenameSubstr); + char *pszBasenameBase = RTStrDup(pszBasenameSubstr); + RTPathStripSuffix(pszBasenameBase); + char *pszTmp; + size_t cbTmp; + + if (pImage->uImageFlags & VD_IMAGE_FLAGS_FIXED) + RTStrAPrintf(&pszTmp, "%s-f%03d%s", pszBasenameBase, + pExtent->uExtent + 1, pszBasenameSuff); + else + RTStrAPrintf(&pszTmp, "%s-s%03d%s", pszBasenameBase, pExtent->uExtent + 1, + pszBasenameSuff); + + RTStrFree(pszBasenameBase); + if (!pszTmp) + return VERR_NO_STR_MEMORY; + cbTmp = strlen(pszTmp) + 1; + char *pszBasename = (char *)RTMemTmpAlloc(cbTmp); + if (!pszBasename) + { + RTStrFree(pszTmp); + return VERR_NO_MEMORY; + } + + memcpy(pszBasename, pszTmp, cbTmp); + RTStrFree(pszTmp); + + pExtent->pszBasename = pszBasename; + + char *pszBasedirectory = RTStrDup(pImage->pszFilename); + if (!pszBasedirectory) + return VERR_NO_STR_MEMORY; + RTPathStripFilename(pszBasedirectory); + char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename); + RTStrFree(pszBasedirectory); + if (!pszFullname) + return VERR_NO_STR_MEMORY; + pExtent->pszFullname = pszFullname; + + /* Create file for extent. */ + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, + true /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname); + + if (uImageFlags & VD_IMAGE_FLAGS_FIXED) + { + /* For flat images: Pre allocate file space. */ + rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, cbSize, + 0 /* fFlags */, NULL, 0, 0); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname); + } + else + { + /* For sparse images: Allocate new grain directories/tables. */ + /* fPreAlloc should never be false because VMware can't use such images. */ + rc = vmdkCreateGrainDirectory(pImage, pExtent, + RT_MAX( pExtent->uDescriptorSector + + pExtent->cDescriptorSectors, + 1), + true /* fPreAlloc */); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname); + } + + /* Insert new extent into descriptor file. */ + rc = vmdkDescExtInsert(pImage, &pImage->Descriptor, pExtent->enmAccess, + pExtent->cNominalSectors, pExtent->enmType, + pExtent->pszBasename, pExtent->uSectorOffset); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not insert the extent list into descriptor in '%s'"), pImage->pszFilename); + + pImage->pExtents = pNewExtents; + pImage->cExtents++; + + return rc; +} + +/** + * Reads and processes the descriptor embedded in sparse images. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pFile The sparse file handle. + */ +static int vmdkDescriptorReadSparse(PVMDKIMAGE pImage, PVMDKFILE pFile) +{ + /* It's a hosted single-extent image. */ + int rc = vmdkCreateExtents(pImage, 1); + if (RT_SUCCESS(rc)) + { + /* The opened file is passed to the extent. No separate descriptor + * file, so no need to keep anything open for the image. */ + PVMDKEXTENT pExtent = &pImage->pExtents[0]; + pExtent->pFile = pFile; + pImage->pFile = NULL; + pExtent->pszFullname = RTPathAbsDup(pImage->pszFilename); + if (RT_LIKELY(pExtent->pszFullname)) + { + /* As we're dealing with a monolithic image here, there must + * be a descriptor embedded in the image file. */ + rc = vmdkReadBinaryMetaExtent(pImage, pExtent, true /* fMagicAlreadyRead */); + if ( RT_SUCCESS(rc) + && pExtent->uDescriptorSector + && pExtent->cDescriptorSectors) + { + /* HACK: extend the descriptor if it is unusually small and it fits in + * the unused space after the image header. Allows opening VMDK files + * with extremely small descriptor in read/write mode. + * + * The previous version introduced a possible regression for VMDK stream + * optimized images from VMware which tend to have only a single sector sized + * descriptor. Increasing the descriptor size resulted in adding the various uuid + * entries required to make it work with VBox but for stream optimized images + * the updated binary header wasn't written to the disk creating a mismatch + * between advertised and real descriptor size. + * + * The descriptor size will be increased even if opened readonly now if there + * enough room but the new value will not be written back to the image. + */ + if ( pExtent->cDescriptorSectors < 3 + && (int64_t)pExtent->uSectorGD - pExtent->uDescriptorSector >= 4 + && (!pExtent->uSectorRGD || (int64_t)pExtent->uSectorRGD - pExtent->uDescriptorSector >= 4)) + { + uint64_t cDescriptorSectorsOld = pExtent->cDescriptorSectors; + + pExtent->cDescriptorSectors = 4; + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + /* + * Update the on disk number now to make sure we don't introduce inconsistencies + * in case of stream optimized images from VMware where the descriptor is just + * one sector big (the binary header is not written to disk for complete + * stream optimized images in vmdkFlushImage()). + */ + uint64_t u64DescSizeNew = RT_H2LE_U64(pExtent->cDescriptorSectors); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pFile->pStorage, + RT_UOFFSETOF(SparseExtentHeader, descriptorSize), + &u64DescSizeNew, sizeof(u64DescSizeNew)); + if (RT_FAILURE(rc)) + { + LogFlowFunc(("Increasing the descriptor size failed with %Rrc\n", rc)); + /* Restore the old size and carry on. */ + pExtent->cDescriptorSectors = cDescriptorSectorsOld; + } + } + } + /* Read the descriptor from the extent. */ + pExtent->pDescData = (char *)RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors)); + if (RT_LIKELY(pExtent->pDescData)) + { + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uDescriptorSector), + pExtent->pDescData, + VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors)); + if (RT_SUCCESS(rc)) + { + rc = vmdkParseDescriptor(pImage, pExtent->pDescData, + VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors)); + if ( RT_SUCCESS(rc) + && ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO))) + { + rc = vmdkReadMetaExtent(pImage, pExtent); + if (RT_SUCCESS(rc)) + { + /* Mark the extent as unclean if opened in read-write mode. */ + if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + && !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + pExtent->fUncleanShutdown = true; + pExtent->fMetaDirty = true; + } + } + } + else if (RT_SUCCESS(rc)) + rc = VERR_NOT_SUPPORTED; + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pExtent->pszFullname); + } + else + rc = VERR_NO_MEMORY; + } + else if (RT_SUCCESS(rc)) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image without descriptor in '%s'"), pImage->pszFilename); + } + else + rc = VERR_NO_MEMORY; + } + + return rc; +} + +/** + * Reads the descriptor from a pure text file. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pFile The descriptor file handle. + */ +static int vmdkDescriptorReadAscii(PVMDKIMAGE pImage, PVMDKFILE pFile) +{ + /* Allocate at least 10K, and make sure that there is 5K free space + * in case new entries need to be added to the descriptor. Never + * allocate more than 128K, because that's no valid descriptor file + * and will result in the correct "truncated read" error handling. */ + uint64_t cbFileSize; + int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pFile->pStorage, &cbFileSize); + if ( RT_SUCCESS(rc) + && cbFileSize >= 50) + { + uint64_t cbSize = cbFileSize; + if (cbSize % VMDK_SECTOR2BYTE(10)) + cbSize += VMDK_SECTOR2BYTE(20) - cbSize % VMDK_SECTOR2BYTE(10); + else + cbSize += VMDK_SECTOR2BYTE(10); + cbSize = RT_MIN(cbSize, _128K); + pImage->cbDescAlloc = RT_MAX(VMDK_SECTOR2BYTE(20), cbSize); + pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc); + if (RT_LIKELY(pImage->pDescData)) + { + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pFile->pStorage, 0, pImage->pDescData, + RT_MIN(pImage->cbDescAlloc, cbFileSize)); + if (RT_SUCCESS(rc)) + { +#if 0 /** @todo Revisit */ + cbRead += sizeof(u32Magic); + if (cbRead == pImage->cbDescAlloc) + { + /* Likely the read is truncated. Better fail a bit too early + * (normally the descriptor is much smaller than our buffer). */ + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: cannot read descriptor in '%s'"), pImage->pszFilename); + goto out; + } +#endif + rc = vmdkParseDescriptor(pImage, pImage->pDescData, + pImage->cbDescAlloc); + if (RT_SUCCESS(rc)) + { + for (unsigned i = 0; i < pImage->cExtents && RT_SUCCESS(rc); i++) + { + PVMDKEXTENT pExtent = &pImage->pExtents[i]; + if (pExtent->pszBasename) + { + /* Hack to figure out whether the specified name in the + * extent descriptor is absolute. Doesn't always work, but + * should be good enough for now. */ + char *pszFullname; + /** @todo implement proper path absolute check. */ + if (pExtent->pszBasename[0] == RTPATH_SLASH) + { + pszFullname = RTStrDup(pExtent->pszBasename); + if (!pszFullname) + { + rc = VERR_NO_MEMORY; + break; + } + } + else + { + char *pszDirname = RTStrDup(pImage->pszFilename); + if (!pszDirname) + { + rc = VERR_NO_MEMORY; + break; + } + RTPathStripFilename(pszDirname); + pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename); + RTStrFree(pszDirname); + if (!pszFullname) + { + rc = VERR_NO_STR_MEMORY; + break; + } + } + pExtent->pszFullname = pszFullname; + } + else + pExtent->pszFullname = NULL; + + unsigned uOpenFlags = pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0); + switch (pExtent->enmType) + { + case VMDKETYPE_HOSTED_SPARSE: + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */)); + if (RT_FAILURE(rc)) + { + /* Do NOT signal an appropriate error here, as the VD + * layer has the choice of retrying the open if it + * failed. */ + break; + } + rc = vmdkReadBinaryMetaExtent(pImage, pExtent, + false /* fMagicAlreadyRead */); + if (RT_FAILURE(rc)) + break; + rc = vmdkReadMetaExtent(pImage, pExtent); + if (RT_FAILURE(rc)) + break; + + /* Mark extent as unclean if opened in read-write mode. */ + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + pExtent->fUncleanShutdown = true; + pExtent->fMetaDirty = true; + } + break; + case VMDKETYPE_VMFS: + case VMDKETYPE_FLAT: + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */)); + if (RT_FAILURE(rc)) + { + /* Do NOT signal an appropriate error here, as the VD + * layer has the choice of retrying the open if it + * failed. */ + break; + } + break; + case VMDKETYPE_ZERO: + /* Nothing to do. */ + break; + default: + AssertMsgFailed(("unknown vmdk extent type %d\n", pExtent->enmType)); + } + } + } + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pImage->pszFilename); + } + else + rc = VERR_NO_MEMORY; + } + else if (RT_SUCCESS(rc)) + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor in '%s' is too short"), pImage->pszFilename); + + return rc; +} + +/** + * Read and process the descriptor based on the image type. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pFile VMDK file handle. + */ +static int vmdkDescriptorRead(PVMDKIMAGE pImage, PVMDKFILE pFile) +{ + uint32_t u32Magic; + + /* Read magic (if present). */ + int rc = vdIfIoIntFileReadSync(pImage->pIfIo, pFile->pStorage, 0, + &u32Magic, sizeof(u32Magic)); + if (RT_SUCCESS(rc)) + { + /* Handle the file according to its magic number. */ + if (RT_LE2H_U32(u32Magic) == VMDK_SPARSE_MAGICNUMBER) + rc = vmdkDescriptorReadSparse(pImage, pFile); + else + rc = vmdkDescriptorReadAscii(pImage, pFile); + } + else + { + vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error reading the magic number in '%s'"), pImage->pszFilename); + rc = VERR_VD_VMDK_INVALID_HEADER; + } + + return rc; +} + +/** + * Internal: Open an image, constructing all necessary data structures. + */ +static int vmdkOpenImage(PVMDKIMAGE pImage, unsigned uOpenFlags) +{ + pImage->uOpenFlags = uOpenFlags; + pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk); + pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage); + AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER); + + /* + * Open the image. + * We don't have to check for asynchronous access because + * we only support raw access and the opened file is a description + * file were no data is stored. + */ + PVMDKFILE pFile; + int rc = vmdkFileOpen(pImage, &pFile, NULL, pImage->pszFilename, + VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */)); + if (RT_SUCCESS(rc)) + { + pImage->pFile = pFile; + + rc = vmdkDescriptorRead(pImage, pFile); + if (RT_SUCCESS(rc)) + { + /* Determine PCHS geometry if not set. */ + if (pImage->PCHSGeometry.cCylinders == 0) + { + uint64_t cCylinders = VMDK_BYTE2SECTOR(pImage->cbSize) + / pImage->PCHSGeometry.cHeads + / pImage->PCHSGeometry.cSectors; + pImage->PCHSGeometry.cCylinders = (unsigned)RT_MIN(cCylinders, 16383); + if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + && !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + rc = vmdkDescSetPCHSGeometry(pImage, &pImage->PCHSGeometry); + AssertRC(rc); + } + } + + /* Update the image metadata now in case has changed. */ + rc = vmdkFlushImage(pImage, NULL); + if (RT_SUCCESS(rc)) + { + /* Figure out a few per-image constants from the extents. */ + pImage->cbSize = 0; + for (unsigned i = 0; i < pImage->cExtents; i++) + { + PVMDKEXTENT pExtent = &pImage->pExtents[i]; + if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE) + { + /* Here used to be a check whether the nominal size of an extent + * is a multiple of the grain size. The spec says that this is + * always the case, but unfortunately some files out there in the + * wild violate the spec (e.g. ReactOS 0.3.1). */ + } + else if ( pExtent->enmType == VMDKETYPE_FLAT + || pExtent->enmType == VMDKETYPE_ZERO) + pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED; + + pImage->cbSize += VMDK_SECTOR2BYTE(pExtent->cNominalSectors); + } + + if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) + rc = vmdkAllocateGrainTableCache(pImage); + } + } + } + /* else: Do NOT signal an appropriate error here, as the VD layer has the + * choice of retrying the open if it failed. */ + + if (RT_SUCCESS(rc)) + { + PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0]; + pImage->RegionList.fFlags = 0; + pImage->RegionList.cRegions = 1; + + pRegion->offRegion = 0; /* Disk start. */ + pRegion->cbBlock = 512; + pRegion->enmDataForm = VDREGIONDATAFORM_RAW; + pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE; + pRegion->cbData = 512; + pRegion->cbMetadata = 0; + pRegion->cRegionBlocksOrBytes = pImage->cbSize; + } + else + vmdkFreeImage(pImage, false, false /*fFlush*/); /* Don't try to flush anything if opening failed. */ + return rc; +} + +/** + * Frees a raw descriptor. + * @internal + */ +static int vmdkRawDescFree(PVDISKRAW pRawDesc) +{ + if (!pRawDesc) + return VINF_SUCCESS; + + RTStrFree(pRawDesc->pszRawDisk); + pRawDesc->pszRawDisk = NULL; + + /* Partitions: */ + for (unsigned i = 0; i < pRawDesc->cPartDescs; i++) + { + RTStrFree(pRawDesc->pPartDescs[i].pszRawDevice); + pRawDesc->pPartDescs[i].pszRawDevice = NULL; + + RTMemFree(pRawDesc->pPartDescs[i].pvPartitionData); + pRawDesc->pPartDescs[i].pvPartitionData = NULL; + } + + RTMemFree(pRawDesc->pPartDescs); + pRawDesc->pPartDescs = NULL; + + RTMemFree(pRawDesc); + return VINF_SUCCESS; +} + +/** + * Helper that grows the raw partition descriptor table by @a cToAdd entries, + * returning the pointer to the first new entry. + * @internal + */ +static int vmdkRawDescAppendPartDesc(PVMDKIMAGE pImage, PVDISKRAW pRawDesc, uint32_t cToAdd, PVDISKRAWPARTDESC *ppRet) +{ + uint32_t const cOld = pRawDesc->cPartDescs; + uint32_t const cNew = cOld + cToAdd; + PVDISKRAWPARTDESC paNew = (PVDISKRAWPARTDESC)RTMemReallocZ(pRawDesc->pPartDescs, + cOld * sizeof(pRawDesc->pPartDescs[0]), + cNew * sizeof(pRawDesc->pPartDescs[0])); + if (paNew) + { + pRawDesc->cPartDescs = cNew; + pRawDesc->pPartDescs = paNew; + + *ppRet = &paNew[cOld]; + return VINF_SUCCESS; + } + *ppRet = NULL; + return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Out of memory growing the partition descriptors (%u -> %u)."), + pImage->pszFilename, cOld, cNew); +} + +/** + * @callback_method_impl{FNRTSORTCMP} + */ +static DECLCALLBACK(int) vmdkRawDescPartComp(void const *pvElement1, void const *pvElement2, void *pvUser) +{ + RT_NOREF(pvUser); + int64_t const iDelta = ((PVDISKRAWPARTDESC)pvElement1)->offStartInVDisk - ((PVDISKRAWPARTDESC)pvElement2)->offStartInVDisk; + return iDelta < 0 ? -1 : iDelta > 0 ? 1 : 0; +} + +/** + * Post processes the partition descriptors. + * + * Sorts them and check that they don't overlap. + */ +static int vmdkRawDescPostProcessPartitions(PVMDKIMAGE pImage, PVDISKRAW pRawDesc, uint64_t cbSize) +{ + /* + * Sort data areas in ascending order of start. + */ + RTSortShell(pRawDesc->pPartDescs, pRawDesc->cPartDescs, sizeof(pRawDesc->pPartDescs[0]), vmdkRawDescPartComp, NULL); + + /* + * Check that we don't have overlapping descriptors. If we do, that's an + * indication that the drive is corrupt or that the RTDvm code is buggy. + */ + VDISKRAWPARTDESC const *paPartDescs = pRawDesc->pPartDescs; + for (uint32_t i = 0; i < pRawDesc->cPartDescs; i++) + { + uint64_t offLast = paPartDescs[i].offStartInVDisk + paPartDescs[i].cbData; + if (offLast <= paPartDescs[i].offStartInVDisk) + return vdIfError(pImage->pIfError, VERR_FILESYSTEM_CORRUPT /*?*/, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Bogus partition descriptor #%u (%#RX64 LB %#RX64%s): Wrap around or zero"), + pImage->pszFilename, i, paPartDescs[i].offStartInVDisk, paPartDescs[i].cbData, + paPartDescs[i].pvPartitionData ? " (data)" : ""); + offLast -= 1; + + if (i + 1 < pRawDesc->cPartDescs && offLast >= paPartDescs[i + 1].offStartInVDisk) + return vdIfError(pImage->pIfError, VERR_FILESYSTEM_CORRUPT /*?*/, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition descriptor #%u (%#RX64 LB %#RX64%s) overlaps with the next (%#RX64 LB %#RX64%s)"), + pImage->pszFilename, i, paPartDescs[i].offStartInVDisk, paPartDescs[i].cbData, + paPartDescs[i].pvPartitionData ? " (data)" : "", paPartDescs[i + 1].offStartInVDisk, + paPartDescs[i + 1].cbData, paPartDescs[i + 1].pvPartitionData ? " (data)" : ""); + if (offLast >= cbSize) + return vdIfError(pImage->pIfError, VERR_FILESYSTEM_CORRUPT /*?*/, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition descriptor #%u (%#RX64 LB %#RX64%s) goes beyond the end of the drive (%#RX64)"), + pImage->pszFilename, i, paPartDescs[i].offStartInVDisk, paPartDescs[i].cbData, + paPartDescs[i].pvPartitionData ? " (data)" : "", cbSize); + } + + return VINF_SUCCESS; +} + + +#ifdef RT_OS_LINUX +/** + * Searches the dir specified in @a pszBlockDevDir for subdirectories with a + * 'dev' file matching @a uDevToLocate. + * + * This is used both + * + * @returns IPRT status code, errors have been reported properly. + * @param pImage For error reporting. + * @param pszBlockDevDir Input: Path to the directory search under. + * Output: Path to the directory containing information + * for @a uDevToLocate. + * @param cbBlockDevDir The size of the buffer @a pszBlockDevDir points to. + * @param uDevToLocate The device number of the block device info dir to + * locate. + * @param pszDevToLocate For error reporting. + */ +static int vmdkFindSysBlockDevPath(PVMDKIMAGE pImage, char *pszBlockDevDir, size_t cbBlockDevDir, + dev_t uDevToLocate, const char *pszDevToLocate) +{ + size_t const cchDir = RTPathEnsureTrailingSeparator(pszBlockDevDir, cbBlockDevDir); + AssertReturn(cchDir > 0, VERR_BUFFER_OVERFLOW); + + RTDIR hDir = NIL_RTDIR; + int rc = RTDirOpen(&hDir, pszBlockDevDir); + if (RT_SUCCESS(rc)) + { + for (;;) + { + RTDIRENTRY Entry; + rc = RTDirRead(hDir, &Entry, NULL); + if (RT_SUCCESS(rc)) + { + /* We're interested in directories and symlinks. */ + if ( Entry.enmType == RTDIRENTRYTYPE_DIRECTORY + || Entry.enmType == RTDIRENTRYTYPE_SYMLINK + || Entry.enmType == RTDIRENTRYTYPE_UNKNOWN) + { + rc = RTStrCopy(&pszBlockDevDir[cchDir], cbBlockDevDir - cchDir, Entry.szName); + AssertContinue(RT_SUCCESS(rc)); /* should not happen! */ + + dev_t uThisDevNo = ~uDevToLocate; + rc = RTLinuxSysFsReadDevNumFile(&uThisDevNo, "%s/dev", pszBlockDevDir); + if (RT_SUCCESS(rc) && uThisDevNo == uDevToLocate) + break; + } + } + else + { + pszBlockDevDir[cchDir] = '\0'; + if (rc == VERR_NO_MORE_FILES) + rc = vdIfError(pImage->pIfError, VERR_NOT_FOUND, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to locate device corresponding to '%s' under '%s'"), + pImage->pszFilename, pszDevToLocate, pszBlockDevDir); + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. RTDirRead failed enumerating '%s': %Rrc"), + pImage->pszFilename, pszBlockDevDir, rc); + break; + } + } + RTDirClose(hDir); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to open dir '%s' for listing: %Rrc"), + pImage->pszFilename, pszBlockDevDir, rc); + return rc; +} +#endif /* RT_OS_LINUX */ + +#ifdef RT_OS_FREEBSD + + +/** + * Reads the config data from the provider and returns offset and size + * + * @return IPRT status code + * @param pProvider GEOM provider representing partition + * @param pcbOffset Placeholder for the offset of the partition + * @param pcbSize Placeholder for the size of the partition + */ +static int vmdkReadPartitionsParamsFromProvider(gprovider *pProvider, uint64_t *pcbOffset, uint64_t *pcbSize) +{ + gconfig *pConfEntry; + int rc = VERR_NOT_FOUND; + + /* + * Required parameters are located in the list containing key/value pairs. + * Both key and value are in text form. Manuals tells nothing about the fact + * that the both parameters should be present in the list. Thus, there are + * cases when only one parameter is presented. To handle such cases we treat + * absent params as zero allowing the caller decide the case is either correct + * or an error. + */ + uint64_t cbOffset = 0; + uint64_t cbSize = 0; + LIST_FOREACH(pConfEntry, &pProvider->lg_config, lg_config) + { + if (RTStrCmp(pConfEntry->lg_name, "offset") == 0) + { + cbOffset = RTStrToUInt64(pConfEntry->lg_val); + rc = VINF_SUCCESS; + } + else if (RTStrCmp(pConfEntry->lg_name, "length") == 0) + { + cbSize = RTStrToUInt64(pConfEntry->lg_val); + rc = VINF_SUCCESS; + } + } + if (RT_SUCCESS(rc)) + { + *pcbOffset = cbOffset; + *pcbSize = cbSize; + } + return rc; +} + + +/** + * Searches the partition specified by name and calculates its size and absolute offset. + * + * @return IPRT status code. + * @param pParentClass Class containing pParentGeom + * @param pszParentGeomName Name of the parent geom where we are looking for provider + * @param pszProviderName Name of the provider we are looking for + * @param pcbAbsoluteOffset Placeholder for the absolute offset of the partition, i.e. offset from the beginning of the disk + * @param psbSize Placeholder for the size of the partition. + */ +static int vmdkFindPartitionParamsByName(gclass *pParentClass, const char *pszParentGeomName, const char *pszProviderName, + uint64_t *pcbAbsoluteOffset, uint64_t *pcbSize) +{ + AssertReturn(pParentClass, VERR_INVALID_PARAMETER); + AssertReturn(pszParentGeomName, VERR_INVALID_PARAMETER); + AssertReturn(pszProviderName, VERR_INVALID_PARAMETER); + AssertReturn(pcbAbsoluteOffset, VERR_INVALID_PARAMETER); + AssertReturn(pcbSize, VERR_INVALID_PARAMETER); + + ggeom *pParentGeom; + int rc = VERR_NOT_FOUND; + LIST_FOREACH(pParentGeom, &pParentClass->lg_geom, lg_geom) + { + if (RTStrCmp(pParentGeom->lg_name, pszParentGeomName) == 0) + { + rc = VINF_SUCCESS; + break; + } + } + if (RT_FAILURE(rc)) + return rc; + + gprovider *pProvider; + /* + * First, go over providers without handling EBR or BSDLabel + * partitions for case when looking provider is child + * of the givng geom, to reduce searching time + */ + LIST_FOREACH(pProvider, &pParentGeom->lg_provider, lg_provider) + { + if (RTStrCmp(pProvider->lg_name, pszProviderName) == 0) + return vmdkReadPartitionsParamsFromProvider(pProvider, pcbAbsoluteOffset, pcbSize); + } + + /* + * No provider found. Go over the parent geom again + * and make recursions if geom represents EBR or BSDLabel. + * In this case given parent geom contains only EBR or BSDLabel + * partition itself and their own partitions are in the separate + * geoms. Also, partition offsets are relative to geom, so + * we have to add offset from child provider with parent geoms + * provider + */ + + LIST_FOREACH(pProvider, &pParentGeom->lg_provider, lg_provider) + { + uint64_t cbOffset = 0; + uint64_t cbSize = 0; + rc = vmdkReadPartitionsParamsFromProvider(pProvider, &cbOffset, &cbSize); + if (RT_FAILURE(rc)) + return rc; + + uint64_t cbProviderOffset = 0; + uint64_t cbProviderSize = 0; + rc = vmdkFindPartitionParamsByName(pParentClass, pProvider->lg_name, pszProviderName, &cbProviderOffset, &cbProviderSize); + if (RT_SUCCESS(rc)) + { + *pcbAbsoluteOffset = cbOffset + cbProviderOffset; + *pcbSize = cbProviderSize; + return rc; + } + } + + return VERR_NOT_FOUND; +} +#endif + + +/** + * Attempts to verify the raw partition path. + * + * We don't want to trust RTDvm and the partition device node morphing blindly. + */ +static int vmdkRawDescVerifyPartitionPath(PVMDKIMAGE pImage, PVDISKRAWPARTDESC pPartDesc, uint32_t idxPartition, + const char *pszRawDrive, RTFILE hRawDrive, uint32_t cbSector, RTDVMVOLUME hVol) +{ + RT_NOREF(pImage, pPartDesc, idxPartition, pszRawDrive, hRawDrive, cbSector, hVol); + + /* + * Try open the raw partition device. + */ + RTFILE hRawPart = NIL_RTFILE; + int rc = RTFileOpen(&hRawPart, pPartDesc->pszRawDevice, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to open partition #%u on '%s' via '%s' (%Rrc)"), + pImage->pszFilename, idxPartition, pszRawDrive, pPartDesc->pszRawDevice, rc); + + /* + * Compare the partition UUID if we can get it. + */ +#ifdef RT_OS_WINDOWS + DWORD cbReturned; + + /* 1. Get the device numbers for both handles, they should have the same disk. */ + STORAGE_DEVICE_NUMBER DevNum1; + RT_ZERO(DevNum1); + if (!DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_STORAGE_GET_DEVICE_NUMBER, + NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, &DevNum1, sizeof(DevNum1), &cbReturned, NULL /*pOverlapped*/)) + rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS, + N_("VMDK: Image path: '%s'. IOCTL_STORAGE_GET_DEVICE_NUMBER failed on '%s': %u"), + pImage->pszFilename, pszRawDrive, GetLastError()); + + STORAGE_DEVICE_NUMBER DevNum2; + RT_ZERO(DevNum2); + if (!DeviceIoControl((HANDLE)RTFileToNative(hRawPart), IOCTL_STORAGE_GET_DEVICE_NUMBER, + NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, &DevNum2, sizeof(DevNum2), &cbReturned, NULL /*pOverlapped*/)) + rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS, + N_("VMDK: Image path: '%s'. IOCTL_STORAGE_GET_DEVICE_NUMBER failed on '%s': %u"), + pImage->pszFilename, pPartDesc->pszRawDevice, GetLastError()); + if ( RT_SUCCESS(rc) + && ( DevNum1.DeviceNumber != DevNum2.DeviceNumber + || DevNum1.DeviceType != DevNum2.DeviceType)) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s' (%#x != %#x || %#x != %#x)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + DevNum1.DeviceNumber, DevNum2.DeviceNumber, DevNum1.DeviceType, DevNum2.DeviceType); + if (RT_SUCCESS(rc)) + { + /* Get the partitions from the raw drive and match up with the volume info + from RTDvm. The partition number is found in DevNum2. */ + DWORD cbNeeded = 0; + if ( DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_DISK_GET_DRIVE_LAYOUT_EX, + NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, NULL, 0, &cbNeeded, NULL /*pOverlapped*/) + || cbNeeded < RT_UOFFSETOF_DYN(DRIVE_LAYOUT_INFORMATION_EX, PartitionEntry[1])) + cbNeeded = RT_UOFFSETOF_DYN(DRIVE_LAYOUT_INFORMATION_EX, PartitionEntry[64]); + cbNeeded += sizeof(PARTITION_INFORMATION_EX) * 2; /* just in case */ + DRIVE_LAYOUT_INFORMATION_EX *pLayout = (DRIVE_LAYOUT_INFORMATION_EX *)RTMemTmpAllocZ(cbNeeded); + if (pLayout) + { + cbReturned = 0; + if (DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_DISK_GET_DRIVE_LAYOUT_EX, + NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, pLayout, cbNeeded, &cbReturned, NULL /*pOverlapped*/)) + { + /* Find the entry with the given partition number (it's not an index, array contains empty MBR entries ++). */ + unsigned iEntry = 0; + while ( iEntry < pLayout->PartitionCount + && pLayout->PartitionEntry[iEntry].PartitionNumber != DevNum2.PartitionNumber) + iEntry++; + if (iEntry < pLayout->PartitionCount) + { + /* Compare the basics */ + PARTITION_INFORMATION_EX const * const pLayoutEntry = &pLayout->PartitionEntry[iEntry]; + if (pLayoutEntry->StartingOffset.QuadPart != (int64_t)pPartDesc->offStartInVDisk) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': StartingOffset %RU64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + pLayoutEntry->StartingOffset.QuadPart, pPartDesc->offStartInVDisk); + else if (pLayoutEntry->PartitionLength.QuadPart != (int64_t)pPartDesc->cbData) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': PartitionLength %RU64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + pLayoutEntry->PartitionLength.QuadPart, pPartDesc->cbData); + /** @todo We could compare the MBR type, GPT type and ID. */ + RT_NOREF(hVol); + } + else + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': PartitionCount (%#x vs %#x)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + DevNum2.PartitionNumber, pLayout->PartitionCount); +# ifndef LOG_ENABLED + if (RT_FAILURE(rc)) +# endif + { + LogRel(("VMDK: Windows reports %u partitions for '%s':\n", pLayout->PartitionCount, pszRawDrive)); + PARTITION_INFORMATION_EX const *pEntry = &pLayout->PartitionEntry[0]; + for (DWORD i = 0; i < pLayout->PartitionCount; i++, pEntry++) + { + LogRel(("VMDK: #%u/%u: %016RU64 LB %016RU64 style=%d rewrite=%d", + i, pEntry->PartitionNumber, pEntry->StartingOffset.QuadPart, pEntry->PartitionLength.QuadPart, + pEntry->PartitionStyle, pEntry->RewritePartition)); + if (pEntry->PartitionStyle == PARTITION_STYLE_MBR) + LogRel((" type=%#x boot=%d rec=%d hidden=%u\n", pEntry->Mbr.PartitionType, pEntry->Mbr.BootIndicator, + pEntry->Mbr.RecognizedPartition, pEntry->Mbr.HiddenSectors)); + else if (pEntry->PartitionStyle == PARTITION_STYLE_GPT) + LogRel((" type=%RTuuid id=%RTuuid aatrib=%RX64 name=%.36ls\n", &pEntry->Gpt.PartitionType, + &pEntry->Gpt.PartitionId, pEntry->Gpt.Attributes, &pEntry->Gpt.Name[0])); + else + LogRel(("\n")); + } + LogRel(("VMDK: Looked for partition #%u (%u, '%s') at %RU64 LB %RU64\n", DevNum2.PartitionNumber, + idxPartition, pPartDesc->pszRawDevice, pPartDesc->offStartInVDisk, pPartDesc->cbData)); + } + } + else + rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS, + N_("VMDK: Image path: '%s'. IOCTL_DISK_GET_DRIVE_LAYOUT_EX failed on '%s': %u (cb %u, cbRet %u)"), + pImage->pszFilename, pPartDesc->pszRawDevice, GetLastError(), cbNeeded, cbReturned); + RTMemTmpFree(pLayout); + } + else + rc = VERR_NO_TMP_MEMORY; + } + +#elif defined(RT_OS_LINUX) + RT_NOREF(hVol); + + /* Stat the two devices first to get their device numbers. (We probably + could make some assumptions here about the major & minor number assignments + for legacy nodes, but it doesn't hold up for nvme, so we'll skip that.) */ + struct stat StDrive, StPart; + if (fstat((int)RTFileToNative(hRawDrive), &StDrive) != 0) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. fstat failed on '%s': %d"), pImage->pszFilename, pszRawDrive, errno); + else if (fstat((int)RTFileToNative(hRawPart), &StPart) != 0) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. fstat failed on '%s': %d"), pImage->pszFilename, pPartDesc->pszRawDevice, errno); + else + { + /* Scan the directories immediately under /sys/block/ for one with a + 'dev' file matching the drive's device number: */ + char szSysPath[RTPATH_MAX]; + rc = RTLinuxConstructPath(szSysPath, sizeof(szSysPath), "block/"); + AssertRCReturn(rc, rc); /* this shall not fail */ + if (RTDirExists(szSysPath)) + { + rc = vmdkFindSysBlockDevPath(pImage, szSysPath, sizeof(szSysPath), StDrive.st_rdev, pszRawDrive); + + /* Now, scan the directories under that again for a partition device + matching the hRawPart device's number: */ + if (RT_SUCCESS(rc)) + rc = vmdkFindSysBlockDevPath(pImage, szSysPath, sizeof(szSysPath), StPart.st_rdev, pPartDesc->pszRawDevice); + + /* Having found the /sys/block/device/partition/ path, we can finally + read the partition attributes and compare with hVol. */ + if (RT_SUCCESS(rc)) + { + /* partition number: */ + int64_t iLnxPartition = 0; + rc = RTLinuxSysFsReadIntFile(10, &iLnxPartition, "%s/partition", szSysPath); + if (RT_SUCCESS(rc) && iLnxPartition != idxPartition) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Partition number %RI64, expected %RU32"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, iLnxPartition, idxPartition); + /* else: ignore failure? */ + + /* start offset: */ + uint32_t const cbLnxSector = 512; /* It's hardcoded in the Linux kernel */ + if (RT_SUCCESS(rc)) + { + int64_t offLnxStart = -1; + rc = RTLinuxSysFsReadIntFile(10, &offLnxStart, "%s/start", szSysPath); + offLnxStart *= cbLnxSector; + if (RT_SUCCESS(rc) && offLnxStart != (int64_t)pPartDesc->offStartInVDisk) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RI64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, offLnxStart, pPartDesc->offStartInVDisk); + /* else: ignore failure? */ + } + + /* the size: */ + if (RT_SUCCESS(rc)) + { + int64_t cbLnxData = -1; + rc = RTLinuxSysFsReadIntFile(10, &cbLnxData, "%s/size", szSysPath); + cbLnxData *= cbLnxSector; + if (RT_SUCCESS(rc) && cbLnxData != (int64_t)pPartDesc->cbData) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RI64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbLnxData, pPartDesc->cbData); + /* else: ignore failure? */ + } + } + } + /* else: We've got nothing to work on, so only do content comparison. */ + } + +#elif defined(RT_OS_FREEBSD) + char szDriveDevName[256]; + char* pszDevName = fdevname_r(RTFileToNative(hRawDrive), szDriveDevName, 256); + if (pszDevName == NULL) + rc = vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. '%s' is not a drive path"), pImage->pszFilename, pszRawDrive); + char szPartDevName[256]; + if (RT_SUCCESS(rc)) + { + pszDevName = fdevname_r(RTFileToNative(hRawPart), szPartDevName, 256); + if (pszDevName == NULL) + rc = vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. '%s' is not a partition path"), pImage->pszFilename, pPartDesc->pszRawDevice); + } + if (RT_SUCCESS(rc)) + { + gmesh geomMesh; + int err = geom_gettree(&geomMesh); + if (err == 0) + { + /* Find root class containg partitions info */ + gclass* pPartClass; + LIST_FOREACH(pPartClass, &geomMesh.lg_class, lg_class) + { + if (RTStrCmp(pPartClass->lg_name, "PART") == 0) + break; + } + if (pPartClass == NULL || RTStrCmp(pPartClass->lg_name, "PART") != 0) + rc = vdIfError(pImage->pIfError, VERR_GENERAL_FAILURE, RT_SRC_POS, + N_("VMDK: Image path: '%s'. 'PART' class not found in the GEOM tree"), pImage->pszFilename); + + + if (RT_SUCCESS(rc)) + { + /* Find provider representing partition device */ + uint64_t cbOffset; + uint64_t cbSize; + rc = vmdkFindPartitionParamsByName(pPartClass, szDriveDevName, szPartDevName, &cbOffset, &cbSize); + if (RT_SUCCESS(rc)) + { + if (cbOffset != pPartDesc->offStartInVDisk) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RU64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbOffset, pPartDesc->offStartInVDisk); + if (cbSize != pPartDesc->cbData) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RU64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbSize, pPartDesc->cbData); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Error getting geom provider for the partition '%s' of the drive '%s' in the GEOM tree: %Rrc"), + pImage->pszFilename, pPartDesc->pszRawDevice, pszRawDrive, rc); + } + + geom_deletetree(&geomMesh); + } + else + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(err), RT_SRC_POS, + N_("VMDK: Image path: '%s'. geom_gettree failed: %d"), pImage->pszFilename, err); + } + +#elif defined(RT_OS_SOLARIS) + RT_NOREF(hVol); + + dk_cinfo dkiDriveInfo; + dk_cinfo dkiPartInfo; + if (ioctl(RTFileToNative(hRawDrive), DKIOCINFO, (caddr_t)&dkiDriveInfo) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. DKIOCINFO failed on '%s': %d"), pImage->pszFilename, pszRawDrive, errno); + else if (ioctl(RTFileToNative(hRawPart), DKIOCINFO, (caddr_t)&dkiPartInfo) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. DKIOCINFO failed on '%s': %d"), pImage->pszFilename, pszRawDrive, errno); + else if ( dkiDriveInfo.dki_ctype != dkiPartInfo.dki_ctype + || dkiDriveInfo.dki_cnum != dkiPartInfo.dki_cnum + || dkiDriveInfo.dki_addr != dkiPartInfo.dki_addr + || dkiDriveInfo.dki_unit != dkiPartInfo.dki_unit + || dkiDriveInfo.dki_slave != dkiPartInfo.dki_slave) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s' (%#x != %#x || %#x != %#x || %#x != %#x || %#x != %#x || %#x != %#x)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + dkiDriveInfo.dki_ctype, dkiPartInfo.dki_ctype, dkiDriveInfo.dki_cnum, dkiPartInfo.dki_cnum, + dkiDriveInfo.dki_addr, dkiPartInfo.dki_addr, dkiDriveInfo.dki_unit, dkiPartInfo.dki_unit, + dkiDriveInfo.dki_slave, dkiPartInfo.dki_slave); + else + { + uint64_t cbOffset = 0; + uint64_t cbSize = 0; + dk_gpt *pEfi = NULL; + int idxEfiPart = efi_alloc_and_read(RTFileToNative(hRawPart), &pEfi); + if (idxEfiPart >= 0) + { + if ((uint32_t)dkiPartInfo.dki_partition + 1 == idxPartition) + { + cbOffset = pEfi->efi_parts[idxEfiPart].p_start * pEfi->efi_lbasize; + cbSize = pEfi->efi_parts[idxEfiPart].p_size * pEfi->efi_lbasize; + } + else + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s' (%#x != %#x)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + idxPartition, (uint32_t)dkiPartInfo.dki_partition + 1); + efi_free(pEfi); + } + else + { + /* + * Manual says the efi_alloc_and_read returns VT_EINVAL if no EFI partition table found. + * Actually, the function returns any error, e.g. VT_ERROR. Thus, we are not sure, is it + * real error or just no EFI table found. Therefore, let's try to obtain partition info + * using another way. If there is an error, it returns errno which will be handled below. + */ + + uint32_t numPartition = (uint32_t)dkiPartInfo.dki_partition; + if (numPartition > NDKMAP) + numPartition -= NDKMAP; + if (numPartition != idxPartition) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s' (%#x != %#x)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + idxPartition, numPartition); + else + { + dk_minfo_ext mediaInfo; + if (ioctl(RTFileToNative(hRawPart), DKIOCGMEDIAINFOEXT, (caddr_t)&mediaInfo) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s'. Can not obtain partition info: %d"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + else + { + extpart_info extPartInfo; + if (ioctl(RTFileToNative(hRawPart), DKIOCEXTPARTINFO, (caddr_t)&extPartInfo) != -1) + { + cbOffset = (uint64_t)extPartInfo.p_start * mediaInfo.dki_lbsize; + cbSize = (uint64_t)extPartInfo.p_length * mediaInfo.dki_lbsize; + } + else + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s'. Can not obtain partition info: %d"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + } + } + } + if (RT_SUCCESS(rc) && cbOffset != pPartDesc->offStartInVDisk) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RI64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbOffset, pPartDesc->offStartInVDisk); + + if (RT_SUCCESS(rc) && cbSize != pPartDesc->cbData) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RI64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbSize, pPartDesc->cbData); + } + +#elif defined(RT_OS_DARWIN) + /* Stat the drive get its device number. */ + struct stat StDrive; + if (fstat((int)RTFileToNative(hRawDrive), &StDrive) != 0) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. fstat failed on '%s' (errno=%d)"), pImage->pszFilename, pszRawDrive, errno); + else + { + if (ioctl(RTFileToNative(hRawPart), DKIOCLOCKPHYSICALEXTENTS, NULL) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to lock the partition (errno=%d)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + else + { + uint32_t cbBlockSize = 0; + uint64_t cbOffset = 0; + uint64_t cbSize = 0; + if (ioctl(RTFileToNative(hRawPart), DKIOCGETBLOCKSIZE, (caddr_t)&cbBlockSize) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain the sector size of the partition (errno=%d)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + else if (ioctl(RTFileToNative(hRawPart), DKIOCGETBASE, (caddr_t)&cbOffset) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain the start offset of the partition (errno=%d)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + else if (ioctl(RTFileToNative(hRawPart), DKIOCGETBLOCKCOUNT, (caddr_t)&cbSize) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain the size of the partition (errno=%d)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + else + { + cbSize *= (uint64_t)cbBlockSize; + dk_physical_extent_t dkPartExtent = {0}; + dkPartExtent.offset = 0; + dkPartExtent.length = cbSize; + if (ioctl(RTFileToNative(hRawPart), DKIOCGETPHYSICALEXTENT, (caddr_t)&dkPartExtent) == -1) + rc = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to obtain partition info (errno=%d)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + else + { + if (dkPartExtent.dev != StDrive.st_rdev) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Drive does not contain the partition"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive); + else if (cbOffset != pPartDesc->offStartInVDisk) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Start offset %RU64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbOffset, pPartDesc->offStartInVDisk); + else if (cbSize != pPartDesc->cbData) + rc = vdIfError(pImage->pIfError, VERR_MISMATCH, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s': Size %RU64, expected %RU64"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cbSize, pPartDesc->cbData); + } + } + + if (ioctl(RTFileToNative(hRawPart), DKIOCUNLOCKPHYSICALEXTENTS, NULL) == -1) + { + int rc2 = vdIfError(pImage->pIfError, RTErrConvertFromErrno(errno), RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u number ('%s') verification failed on '%s': Unable to unlock the partition (errno=%d)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, errno); + if (RT_SUCCESS(rc)) + rc = rc2; + } + } + } + +#else + RT_NOREF(hVol); /* PORTME */ + rc = VERR_NOT_SUPPORTED; +#endif + if (RT_SUCCESS(rc)) + { + /* + * Compare the first 32 sectors of the partition. + * + * This might not be conclusive, but for partitions formatted with the more + * common file systems it should be as they have a superblock copy at or near + * the start of the partition (fat, fat32, ntfs, and ext4 does at least). + */ + size_t const cbToCompare = (size_t)RT_MIN(pPartDesc->cbData / cbSector, 32) * cbSector; + uint8_t *pbSector1 = (uint8_t *)RTMemTmpAlloc(cbToCompare * 2); + if (pbSector1 != NULL) + { + uint8_t *pbSector2 = pbSector1 + cbToCompare; + + /* Do the comparing, we repeat if it fails and the data might be volatile. */ + uint64_t uPrevCrc1 = 0; + uint64_t uPrevCrc2 = 0; + uint32_t cStable = 0; + for (unsigned iTry = 0; iTry < 256; iTry++) + { + rc = RTFileReadAt(hRawDrive, pPartDesc->offStartInVDisk, pbSector1, cbToCompare, NULL); + if (RT_SUCCESS(rc)) + { + rc = RTFileReadAt(hRawPart, pPartDesc->offStartInDevice, pbSector2, cbToCompare, NULL); + if (RT_SUCCESS(rc)) + { + if (memcmp(pbSector1, pbSector2, cbToCompare) != 0) + { + rc = VERR_MISMATCH; + + /* Do data stability checks before repeating: */ + uint64_t const uCrc1 = RTCrc64(pbSector1, cbToCompare); + uint64_t const uCrc2 = RTCrc64(pbSector2, cbToCompare); + if ( uPrevCrc1 != uCrc1 + || uPrevCrc2 != uCrc2) + cStable = 0; + else if (++cStable > 4) + break; + uPrevCrc1 = uCrc1; + uPrevCrc2 = uCrc2; + continue; + } + rc = VINF_SUCCESS; + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Error reading %zu bytes from '%s' at offset %RU64 (%Rrc)"), + pImage->pszFilename, cbToCompare, pPartDesc->pszRawDevice, pPartDesc->offStartInDevice, rc); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Error reading %zu bytes from '%s' at offset %RU64 (%Rrc)"), + pImage->pszFilename, cbToCompare, pszRawDrive, pPartDesc->offStartInVDisk, rc); + break; + } + if (rc == VERR_MISMATCH) + { + /* Find the first mismatching bytes: */ + size_t offMissmatch = 0; + while (offMissmatch < cbToCompare && pbSector1[offMissmatch] == pbSector2[offMissmatch]) + offMissmatch++; + int cbSample = (int)RT_MIN(cbToCompare - offMissmatch, 16); + + if (cStable > 0) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition #%u path ('%s') verification failed on '%s' (cStable=%d @%#zx: %.*Rhxs vs %.*Rhxs)"), + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, cStable, + offMissmatch, cbSample, &pbSector1[offMissmatch], cbSample, &pbSector2[offMissmatch]); + else + { + LogRel(("VMDK: Image path: '%s'. Partition #%u path ('%s') verification undecided on '%s' because of unstable data! (@%#zx: %.*Rhxs vs %.*Rhxs)\n", + pImage->pszFilename, idxPartition, pPartDesc->pszRawDevice, pszRawDrive, + offMissmatch, cbSample, &pbSector1[offMissmatch], cbSample, &pbSector2[offMissmatch])); + rc = -rc; + } + } + + RTMemTmpFree(pbSector1); + } + else + rc = vdIfError(pImage->pIfError, VERR_NO_TMP_MEMORY, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to allocate %zu bytes for a temporary read buffer\n"), + pImage->pszFilename, cbToCompare * 2); + } + RTFileClose(hRawPart); + return rc; +} + +#ifdef RT_OS_WINDOWS +/** + * Construct the device name for the given partition number. + */ +static int vmdkRawDescWinMakePartitionName(PVMDKIMAGE pImage, const char *pszRawDrive, RTFILE hRawDrive, uint32_t idxPartition, + char **ppszRawPartition) +{ + int rc = VINF_SUCCESS; + DWORD cbReturned = 0; + STORAGE_DEVICE_NUMBER DevNum; + RT_ZERO(DevNum); + if (DeviceIoControl((HANDLE)RTFileToNative(hRawDrive), IOCTL_STORAGE_GET_DEVICE_NUMBER, + NULL /*pvInBuffer*/, 0 /*cbInBuffer*/, &DevNum, sizeof(DevNum), &cbReturned, NULL /*pOverlapped*/)) + RTStrAPrintf(ppszRawPartition, "\\\\.\\Harddisk%uPartition%u", DevNum.DeviceNumber, idxPartition); + else + rc = vdIfError(pImage->pIfError, RTErrConvertFromWin32(GetLastError()), RT_SRC_POS, + N_("VMDK: Image path: '%s'. IOCTL_STORAGE_GET_DEVICE_NUMBER failed on '%s': %u"), + pImage->pszFilename, pszRawDrive, GetLastError()); + return rc; +} +#endif /* RT_OS_WINDOWS */ + +/** + * Worker for vmdkMakeRawDescriptor that adds partition descriptors when the + * 'Partitions' configuration value is present. + * + * @returns VBox status code, error message has been set on failure. + * + * @note Caller is assumed to clean up @a pRawDesc and release + * @a *phVolToRelease. + * @internal + */ +static int vmdkRawDescDoPartitions(PVMDKIMAGE pImage, RTDVM hVolMgr, PVDISKRAW pRawDesc, + RTFILE hRawDrive, const char *pszRawDrive, uint32_t cbSector, + uint32_t fPartitions, uint32_t fPartitionsReadOnly, bool fRelative, + PRTDVMVOLUME phVolToRelease) +{ + *phVolToRelease = NIL_RTDVMVOLUME; + + /* Check sanity/understanding. */ + Assert(fPartitions); + Assert((fPartitions & fPartitionsReadOnly) == fPartitionsReadOnly); /* RO should be a sub-set */ + + /* + * Allocate on descriptor for each volume up front. + */ + uint32_t const cVolumes = RTDvmMapGetValidVolumes(hVolMgr); + + PVDISKRAWPARTDESC paPartDescs = NULL; + int rc = vmdkRawDescAppendPartDesc(pImage, pRawDesc, cVolumes, &paPartDescs); + AssertRCReturn(rc, rc); + + /* + * Enumerate the partitions (volumes) on the disk and create descriptors for each of them. + */ + uint32_t fPartitionsLeft = fPartitions; + RTDVMVOLUME hVol = NIL_RTDVMVOLUME; /* the current volume, needed for getting the next. */ + for (uint32_t i = 0; i < cVolumes; i++) + { + /* + * Get the next/first volume and release the current. + */ + RTDVMVOLUME hVolNext = NIL_RTDVMVOLUME; + if (i == 0) + rc = RTDvmMapQueryFirstVolume(hVolMgr, &hVolNext); + else + rc = RTDvmMapQueryNextVolume(hVolMgr, hVol, &hVolNext); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Volume enumeration failed at volume #%u on '%s' (%Rrc)"), + pImage->pszFilename, i, pszRawDrive, rc); + uint32_t cRefs = RTDvmVolumeRelease(hVol); + Assert(cRefs != UINT32_MAX); RT_NOREF(cRefs); + *phVolToRelease = hVol = hVolNext; + + /* + * Depending on the fPartitions selector and associated read-only mask, + * the guest either gets read-write or read-only access (bits set) + * or no access (selector bit clear, access directed to the VMDK). + */ + paPartDescs[i].cbData = RTDvmVolumeGetSize(hVol); + + uint64_t offVolumeEndIgnored = 0; + rc = RTDvmVolumeQueryRange(hVol, &paPartDescs[i].offStartInVDisk, &offVolumeEndIgnored); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to get location of volume #%u on '%s' (%Rrc)"), + pImage->pszFilename, i, pszRawDrive, rc); + Assert(paPartDescs[i].cbData == offVolumeEndIgnored + 1 - paPartDescs[i].offStartInVDisk); + + /* Note! The index must match IHostDrivePartition::number. */ + uint32_t idxPartition = RTDvmVolumeGetIndex(hVol, RTDVMVOLIDX_HOST); + if ( idxPartition < 32 + && (fPartitions & RT_BIT_32(idxPartition))) + { + fPartitionsLeft &= ~RT_BIT_32(idxPartition); + if (fPartitionsReadOnly & RT_BIT_32(idxPartition)) + paPartDescs[i].uFlags |= VDISKRAW_READONLY; + + if (!fRelative) + { + /* + * Accessing the drive thru the main device node (pRawDesc->pszRawDisk). + */ + paPartDescs[i].offStartInDevice = paPartDescs[i].offStartInVDisk; + paPartDescs[i].pszRawDevice = RTStrDup(pszRawDrive); + AssertPtrReturn(paPartDescs[i].pszRawDevice, VERR_NO_STR_MEMORY); + } + else + { + /* + * Relative means access the partition data via the device node for that + * partition, allowing the sysadmin/OS to allow a user access to individual + * partitions without necessarily being able to compromise the host OS. + * Obviously, the creation of the VMDK requires read access to the main + * device node for the drive, but that's a one-time thing and can be done + * by the sysadmin. Here data starts at offset zero in the device node. + */ + paPartDescs[i].offStartInDevice = 0; + +#if defined(RT_OS_DARWIN) || defined(RT_OS_FREEBSD) + /* /dev/rdisk1 -> /dev/rdisk1s2 (s=slice) */ + RTStrAPrintf(&paPartDescs[i].pszRawDevice, "%ss%u", pszRawDrive, idxPartition); +#elif defined(RT_OS_LINUX) + /* Two naming schemes here: /dev/nvme0n1 -> /dev/nvme0n1p1; /dev/sda -> /dev/sda1 */ + RTStrAPrintf(&paPartDescs[i].pszRawDevice, + RT_C_IS_DIGIT(pszRawDrive[strlen(pszRawDrive) - 1]) ? "%sp%u" : "%s%u", pszRawDrive, idxPartition); +#elif defined(RT_OS_WINDOWS) + rc = vmdkRawDescWinMakePartitionName(pImage, pszRawDrive, hRawDrive, idxPartition, &paPartDescs[i].pszRawDevice); + AssertRCReturn(rc, rc); +#elif defined(RT_OS_SOLARIS) + if (pRawDesc->enmPartitioningType == VDISKPARTTYPE_MBR) + { + /* + * MBR partitions have device nodes in form /dev/(r)dsk/cXtYdZpK + * where X is the controller, + * Y is target (SCSI device number), + * Z is disk number, + * K is partition number, + * where p0 is the whole disk + * p1-pN are the partitions of the disk + */ + const char *pszRawDrivePath = pszRawDrive; + char szDrivePath[RTPATH_MAX]; + size_t cbRawDrive = strlen(pszRawDrive); + if ( cbRawDrive > 1 && strcmp(&pszRawDrive[cbRawDrive - 2], "p0") == 0) + { + memcpy(szDrivePath, pszRawDrive, cbRawDrive - 2); + szDrivePath[cbRawDrive - 2] = '\0'; + pszRawDrivePath = szDrivePath; + } + RTStrAPrintf(&paPartDescs[i].pszRawDevice, "%sp%u", pszRawDrivePath, idxPartition); + } + else /* GPT */ + { + /* + * GPT partitions have device nodes in form /dev/(r)dsk/cXtYdZsK + * where X is the controller, + * Y is target (SCSI device number), + * Z is disk number, + * K is partition number, zero based. Can be only from 0 to 6. + * Thus, only partitions numbered 0 through 6 have device nodes. + */ + if (idxPartition > 7) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. the partition #%u on '%s' has no device node and can not be specified with 'Relative' property"), + pImage->pszFilename, idxPartition, pszRawDrive); + RTStrAPrintf(&paPartDescs[i].pszRawDevice, "%ss%u", pszRawDrive, idxPartition - 1); + } +#else + AssertFailedReturn(VERR_INTERNAL_ERROR_4); /* The option parsing code should have prevented this - PORTME */ +#endif + AssertPtrReturn(paPartDescs[i].pszRawDevice, VERR_NO_STR_MEMORY); + + rc = vmdkRawDescVerifyPartitionPath(pImage, &paPartDescs[i], idxPartition, pszRawDrive, hRawDrive, cbSector, hVol); + AssertRCReturn(rc, rc); + } + } + else + { + /* Not accessible to the guest. */ + paPartDescs[i].offStartInDevice = 0; + paPartDescs[i].pszRawDevice = NULL; + } + } /* for each volume */ + + RTDvmVolumeRelease(hVol); + *phVolToRelease = NIL_RTDVMVOLUME; + + /* + * Check that we found all the partitions the user selected. + */ + if (fPartitionsLeft) + { + char szLeft[3 * sizeof(fPartitions) * 8]; + size_t cchLeft = 0; + for (unsigned i = 0; i < sizeof(fPartitions) * 8; i++) + if (fPartitionsLeft & RT_BIT_32(i)) + cchLeft += RTStrPrintf(&szLeft[cchLeft], sizeof(szLeft) - cchLeft, cchLeft ? "%u" : ",%u", i); + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Not all the specified partitions for drive '%s' was found: %s"), + pImage->pszFilename, pszRawDrive, szLeft); + } + + return VINF_SUCCESS; +} + +/** + * Worker for vmdkMakeRawDescriptor that adds partition descriptors with copies + * of the partition tables and associated padding areas when the 'Partitions' + * configuration value is present. + * + * The guest is not allowed access to the partition tables, however it needs + * them to be able to access the drive. So, create descriptors for each of the + * tables and attach the current disk content. vmdkCreateRawImage() will later + * write the content to the VMDK. Any changes the guest later makes to the + * partition tables will then go to the VMDK copy, rather than the host drive. + * + * @returns VBox status code, error message has been set on failure. + * + * @note Caller is assumed to clean up @a pRawDesc + * @internal + */ +static int vmdkRawDescDoCopyPartitionTables(PVMDKIMAGE pImage, RTDVM hVolMgr, PVDISKRAW pRawDesc, + const char *pszRawDrive, RTFILE hRawDrive, void *pvBootSector, size_t cbBootSector) +{ + /* + * Query the locations. + */ + /* Determin how many locations there are: */ + size_t cLocations = 0; + int rc = RTDvmMapQueryTableLocations(hVolMgr, RTDVMMAPQTABLOC_F_INCLUDE_LEGACY, NULL, 0, &cLocations); + if (rc != VERR_BUFFER_OVERFLOW) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. RTDvmMapQueryTableLocations failed on '%s' (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); + AssertReturn(cLocations > 0 && cLocations < _16M, VERR_INTERNAL_ERROR_5); + + /* We can allocate the partition descriptors here to save an intentation level. */ + PVDISKRAWPARTDESC paPartDescs = NULL; + rc = vmdkRawDescAppendPartDesc(pImage, pRawDesc, (uint32_t)cLocations, &paPartDescs); + AssertRCReturn(rc, rc); + + /* Allocate the result table and repeat the location table query: */ + PRTDVMTABLELOCATION paLocations = (PRTDVMTABLELOCATION)RTMemAllocZ(sizeof(paLocations[0]) * cLocations); + if (!paLocations) + return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("VMDK: Image path: '%s'. Failed to allocate %zu bytes"), + pImage->pszFilename, sizeof(paLocations[0]) * cLocations); + rc = RTDvmMapQueryTableLocations(hVolMgr, RTDVMMAPQTABLOC_F_INCLUDE_LEGACY, paLocations, cLocations, NULL); + if (RT_SUCCESS(rc)) + { + /* + * Translate them into descriptors. + * + * We restrict the amount of partition alignment padding to 4MiB as more + * will just be a waste of space. The use case for including the padding + * are older boot loaders and boot manager (including one by a team member) + * that put data and code in the 62 sectors between the MBR and the first + * partition (total of 63). Later CHS was abandond and partition started + * being aligned on power of two sector boundraries (typically 64KiB or + * 1MiB depending on the media size). + */ + for (size_t i = 0; i < cLocations && RT_SUCCESS(rc); i++) + { + Assert(paLocations[i].cb > 0); + if (paLocations[i].cb <= _64M) + { + /* Create the partition descriptor entry: */ + //paPartDescs[i].pszRawDevice = NULL; + //paPartDescs[i].offStartInDevice = 0; + //paPartDescs[i].uFlags = 0; + paPartDescs[i].offStartInVDisk = paLocations[i].off; + paPartDescs[i].cbData = paLocations[i].cb; + if (paPartDescs[i].cbData < _4M) + paPartDescs[i].cbData = RT_MIN(paPartDescs[i].cbData + paLocations[i].cbPadding, _4M); + paPartDescs[i].pvPartitionData = RTMemAllocZ((size_t)paPartDescs[i].cbData); + if (paPartDescs[i].pvPartitionData) + { + /* Read the content from the drive: */ + rc = RTFileReadAt(hRawDrive, paPartDescs[i].offStartInVDisk, paPartDescs[i].pvPartitionData, + (size_t)paPartDescs[i].cbData, NULL); + if (RT_SUCCESS(rc)) + { + /* Do we have custom boot sector code? */ + if (pvBootSector && cbBootSector && paPartDescs[i].offStartInVDisk == 0) + { + /* Note! Old code used to quietly drop the bootsector if it was considered too big. + Instead we fail as we weren't able to do what the user requested us to do. + Better if the user knows than starts questioning why the guest isn't + booting as expected. */ + if (cbBootSector <= paPartDescs[i].cbData) + memcpy(paPartDescs[i].pvPartitionData, pvBootSector, cbBootSector); + else + rc = vdIfError(pImage->pIfError, VERR_TOO_MUCH_DATA, RT_SRC_POS, + N_("VMDK: Image path: '%s'. The custom boot sector is too big: %zu bytes, %RU64 bytes available"), + pImage->pszFilename, cbBootSector, paPartDescs[i].cbData); + } + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to read partition at off %RU64 length %zu from '%s' (%Rrc)"), + pImage->pszFilename, paPartDescs[i].offStartInVDisk, + (size_t)paPartDescs[i].cbData, pszRawDrive, rc); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to allocate %zu bytes for copying the partition table at off %RU64"), + pImage->pszFilename, (size_t)paPartDescs[i].cbData, paPartDescs[i].offStartInVDisk); + } + else + rc = vdIfError(pImage->pIfError, VERR_TOO_MUCH_DATA, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Partition table #%u at offset %RU64 in '%s' is to big: %RU64 bytes"), + pImage->pszFilename, i, paLocations[i].off, pszRawDrive, paLocations[i].cb); + } + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. RTDvmMapQueryTableLocations failed on '%s' (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); + RTMemFree(paLocations); + return rc; +} + +/** + * Opens the volume manager for the raw drive when in selected-partition mode. + * + * @param pImage The VMDK image (for errors). + * @param hRawDrive The raw drive handle. + * @param pszRawDrive The raw drive device path (for errors). + * @param cbSector The sector size. + * @param phVolMgr Where to return the handle to the volume manager on + * success. + * @returns VBox status code, errors have been reported. + * @internal + */ +static int vmdkRawDescOpenVolMgr(PVMDKIMAGE pImage, RTFILE hRawDrive, const char *pszRawDrive, uint32_t cbSector, PRTDVM phVolMgr) +{ + *phVolMgr = NIL_RTDVM; + + RTVFSFILE hVfsFile = NIL_RTVFSFILE; + int rc = RTVfsFileFromRTFile(hRawDrive, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE, true /*fLeaveOpen*/, &hVfsFile); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. RTVfsFileFromRTFile failed for '%s' handle (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); + + RTDVM hVolMgr = NIL_RTDVM; + rc = RTDvmCreate(&hVolMgr, hVfsFile, cbSector, 0 /*fFlags*/); + + RTVfsFileRelease(hVfsFile); + + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to create volume manager instance for '%s' (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); + + rc = RTDvmMapOpen(hVolMgr); + if (RT_SUCCESS(rc)) + { + *phVolMgr = hVolMgr; + return VINF_SUCCESS; + } + RTDvmRelease(hVolMgr); + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: Image path: '%s'. RTDvmMapOpen failed for '%s' (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); +} + +/** + * Opens the raw drive device and get the sizes for it. + * + * @param pImage The image (for error reporting). + * @param pszRawDrive The device/whatever to open. + * @param phRawDrive Where to return the file handle. + * @param pcbRawDrive Where to return the size. + * @param pcbSector Where to return the sector size. + * @returns IPRT status code, errors have been reported. + * @internal + */ +static int vmkdRawDescOpenDevice(PVMDKIMAGE pImage, const char *pszRawDrive, + PRTFILE phRawDrive, uint64_t *pcbRawDrive, uint32_t *pcbSector) +{ + /* + * Open the device for the raw drive. + */ + RTFILE hRawDrive = NIL_RTFILE; + int rc = RTFileOpen(&hRawDrive, pszRawDrive, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_NONE); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to open the raw drive '%s' for reading (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); + + /* + * Get the sector size. + */ + uint32_t cbSector = 0; + rc = RTFileQuerySectorSize(hRawDrive, &cbSector); + if (RT_SUCCESS(rc)) + { + /* sanity checks */ + if ( cbSector >= 512 + && cbSector <= _64K + && RT_IS_POWER_OF_TWO(cbSector)) + { + /* + * Get the size. + */ + uint64_t cbRawDrive = 0; + rc = RTFileQuerySize(hRawDrive, &cbRawDrive); + if (RT_SUCCESS(rc)) + { + /* Check whether cbSize is actually sensible. */ + if (cbRawDrive > cbSector && (cbRawDrive % cbSector) == 0) + { + *phRawDrive = hRawDrive; + *pcbRawDrive = cbRawDrive; + *pcbSector = cbSector; + return VINF_SUCCESS; + } + rc = vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Got a bogus size for the raw drive '%s': %RU64 (sector size %u)"), + pImage->pszFilename, pszRawDrive, cbRawDrive, cbSector); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to query size of the drive '%s' (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); + } + else + rc = vdIfError(pImage->pIfError, VERR_OUT_OF_RANGE, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Unsupported sector size for '%s': %u (%#x)"), + pImage->pszFilename, pszRawDrive, cbSector, cbSector); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to get the sector size for '%s' (%Rrc)"), + pImage->pszFilename, pszRawDrive, rc); + RTFileClose(hRawDrive); + return rc; +} + +/** + * Reads the raw disk configuration, leaving initalization and cleanup to the + * caller (regardless of return status). + * + * @returns VBox status code, errors properly reported. + * @internal + */ +static int vmdkRawDescParseConfig(PVMDKIMAGE pImage, char **ppszRawDrive, + uint32_t *pfPartitions, uint32_t *pfPartitionsReadOnly, + void **ppvBootSector, size_t *pcbBootSector, bool *pfRelative, + char **ppszFreeMe) +{ + PVDINTERFACECONFIG pImgCfg = VDIfConfigGet(pImage->pVDIfsImage); + if (!pImgCfg) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Getting config interface failed"), pImage->pszFilename); + + /* + * RawDrive = path + */ + int rc = VDCFGQueryStringAlloc(pImgCfg, "RawDrive", ppszRawDrive); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Getting 'RawDrive' configuration failed (%Rrc)"), pImage->pszFilename, rc); + AssertPtrReturn(*ppszRawDrive, VERR_INTERNAL_ERROR_3); + + /* + * Partitions=n[r][,...] + */ + uint32_t const cMaxPartitionBits = sizeof(*pfPartitions) * 8 /* ASSUMES 8 bits per char */; + *pfPartitions = *pfPartitionsReadOnly = 0; + + rc = VDCFGQueryStringAlloc(pImgCfg, "Partitions", ppszFreeMe); + if (RT_SUCCESS(rc)) + { + char *psz = *ppszFreeMe; + while (*psz != '\0') + { + char *pszNext; + uint32_t u32; + rc = RTStrToUInt32Ex(psz, &pszNext, 0, &u32); + if (rc == VWRN_NUMBER_TOO_BIG || rc == VWRN_NEGATIVE_UNSIGNED) + rc = -rc; + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Parsing 'Partitions' config value failed. Incorrect value (%Rrc): %s"), + pImage->pszFilename, rc, psz); + if (u32 >= cMaxPartitionBits) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. 'Partitions' config sub-value out of range: %RU32, max %RU32"), + pImage->pszFilename, u32, cMaxPartitionBits); + *pfPartitions |= RT_BIT_32(u32); + psz = pszNext; + if (*psz == 'r') + { + *pfPartitionsReadOnly |= RT_BIT_32(u32); + psz++; + } + if (*psz == ',') + psz++; + else if (*psz != '\0') + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Malformed 'Partitions' config value, expected separator: %s"), + pImage->pszFilename, psz); + } + + RTStrFree(*ppszFreeMe); + *ppszFreeMe = NULL; + } + else if (rc != VERR_CFGM_VALUE_NOT_FOUND) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Getting 'Partitions' configuration failed (%Rrc)"), pImage->pszFilename, rc); + + /* + * BootSector=base64 + */ + rc = VDCFGQueryStringAlloc(pImgCfg, "BootSector", ppszFreeMe); + if (RT_SUCCESS(rc)) + { + ssize_t cbBootSector = RTBase64DecodedSize(*ppszFreeMe, NULL); + if (cbBootSector < 0) + return vdIfError(pImage->pIfError, VERR_INVALID_BASE64_ENCODING, RT_SRC_POS, + N_("VMDK: Image path: '%s'. BASE64 decoding failed on the custom bootsector for '%s'"), + pImage->pszFilename, *ppszRawDrive); + if (cbBootSector == 0) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Custom bootsector for '%s' is zero bytes big"), + pImage->pszFilename, *ppszRawDrive); + if (cbBootSector > _4M) /* this is just a preliminary max */ + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Custom bootsector for '%s' is way too big: %zu bytes, max 4MB"), + pImage->pszFilename, *ppszRawDrive, cbBootSector); + + /* Refuse the boot sector if whole-drive. This used to be done quietly, + however, bird disagrees and thinks the user should be told that what + he/she/it tries to do isn't possible. There should be less head + scratching this way when the guest doesn't do the expected thing. */ + if (!*pfPartitions) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Custom bootsector for '%s' is not supported for whole-drive configurations, only when selecting partitions"), + pImage->pszFilename, *ppszRawDrive); + + *pcbBootSector = (size_t)cbBootSector; + *ppvBootSector = RTMemAlloc((size_t)cbBootSector); + if (!*ppvBootSector) + return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to allocate %zd bytes for the custom bootsector for '%s'"), + pImage->pszFilename, cbBootSector, *ppszRawDrive); + + rc = RTBase64Decode(*ppszFreeMe, *ppvBootSector, cbBootSector, NULL /*pcbActual*/, NULL /*ppszEnd*/); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Base64 decoding of the custom boot sector for '%s' failed (%Rrc)"), + pImage->pszFilename, *ppszRawDrive, rc); + + RTStrFree(*ppszFreeMe); + *ppszFreeMe = NULL; + } + else if (rc != VERR_CFGM_VALUE_NOT_FOUND) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Getting 'BootSector' configuration failed (%Rrc)"), pImage->pszFilename, rc); + + /* + * Relative=0/1 + */ + *pfRelative = false; + rc = VDCFGQueryBool(pImgCfg, "Relative", pfRelative); + if (RT_SUCCESS(rc)) + { + if (!*pfPartitions && *pfRelative != false) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. The 'Relative' option is not supported for whole-drive configurations, only when selecting partitions"), + pImage->pszFilename); +#if !defined(RT_OS_DARWIN) && !defined(RT_OS_LINUX) && !defined(RT_OS_FREEBSD) && !defined(RT_OS_WINDOWS) && !defined(RT_OS_SOLARIS) /* PORTME */ + if (*pfRelative == true) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: Image path: '%s'. The 'Relative' option is not supported on this host OS"), + pImage->pszFilename); +#endif + } + else if (rc != VERR_CFGM_VALUE_NOT_FOUND) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Getting 'Relative' configuration failed (%Rrc)"), pImage->pszFilename, rc); + else +#ifdef RT_OS_DARWIN /* different default on macOS, see ticketref:1461 (comment 20). */ + *pfRelative = true; +#else + *pfRelative = false; +#endif + + return VINF_SUCCESS; +} + +/** + * Creates a raw drive (nee disk) descriptor. + * + * This was originally done in VBoxInternalManage.cpp, but was copied (not move) + * here much later. That's one of the reasons why we produce a descriptor just + * like it does, rather than mixing directly into the vmdkCreateRawImage code. + * + * @returns VBox status code. + * @param pImage The image. + * @param ppRaw Where to return the raw drive descriptor. Caller must + * free it using vmdkRawDescFree regardless of the status + * code. + * @internal + */ +static int vmdkMakeRawDescriptor(PVMDKIMAGE pImage, PVDISKRAW *ppRaw) +{ + /* Make sure it's NULL. */ + *ppRaw = NULL; + + /* + * Read the configuration. + */ + char *pszRawDrive = NULL; + uint32_t fPartitions = 0; /* zero if whole-drive */ + uint32_t fPartitionsReadOnly = 0; /* (subset of fPartitions) */ + void *pvBootSector = NULL; + size_t cbBootSector = 0; + bool fRelative = false; + char *pszFreeMe = NULL; /* lazy bird cleanup. */ + int rc = vmdkRawDescParseConfig(pImage, &pszRawDrive, &fPartitions, &fPartitionsReadOnly, + &pvBootSector, &cbBootSector, &fRelative, &pszFreeMe); + RTStrFree(pszFreeMe); + if (RT_SUCCESS(rc)) + { + /* + * Open the device, getting the sector size and drive size. + */ + uint64_t cbSize = 0; + uint32_t cbSector = 0; + RTFILE hRawDrive = NIL_RTFILE; + rc = vmkdRawDescOpenDevice(pImage, pszRawDrive, &hRawDrive, &cbSize, &cbSector); + if (RT_SUCCESS(rc)) + { + pImage->cbSize = cbSize; + /* + * Create the raw-drive descriptor + */ + PVDISKRAW pRawDesc = (PVDISKRAW)RTMemAllocZ(sizeof(*pRawDesc)); + if (pRawDesc) + { + pRawDesc->szSignature[0] = 'R'; + pRawDesc->szSignature[1] = 'A'; + pRawDesc->szSignature[2] = 'W'; + //pRawDesc->szSignature[3] = '\0'; + if (!fPartitions) + { + /* + * It's simple for when doing the whole drive. + */ + pRawDesc->uFlags = VDISKRAW_DISK; + rc = RTStrDupEx(&pRawDesc->pszRawDisk, pszRawDrive); + } + else + { + /* + * In selected partitions mode we've got a lot more work ahead of us. + */ + pRawDesc->uFlags = VDISKRAW_NORMAL; + //pRawDesc->pszRawDisk = NULL; + //pRawDesc->cPartDescs = 0; + //pRawDesc->pPartDescs = NULL; + + /* We need to parse the partition map to complete the descriptor: */ + RTDVM hVolMgr = NIL_RTDVM; + rc = vmdkRawDescOpenVolMgr(pImage, hRawDrive, pszRawDrive, cbSector, &hVolMgr); + if (RT_SUCCESS(rc)) + { + RTDVMFORMATTYPE enmFormatType = RTDvmMapGetFormatType(hVolMgr); + if ( enmFormatType == RTDVMFORMATTYPE_MBR + || enmFormatType == RTDVMFORMATTYPE_GPT) + { + pRawDesc->enmPartitioningType = enmFormatType == RTDVMFORMATTYPE_MBR + ? VDISKPARTTYPE_MBR : VDISKPARTTYPE_GPT; + + /* Add copies of the partition tables: */ + rc = vmdkRawDescDoCopyPartitionTables(pImage, hVolMgr, pRawDesc, pszRawDrive, hRawDrive, + pvBootSector, cbBootSector); + if (RT_SUCCESS(rc)) + { + /* Add descriptors for the partitions/volumes, indicating which + should be accessible and how to access them: */ + RTDVMVOLUME hVolRelease = NIL_RTDVMVOLUME; + rc = vmdkRawDescDoPartitions(pImage, hVolMgr, pRawDesc, hRawDrive, pszRawDrive, cbSector, + fPartitions, fPartitionsReadOnly, fRelative, &hVolRelease); + RTDvmVolumeRelease(hVolRelease); + + /* Finally, sort the partition and check consistency (overlaps, etc): */ + if (RT_SUCCESS(rc)) + rc = vmdkRawDescPostProcessPartitions(pImage, pRawDesc, cbSize); + } + } + else + rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Unsupported partitioning for the disk '%s': %s"), + pImage->pszFilename, pszRawDrive, RTDvmMapGetFormatType(hVolMgr)); + RTDvmRelease(hVolMgr); + } + } + if (RT_SUCCESS(rc)) + { + /* + * We succeeded. + */ + *ppRaw = pRawDesc; + Log(("vmdkMakeRawDescriptor: fFlags=%#x enmPartitioningType=%d cPartDescs=%u pszRawDisk=%s\n", + pRawDesc->uFlags, pRawDesc->enmPartitioningType, pRawDesc->cPartDescs, pRawDesc->pszRawDisk)); + if (pRawDesc->cPartDescs) + { + Log(("# VMDK offset Length Device offset PartDataPtr Device\n")); + for (uint32_t i = 0; i < pRawDesc->cPartDescs; i++) + Log(("%2u %14RU64 %14RU64 %14RU64 %#18p %s\n", i, pRawDesc->pPartDescs[i].offStartInVDisk, + pRawDesc->pPartDescs[i].cbData, pRawDesc->pPartDescs[i].offStartInDevice, + pRawDesc->pPartDescs[i].pvPartitionData, pRawDesc->pPartDescs[i].pszRawDevice)); + } + } + else + vmdkRawDescFree(pRawDesc); + } + else + rc = vdIfError(pImage->pIfError, VERR_NOT_SUPPORTED, RT_SRC_POS, + N_("VMDK: Image path: '%s'. Failed to allocate %u bytes for the raw drive descriptor"), + pImage->pszFilename, sizeof(*pRawDesc)); + RTFileClose(hRawDrive); + } + } + RTStrFree(pszRawDrive); + RTMemFree(pvBootSector); + return rc; +} + +/** + * Internal: create VMDK images for raw disk/partition access. + */ +static int vmdkCreateRawImage(PVMDKIMAGE pImage, const PVDISKRAW pRaw, + uint64_t cbSize) +{ + int rc = VINF_SUCCESS; + PVMDKEXTENT pExtent; + + if (pRaw->uFlags & VDISKRAW_DISK) + { + /* Full raw disk access. This requires setting up a descriptor + * file and open the (flat) raw disk. */ + rc = vmdkCreateExtents(pImage, 1); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); + pExtent = &pImage->pExtents[0]; + /* Create raw disk descriptor file. */ + rc = vmdkFileOpen(pImage, &pImage->pFile, NULL, pImage->pszFilename, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, + true /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename); + + /* Set up basename for extent description. Cannot use StrDup. */ + size_t cbBasename = strlen(pRaw->pszRawDisk) + 1; + char *pszBasename = (char *)RTMemTmpAlloc(cbBasename); + if (!pszBasename) + return VERR_NO_MEMORY; + memcpy(pszBasename, pRaw->pszRawDisk, cbBasename); + pExtent->pszBasename = pszBasename; + /* For raw disks the full name is identical to the base name. */ + pExtent->pszFullname = RTStrDup(pszBasename); + if (!pExtent->pszFullname) + return VERR_NO_MEMORY; + pExtent->enmType = VMDKETYPE_FLAT; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize); + pExtent->uSectorOffset = 0; + pExtent->enmAccess = (pRaw->uFlags & VDISKRAW_READONLY) ? VMDKACCESS_READONLY : VMDKACCESS_READWRITE; + pExtent->fMetaDirty = false; + + /* Open flat image, the raw disk. */ + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0), + false /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not open raw disk file '%s'"), pExtent->pszFullname); + } + else + { + /* Raw partition access. This requires setting up a descriptor + * file, write the partition information to a flat extent and + * open all the (flat) raw disk partitions. */ + + /* First pass over the partition data areas to determine how many + * extents we need. One data area can require up to 2 extents, as + * it might be necessary to skip over unpartitioned space. */ + unsigned cExtents = 0; + uint64_t uStart = 0; + for (unsigned i = 0; i < pRaw->cPartDescs; i++) + { + PVDISKRAWPARTDESC pPart = &pRaw->pPartDescs[i]; + if (uStart > pPart->offStartInVDisk) + return vdIfError(pImage->pIfError, VERR_INVALID_PARAMETER, RT_SRC_POS, + N_("VMDK: incorrect partition data area ordering set up by the caller in '%s'"), pImage->pszFilename); + + if (uStart < pPart->offStartInVDisk) + cExtents++; + uStart = pPart->offStartInVDisk + pPart->cbData; + cExtents++; + } + /* Another extent for filling up the rest of the image. */ + if (uStart != cbSize) + cExtents++; + + rc = vmdkCreateExtents(pImage, cExtents); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); + + /* Create raw partition descriptor file. */ + rc = vmdkFileOpen(pImage, &pImage->pFile, NULL, pImage->pszFilename, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, + true /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename); + + /* Create base filename for the partition table extent. */ + /** @todo remove fixed buffer without creating memory leaks. */ + char pszPartition[1024]; + const char *pszBase = RTPathFilename(pImage->pszFilename); + const char *pszSuff = RTPathSuffix(pszBase); + if (pszSuff == NULL) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: invalid filename '%s'"), pImage->pszFilename); + char *pszBaseBase = RTStrDup(pszBase); + if (!pszBaseBase) + return VERR_NO_MEMORY; + RTPathStripSuffix(pszBaseBase); + RTStrPrintf(pszPartition, sizeof(pszPartition), "%s-pt%s", + pszBaseBase, pszSuff); + RTStrFree(pszBaseBase); + + /* Second pass over the partitions, now define all extents. */ + uint64_t uPartOffset = 0; + cExtents = 0; + uStart = 0; + for (unsigned i = 0; i < pRaw->cPartDescs; i++) + { + PVDISKRAWPARTDESC pPart = &pRaw->pPartDescs[i]; + pExtent = &pImage->pExtents[cExtents++]; + + if (uStart < pPart->offStartInVDisk) + { + pExtent->pszBasename = NULL; + pExtent->pszFullname = NULL; + pExtent->enmType = VMDKETYPE_ZERO; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->offStartInVDisk - uStart); + pExtent->uSectorOffset = 0; + pExtent->enmAccess = VMDKACCESS_READWRITE; + pExtent->fMetaDirty = false; + /* go to next extent */ + pExtent = &pImage->pExtents[cExtents++]; + } + uStart = pPart->offStartInVDisk + pPart->cbData; + + if (pPart->pvPartitionData) + { + /* Set up basename for extent description. Can't use StrDup. */ + size_t cbBasename = strlen(pszPartition) + 1; + char *pszBasename = (char *)RTMemTmpAlloc(cbBasename); + if (!pszBasename) + return VERR_NO_MEMORY; + memcpy(pszBasename, pszPartition, cbBasename); + pExtent->pszBasename = pszBasename; + + /* Set up full name for partition extent. */ + char *pszDirname = RTStrDup(pImage->pszFilename); + if (!pszDirname) + return VERR_NO_STR_MEMORY; + RTPathStripFilename(pszDirname); + char *pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename); + RTStrFree(pszDirname); + if (!pszFullname) + return VERR_NO_STR_MEMORY; + pExtent->pszFullname = pszFullname; + pExtent->enmType = VMDKETYPE_FLAT; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData); + pExtent->uSectorOffset = uPartOffset; + pExtent->enmAccess = VMDKACCESS_READWRITE; + pExtent->fMetaDirty = false; + + /* Create partition table flat image. */ + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0), + true /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new partition data file '%s'"), pExtent->pszFullname); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uPartOffset), + pPart->pvPartitionData, + pPart->cbData); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not write partition data to '%s'"), pExtent->pszFullname); + uPartOffset += VMDK_BYTE2SECTOR(pPart->cbData); + } + else + { + if (pPart->pszRawDevice) + { + /* Set up basename for extent descr. Can't use StrDup. */ + size_t cbBasename = strlen(pPart->pszRawDevice) + 1; + char *pszBasename = (char *)RTMemTmpAlloc(cbBasename); + if (!pszBasename) + return VERR_NO_MEMORY; + memcpy(pszBasename, pPart->pszRawDevice, cbBasename); + pExtent->pszBasename = pszBasename; + /* For raw disks full name is identical to base name. */ + pExtent->pszFullname = RTStrDup(pszBasename); + if (!pExtent->pszFullname) + return VERR_NO_MEMORY; + pExtent->enmType = VMDKETYPE_FLAT; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData); + pExtent->uSectorOffset = VMDK_BYTE2SECTOR(pPart->offStartInDevice); + pExtent->enmAccess = (pPart->uFlags & VDISKRAW_READONLY) ? VMDKACCESS_READONLY : VMDKACCESS_READWRITE; + pExtent->fMetaDirty = false; + + /* Open flat image, the raw partition. */ + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags | ((pExtent->enmAccess == VMDKACCESS_READONLY) ? VD_OPEN_FLAGS_READONLY : 0), + false /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not open raw partition file '%s'"), pExtent->pszFullname); + } + else + { + pExtent->pszBasename = NULL; + pExtent->pszFullname = NULL; + pExtent->enmType = VMDKETYPE_ZERO; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData); + pExtent->uSectorOffset = 0; + pExtent->enmAccess = VMDKACCESS_READWRITE; + pExtent->fMetaDirty = false; + } + } + } + /* Another extent for filling up the rest of the image. */ + if (uStart != cbSize) + { + pExtent = &pImage->pExtents[cExtents++]; + pExtent->pszBasename = NULL; + pExtent->pszFullname = NULL; + pExtent->enmType = VMDKETYPE_ZERO; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize - uStart); + pExtent->uSectorOffset = 0; + pExtent->enmAccess = VMDKACCESS_READWRITE; + pExtent->fMetaDirty = false; + } + } + + rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType", + (pRaw->uFlags & VDISKRAW_DISK) ? + "fullDevice" : "partitionedDevice"); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename); + return rc; +} + +/** + * Internal: create a regular (i.e. file-backed) VMDK image. + */ +static int vmdkCreateRegularImage(PVMDKIMAGE pImage, uint64_t cbSize, + unsigned uImageFlags, PVDINTERFACEPROGRESS pIfProgress, + unsigned uPercentStart, unsigned uPercentSpan) +{ + int rc = VINF_SUCCESS; + unsigned cExtents = 1; + uint64_t cbOffset = 0; + uint64_t cbRemaining = cbSize; + + if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G) + { + cExtents = cbSize / VMDK_2G_SPLIT_SIZE; + /* Do proper extent computation: need one smaller extent if the total + * size isn't evenly divisible by the split size. */ + if (cbSize % VMDK_2G_SPLIT_SIZE) + cExtents++; + } + rc = vmdkCreateExtents(pImage, cExtents); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); + + /* Basename strings needed for constructing the extent names. */ + char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename); + AssertPtr(pszBasenameSubstr); + size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1; + + /* Create separate descriptor file if necessary. */ + if (cExtents != 1 || (uImageFlags & VD_IMAGE_FLAGS_FIXED)) + { + rc = vmdkFileOpen(pImage, &pImage->pFile, NULL, pImage->pszFilename, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, + true /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new sparse descriptor file '%s'"), pImage->pszFilename); + } + else + pImage->pFile = NULL; + + /* Set up all extents. */ + for (unsigned i = 0; i < cExtents; i++) + { + PVMDKEXTENT pExtent = &pImage->pExtents[i]; + uint64_t cbExtent = cbRemaining; + + /* Set up fullname/basename for extent description. Cannot use StrDup + * for basename, as it is not guaranteed that the memory can be freed + * with RTMemTmpFree, which must be used as in other code paths + * StrDup is not usable. */ + if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED)) + { + char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr); + if (!pszBasename) + return VERR_NO_MEMORY; + memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr); + pExtent->pszBasename = pszBasename; + } + else + { + char *pszBasenameSuff = RTPathSuffix(pszBasenameSubstr); + char *pszBasenameBase = RTStrDup(pszBasenameSubstr); + RTPathStripSuffix(pszBasenameBase); + char *pszTmp; + size_t cbTmp; + if (uImageFlags & VD_IMAGE_FLAGS_FIXED) + { + if (cExtents == 1) + RTStrAPrintf(&pszTmp, "%s-flat%s", pszBasenameBase, + pszBasenameSuff); + else + RTStrAPrintf(&pszTmp, "%s-f%03d%s", pszBasenameBase, + i+1, pszBasenameSuff); + } + else + RTStrAPrintf(&pszTmp, "%s-s%03d%s", pszBasenameBase, i+1, + pszBasenameSuff); + RTStrFree(pszBasenameBase); + if (!pszTmp) + return VERR_NO_STR_MEMORY; + cbTmp = strlen(pszTmp) + 1; + char *pszBasename = (char *)RTMemTmpAlloc(cbTmp); + if (!pszBasename) + { + RTStrFree(pszTmp); + return VERR_NO_MEMORY; + } + memcpy(pszBasename, pszTmp, cbTmp); + RTStrFree(pszTmp); + pExtent->pszBasename = pszBasename; + if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G) + cbExtent = RT_MIN(cbRemaining, VMDK_2G_SPLIT_SIZE); + } + char *pszBasedirectory = RTStrDup(pImage->pszFilename); + if (!pszBasedirectory) + return VERR_NO_STR_MEMORY; + RTPathStripFilename(pszBasedirectory); + char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename); + RTStrFree(pszBasedirectory); + if (!pszFullname) + return VERR_NO_STR_MEMORY; + pExtent->pszFullname = pszFullname; + + /* Create file for extent. */ + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, + true /* fCreate */)); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname); + if (uImageFlags & VD_IMAGE_FLAGS_FIXED) + { + rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, cbExtent, + 0 /* fFlags */, pIfProgress, + uPercentStart + cbOffset * uPercentSpan / cbSize, + cbExtent * uPercentSpan / cbSize); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname); + } + + /* Place descriptor file information (where integrated). */ + if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED)) + { + pExtent->uDescriptorSector = 1; + pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc); + /* The descriptor is part of the (only) extent. */ + pExtent->pDescData = pImage->pDescData; + pImage->pDescData = NULL; + } + + if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED)) + { + uint64_t cSectorsPerGDE, cSectorsPerGD; + pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; + pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbExtent, _64K)); + pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K); + pExtent->cGTEntries = 512; + cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; + pExtent->cSectorsPerGDE = cSectorsPerGDE; + pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; + cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t)); + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + /* The spec says version is 1 for all VMDKs, but the vast + * majority of streamOptimized VMDKs actually contain + * version 3 - so go with the majority. Both are accepted. */ + pExtent->uVersion = 3; + pExtent->uCompression = VMDK_COMPRESSION_DEFLATE; + } + } + else + { + if (uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX) + pExtent->enmType = VMDKETYPE_VMFS; + else + pExtent->enmType = VMDKETYPE_FLAT; + } + + pExtent->enmAccess = VMDKACCESS_READWRITE; + pExtent->fUncleanShutdown = true; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbExtent); + pExtent->uSectorOffset = 0; + pExtent->fMetaDirty = true; + + if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED)) + { + /* fPreAlloc should never be false because VMware can't use such images. */ + rc = vmdkCreateGrainDirectory(pImage, pExtent, + RT_MAX( pExtent->uDescriptorSector + + pExtent->cDescriptorSectors, + 1), + true /* fPreAlloc */); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname); + } + + cbOffset += cbExtent; + + if (RT_SUCCESS(rc)) + vdIfProgress(pIfProgress, uPercentStart + cbOffset * uPercentSpan / cbSize); + + cbRemaining -= cbExtent; + } + + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX) + { + /* VirtualBox doesn't care, but VMWare ESX freaks out if the wrong + * controller type is set in an image. */ + rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor, "ddb.adapterType", "lsilogic"); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set controller type to lsilogic in '%s'"), pImage->pszFilename); + } + + const char *pszDescType = NULL; + if (uImageFlags & VD_IMAGE_FLAGS_FIXED) + { + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX) + pszDescType = "vmfs"; + else + pszDescType = (cExtents == 1) + ? "monolithicFlat" : "twoGbMaxExtentFlat"; + } + else + { + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + pszDescType = "streamOptimized"; + else + { + pszDescType = (cExtents == 1) + ? "monolithicSparse" : "twoGbMaxExtentSparse"; + } + } + rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType", + pszDescType); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename); + return rc; +} + +/** + * Internal: Create a real stream optimized VMDK using only linear writes. + */ +static int vmdkCreateStreamImage(PVMDKIMAGE pImage, uint64_t cbSize) +{ + int rc = vmdkCreateExtents(pImage, 1); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); + + /* Basename strings needed for constructing the extent names. */ + const char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename); + AssertPtr(pszBasenameSubstr); + size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1; + + /* No separate descriptor file. */ + pImage->pFile = NULL; + + /* Set up all extents. */ + PVMDKEXTENT pExtent = &pImage->pExtents[0]; + + /* Set up fullname/basename for extent description. Cannot use StrDup + * for basename, as it is not guaranteed that the memory can be freed + * with RTMemTmpFree, which must be used as in other code paths + * StrDup is not usable. */ + char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr); + if (!pszBasename) + return VERR_NO_MEMORY; + memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr); + pExtent->pszBasename = pszBasename; + + char *pszBasedirectory = RTStrDup(pImage->pszFilename); + RTPathStripFilename(pszBasedirectory); + char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename); + RTStrFree(pszBasedirectory); + if (!pszFullname) + return VERR_NO_STR_MEMORY; + pExtent->pszFullname = pszFullname; + + /* Create file for extent. Make it write only, no reading allowed. */ + rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszBasename, pExtent->pszFullname, + VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, + true /* fCreate */) + & ~RTFILE_O_READ); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname); + + /* Place descriptor file information. */ + pExtent->uDescriptorSector = 1; + pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc); + /* The descriptor is part of the (only) extent. */ + pExtent->pDescData = pImage->pDescData; + pImage->pDescData = NULL; + + uint64_t cSectorsPerGDE, cSectorsPerGD; + pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; + pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbSize, _64K)); + pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K); + pExtent->cGTEntries = 512; + cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; + pExtent->cSectorsPerGDE = cSectorsPerGDE; + pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; + cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t)); + + /* The spec says version is 1 for all VMDKs, but the vast + * majority of streamOptimized VMDKs actually contain + * version 3 - so go with the majority. Both are accepted. */ + pExtent->uVersion = 3; + pExtent->uCompression = VMDK_COMPRESSION_DEFLATE; + pExtent->fFooter = true; + + pExtent->enmAccess = VMDKACCESS_READONLY; + pExtent->fUncleanShutdown = false; + pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize); + pExtent->uSectorOffset = 0; + pExtent->fMetaDirty = true; + + /* Create grain directory, without preallocating it straight away. It will + * be constructed on the fly when writing out the data and written when + * closing the image. The end effect is that the full grain directory is + * allocated, which is a requirement of the VMDK specs. */ + rc = vmdkCreateGrainDirectory(pImage, pExtent, VMDK_GD_AT_END, + false /* fPreAlloc */); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname); + + rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType", + "streamOptimized"); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename); + + return rc; +} + +/** + * Initializes the UUID fields in the DDB. + * + * @returns VBox status code. + * @param pImage The VMDK image instance. + */ +static int vmdkCreateImageDdbUuidsInit(PVMDKIMAGE pImage) +{ + int rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid); + if (RT_SUCCESS(rc)) + { + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID, &pImage->ParentUuid); + if (RT_SUCCESS(rc)) + { + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_MODIFICATION_UUID, + &pImage->ModificationUuid); + if (RT_SUCCESS(rc)) + { + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_MODIFICATION_UUID, + &pImage->ParentModificationUuid); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error storing parent modification UUID in new descriptor in '%s'"), pImage->pszFilename); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error storing modification UUID in new descriptor in '%s'"), pImage->pszFilename); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error storing parent image UUID in new descriptor in '%s'"), pImage->pszFilename); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error storing image UUID in new descriptor in '%s'"), pImage->pszFilename); + + return rc; +} + +/** + * Internal: The actual code for creating any VMDK variant currently in + * existence on hosted environments. + */ +static int vmdkCreateImage(PVMDKIMAGE pImage, uint64_t cbSize, + unsigned uImageFlags, const char *pszComment, + PCVDGEOMETRY pPCHSGeometry, + PCVDGEOMETRY pLCHSGeometry, PCRTUUID pUuid, + PVDINTERFACEPROGRESS pIfProgress, + unsigned uPercentStart, unsigned uPercentSpan) +{ + pImage->uImageFlags = uImageFlags; + + pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk); + pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage); + AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER); + + int rc = vmdkCreateDescriptor(pImage, pImage->pDescData, pImage->cbDescAlloc, + &pImage->Descriptor); + if (RT_SUCCESS(rc)) + { + if (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK) + { + /* Raw disk image (includes raw partition). */ + PVDISKRAW pRaw = NULL; + rc = vmdkMakeRawDescriptor(pImage, &pRaw); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create raw descriptor for '%s'"), + pImage->pszFilename); + if (!cbSize) + cbSize = pImage->cbSize; + + rc = vmdkCreateRawImage(pImage, pRaw, cbSize); + vmdkRawDescFree(pRaw); + } + else if (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + /* Stream optimized sparse image (monolithic). */ + rc = vmdkCreateStreamImage(pImage, cbSize); + } + else + { + /* Regular fixed or sparse image (monolithic or split). */ + rc = vmdkCreateRegularImage(pImage, cbSize, uImageFlags, + pIfProgress, uPercentStart, + uPercentSpan * 95 / 100); + } + + if (RT_SUCCESS(rc)) + { + vdIfProgress(pIfProgress, uPercentStart + uPercentSpan * 98 / 100); + + pImage->cbSize = cbSize; + + for (unsigned i = 0; i < pImage->cExtents; i++) + { + PVMDKEXTENT pExtent = &pImage->pExtents[i]; + + rc = vmdkDescExtInsert(pImage, &pImage->Descriptor, pExtent->enmAccess, + pExtent->cNominalSectors, pExtent->enmType, + pExtent->pszBasename, pExtent->uSectorOffset); + if (RT_FAILURE(rc)) + { + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not insert the extent list into descriptor in '%s'"), pImage->pszFilename); + break; + } + } + + if (RT_SUCCESS(rc)) + vmdkDescExtRemoveDummy(pImage, &pImage->Descriptor); + + pImage->LCHSGeometry = *pLCHSGeometry; + pImage->PCHSGeometry = *pPCHSGeometry; + + if (RT_SUCCESS(rc)) + { + if ( pPCHSGeometry->cCylinders != 0 + && pPCHSGeometry->cHeads != 0 + && pPCHSGeometry->cSectors != 0) + rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry); + else if (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK) + { + VDGEOMETRY RawDiskPCHSGeometry; + RawDiskPCHSGeometry.cCylinders = (uint32_t)RT_MIN(pImage->cbSize / 512 / 16 / 63, 16383); + RawDiskPCHSGeometry.cHeads = 16; + RawDiskPCHSGeometry.cSectors = 63; + rc = vmdkDescSetPCHSGeometry(pImage, &RawDiskPCHSGeometry); + } + } + + if ( RT_SUCCESS(rc) + && pLCHSGeometry->cCylinders != 0 + && pLCHSGeometry->cHeads != 0 + && pLCHSGeometry->cSectors != 0) + rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry); + + pImage->ImageUuid = *pUuid; + RTUuidClear(&pImage->ParentUuid); + RTUuidClear(&pImage->ModificationUuid); + RTUuidClear(&pImage->ParentModificationUuid); + + if (RT_SUCCESS(rc)) + rc = vmdkCreateImageDdbUuidsInit(pImage); + + if (RT_SUCCESS(rc)) + rc = vmdkAllocateGrainTableCache(pImage); + + if (RT_SUCCESS(rc)) + { + rc = vmdkSetImageComment(pImage, pszComment); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot set image comment in '%s'"), pImage->pszFilename); + } + + if (RT_SUCCESS(rc)) + { + vdIfProgress(pIfProgress, uPercentStart + uPercentSpan * 99 / 100); + + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + /* streamOptimized is a bit special, we cannot trigger the flush + * until all data has been written. So we write the necessary + * information explicitly. */ + pImage->pExtents[0].cDescriptorSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64( pImage->Descriptor.aLines[pImage->Descriptor.cLines] + - pImage->Descriptor.aLines[0], 512)); + rc = vmdkWriteMetaSparseExtent(pImage, &pImage->pExtents[0], 0, NULL); + if (RT_SUCCESS(rc)) + { + rc = vmdkWriteDescriptor(pImage, NULL); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK descriptor in '%s'"), pImage->pszFilename); + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK header in '%s'"), pImage->pszFilename); + } + else + rc = vmdkFlushImage(pImage, NULL); + } + } + } + else + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not create new descriptor in '%s'"), pImage->pszFilename); + + + if (RT_SUCCESS(rc)) + { + PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0]; + pImage->RegionList.fFlags = 0; + pImage->RegionList.cRegions = 1; + + pRegion->offRegion = 0; /* Disk start. */ + pRegion->cbBlock = 512; + pRegion->enmDataForm = VDREGIONDATAFORM_RAW; + pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE; + pRegion->cbData = 512; + pRegion->cbMetadata = 0; + pRegion->cRegionBlocksOrBytes = pImage->cbSize; + + vdIfProgress(pIfProgress, uPercentStart + uPercentSpan); + } + else + vmdkFreeImage(pImage, rc != VERR_ALREADY_EXISTS, false /*fFlush*/); + return rc; +} + +/** + * Internal: Update image comment. + */ +static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment) +{ + char *pszCommentEncoded = NULL; + if (pszComment) + { + pszCommentEncoded = vmdkEncodeString(pszComment); + if (!pszCommentEncoded) + return VERR_NO_MEMORY; + } + + int rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor, + "ddb.comment", pszCommentEncoded); + if (pszCommentEncoded) + RTStrFree(pszCommentEncoded); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing image comment in descriptor in '%s'"), pImage->pszFilename); + return VINF_SUCCESS; +} + +/** + * Internal. Clear the grain table buffer for real stream optimized writing. + */ +static void vmdkStreamClearGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) +{ + uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE; + for (uint32_t i = 0; i < cCacheLines; i++) + memset(&pImage->pGTCache->aGTCache[i].aGTData[0], '\0', + VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t)); +} + +/** + * Internal. Flush the grain table buffer for real stream optimized writing. + */ +static int vmdkStreamFlushGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint32_t uGDEntry) +{ + int rc = VINF_SUCCESS; + uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE; + + /* VMware does not write out completely empty grain tables in the case + * of streamOptimized images, which according to my interpretation of + * the VMDK 1.1 spec is bending the rules. Since they do it and we can + * handle it without problems do it the same way and save some bytes. */ + bool fAllZero = true; + for (uint32_t i = 0; i < cCacheLines; i++) + { + /* Convert the grain table to little endian in place, as it will not + * be used at all after this function has been called. */ + uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0]; + for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++) + if (*pGTTmp) + { + fAllZero = false; + break; + } + if (!fAllZero) + break; + } + if (fAllZero) + return VINF_SUCCESS; + + uint64_t uFileOffset = pExtent->uAppendPosition; + if (!uFileOffset) + return VERR_INTERNAL_ERROR; + /* Align to sector, as the previous write could have been any size. */ + uFileOffset = RT_ALIGN_64(uFileOffset, 512); + + /* Grain table marker. */ + uint8_t aMarker[512]; + PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0]; + memset(pMarker, '\0', sizeof(aMarker)); + pMarker->uSector = RT_H2LE_U64(VMDK_BYTE2SECTOR((uint64_t)pExtent->cGTEntries * sizeof(uint32_t))); + pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GT); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, uFileOffset, + aMarker, sizeof(aMarker)); + AssertRC(rc); + uFileOffset += 512; + + if (!pExtent->pGD || pExtent->pGD[uGDEntry]) + return VERR_INTERNAL_ERROR; + + pExtent->pGD[uGDEntry] = VMDK_BYTE2SECTOR(uFileOffset); + + for (uint32_t i = 0; i < cCacheLines; i++) + { + /* Convert the grain table to little endian in place, as it will not + * be used at all after this function has been called. */ + uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0]; + for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++) + *pGTTmp = RT_H2LE_U32(*pGTTmp); + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, uFileOffset, + &pImage->pGTCache->aGTCache[i].aGTData[0], + VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t)); + uFileOffset += VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t); + if (RT_FAILURE(rc)) + break; + } + Assert(!(uFileOffset % 512)); + pExtent->uAppendPosition = RT_ALIGN_64(uFileOffset, 512); + return rc; +} + +/** + * Internal. Free all allocated space for representing an image, and optionally + * delete the image from disk. + */ +static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete, bool fFlush) +{ + int rc = VINF_SUCCESS; + + /* Freeing a never allocated image (e.g. because the open failed) is + * not signalled as an error. After all nothing bad happens. */ + if (pImage) + { + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + /* Check if all extents are clean. */ + for (unsigned i = 0; i < pImage->cExtents; i++) + { + Assert(!pImage->pExtents[i].fUncleanShutdown); + } + } + else + { + /* Mark all extents as clean. */ + for (unsigned i = 0; i < pImage->cExtents; i++) + { + if ( pImage->pExtents[i].enmType == VMDKETYPE_HOSTED_SPARSE + && pImage->pExtents[i].fUncleanShutdown) + { + pImage->pExtents[i].fUncleanShutdown = false; + pImage->pExtents[i].fMetaDirty = true; + } + + /* From now on it's not safe to append any more data. */ + pImage->pExtents[i].uAppendPosition = 0; + } + } + } + + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + /* No need to write any pending data if the file will be deleted + * or if the new file wasn't successfully created. */ + if ( !fDelete && pImage->pExtents + && pImage->pExtents[0].cGTEntries + && pImage->pExtents[0].uAppendPosition) + { + PVMDKEXTENT pExtent = &pImage->pExtents[0]; + uint32_t uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries; + rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry); + AssertRC(rc); + vmdkStreamClearGT(pImage, pExtent); + for (uint32_t i = uLastGDEntry + 1; i < pExtent->cGDEntries; i++) + { + rc = vmdkStreamFlushGT(pImage, pExtent, i); + AssertRC(rc); + } + + uint64_t uFileOffset = pExtent->uAppendPosition; + if (!uFileOffset) + return VERR_INTERNAL_ERROR; + uFileOffset = RT_ALIGN_64(uFileOffset, 512); + + /* From now on it's not safe to append any more data. */ + pExtent->uAppendPosition = 0; + + /* Grain directory marker. */ + uint8_t aMarker[512]; + PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0]; + memset(pMarker, '\0', sizeof(aMarker)); + pMarker->uSector = VMDK_BYTE2SECTOR(RT_ALIGN_64(RT_H2LE_U64((uint64_t)pExtent->cGDEntries * sizeof(uint32_t)), 512)); + pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GD); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, uFileOffset, + aMarker, sizeof(aMarker)); + AssertRC(rc); + uFileOffset += 512; + + /* Write grain directory in little endian style. The array will + * not be used after this, so convert in place. */ + uint32_t *pGDTmp = pExtent->pGD; + for (uint32_t i = 0; i < pExtent->cGDEntries; i++, pGDTmp++) + *pGDTmp = RT_H2LE_U32(*pGDTmp); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + uFileOffset, pExtent->pGD, + pExtent->cGDEntries * sizeof(uint32_t)); + AssertRC(rc); + + pExtent->uSectorGD = VMDK_BYTE2SECTOR(uFileOffset); + pExtent->uSectorRGD = VMDK_BYTE2SECTOR(uFileOffset); + uFileOffset = RT_ALIGN_64( uFileOffset + + pExtent->cGDEntries * sizeof(uint32_t), + 512); + + /* Footer marker. */ + memset(pMarker, '\0', sizeof(aMarker)); + pMarker->uSector = VMDK_BYTE2SECTOR(512); + pMarker->uType = RT_H2LE_U32(VMDK_MARKER_FOOTER); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + uFileOffset, aMarker, sizeof(aMarker)); + AssertRC(rc); + + uFileOffset += 512; + rc = vmdkWriteMetaSparseExtent(pImage, pExtent, uFileOffset, NULL); + AssertRC(rc); + + uFileOffset += 512; + /* End-of-stream marker. */ + memset(pMarker, '\0', sizeof(aMarker)); + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + uFileOffset, aMarker, sizeof(aMarker)); + AssertRC(rc); + } + } + else if (!fDelete && fFlush) + vmdkFlushImage(pImage, NULL); + + if (pImage->pExtents != NULL) + { + for (unsigned i = 0 ; i < pImage->cExtents; i++) + { + int rc2 = vmdkFreeExtentData(pImage, &pImage->pExtents[i], fDelete); + if (RT_SUCCESS(rc)) + rc = rc2; /* Propogate any error when closing the file. */ + } + RTMemFree(pImage->pExtents); + pImage->pExtents = NULL; + } + pImage->cExtents = 0; + if (pImage->pFile != NULL) + { + int rc2 = vmdkFileClose(pImage, &pImage->pFile, fDelete); + if (RT_SUCCESS(rc)) + rc = rc2; /* Propogate any error when closing the file. */ + } + int rc2 = vmdkFileCheckAllClose(pImage); + if (RT_SUCCESS(rc)) + rc = rc2; /* Propogate any error when closing the file. */ + + if (pImage->pGTCache) + { + RTMemFree(pImage->pGTCache); + pImage->pGTCache = NULL; + } + if (pImage->pDescData) + { + RTMemFree(pImage->pDescData); + pImage->pDescData = NULL; + } + } + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** + * Internal. Flush image data (and metadata) to disk. + */ +static int vmdkFlushImage(PVMDKIMAGE pImage, PVDIOCTX pIoCtx) +{ + PVMDKEXTENT pExtent; + int rc = VINF_SUCCESS; + + /* Update descriptor if changed. */ + if (pImage->Descriptor.fDirty) + rc = vmdkWriteDescriptor(pImage, pIoCtx); + + if (RT_SUCCESS(rc)) + { + for (unsigned i = 0; i < pImage->cExtents; i++) + { + pExtent = &pImage->pExtents[i]; + if (pExtent->pFile != NULL && pExtent->fMetaDirty) + { + switch (pExtent->enmType) + { + case VMDKETYPE_HOSTED_SPARSE: + if (!pExtent->fFooter) + rc = vmdkWriteMetaSparseExtent(pImage, pExtent, 0, pIoCtx); + else + { + uint64_t uFileOffset = pExtent->uAppendPosition; + /* Simply skip writing anything if the streamOptimized + * image hasn't been just created. */ + if (!uFileOffset) + break; + uFileOffset = RT_ALIGN_64(uFileOffset, 512); + rc = vmdkWriteMetaSparseExtent(pImage, pExtent, + uFileOffset, pIoCtx); + } + break; + case VMDKETYPE_VMFS: + case VMDKETYPE_FLAT: + /* Nothing to do. */ + break; + case VMDKETYPE_ZERO: + default: + AssertMsgFailed(("extent with type %d marked as dirty\n", + pExtent->enmType)); + break; + } + } + + if (RT_FAILURE(rc)) + break; + + switch (pExtent->enmType) + { + case VMDKETYPE_HOSTED_SPARSE: + case VMDKETYPE_VMFS: + case VMDKETYPE_FLAT: + /** @todo implement proper path absolute check. */ + if ( pExtent->pFile != NULL + && !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + && !(pExtent->pszBasename[0] == RTPATH_SLASH)) + rc = vdIfIoIntFileFlush(pImage->pIfIo, pExtent->pFile->pStorage, pIoCtx, + NULL, NULL); + break; + case VMDKETYPE_ZERO: + /* No need to do anything for this extent. */ + break; + default: + AssertMsgFailed(("unknown extent type %d\n", pExtent->enmType)); + break; + } + } + } + + return rc; +} + +/** + * Internal. Find extent corresponding to the sector number in the disk. + */ +static int vmdkFindExtent(PVMDKIMAGE pImage, uint64_t offSector, + PVMDKEXTENT *ppExtent, uint64_t *puSectorInExtent) +{ + PVMDKEXTENT pExtent = NULL; + int rc = VINF_SUCCESS; + + for (unsigned i = 0; i < pImage->cExtents; i++) + { + if (offSector < pImage->pExtents[i].cNominalSectors) + { + pExtent = &pImage->pExtents[i]; + *puSectorInExtent = offSector + pImage->pExtents[i].uSectorOffset; + break; + } + offSector -= pImage->pExtents[i].cNominalSectors; + } + + if (pExtent) + *ppExtent = pExtent; + else + rc = VERR_IO_SECTOR_NOT_FOUND; + + return rc; +} + +/** + * Internal. Hash function for placing the grain table hash entries. + */ +static uint32_t vmdkGTCacheHash(PVMDKGTCACHE pCache, uint64_t uSector, + unsigned uExtent) +{ + /** @todo this hash function is quite simple, maybe use a better one which + * scrambles the bits better. */ + return (uSector + uExtent) % pCache->cEntries; +} + +/** + * Internal. Get sector number in the extent file from the relative sector + * number in the extent. + */ +static int vmdkGetSector(PVMDKIMAGE pImage, PVDIOCTX pIoCtx, + PVMDKEXTENT pExtent, uint64_t uSector, + uint64_t *puExtentSector) +{ + PVMDKGTCACHE pCache = pImage->pGTCache; + uint64_t uGDIndex, uGTSector, uGTBlock; + uint32_t uGTHash, uGTBlockIndex; + PVMDKGTCACHEENTRY pGTCacheEntry; + uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE]; + int rc; + + /* For newly created and readonly/sequentially opened streamOptimized + * images this must be a no-op, as the grain directory is not there. */ + if ( ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED + && pExtent->uAppendPosition) + || ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED + && pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY + && pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) + { + *puExtentSector = 0; + return VINF_SUCCESS; + } + + uGDIndex = uSector / pExtent->cSectorsPerGDE; + if (uGDIndex >= pExtent->cGDEntries) + return VERR_OUT_OF_RANGE; + uGTSector = pExtent->pGD[uGDIndex]; + if (!uGTSector) + { + /* There is no grain table referenced by this grain directory + * entry. So there is absolutely no data in this area. */ + *puExtentSector = 0; + return VINF_SUCCESS; + } + + uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE); + uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent); + pGTCacheEntry = &pCache->aGTCache[uGTHash]; + if ( pGTCacheEntry->uExtent != pExtent->uExtent + || pGTCacheEntry->uGTBlock != uGTBlock) + { + /* Cache miss, fetch data from disk. */ + PVDMETAXFER pMetaXfer; + rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), + aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, &pMetaXfer, NULL, NULL); + if (RT_FAILURE(rc)) + return rc; + /* We can release the metadata transfer immediately. */ + vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer); + pGTCacheEntry->uExtent = pExtent->uExtent; + pGTCacheEntry->uGTBlock = uGTBlock; + for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) + pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]); + } + uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE; + uint32_t uGrainSector = pGTCacheEntry->aGTData[uGTBlockIndex]; + if (uGrainSector) + *puExtentSector = uGrainSector + uSector % pExtent->cSectorsPerGrain; + else + *puExtentSector = 0; + return VINF_SUCCESS; +} + +/** + * Internal. Writes the grain and also if necessary the grain tables. + * Uses the grain table cache as a true grain table. + */ +static int vmdkStreamAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t uSector, PVDIOCTX pIoCtx, + uint64_t cbWrite) +{ + uint32_t uGrain; + uint32_t uGDEntry, uLastGDEntry; + uint32_t cbGrain = 0; + uint32_t uCacheLine, uCacheEntry; + const void *pData; + int rc; + + /* Very strict requirements: always write at least one full grain, with + * proper alignment. Everything else would require reading of already + * written data, which we don't support for obvious reasons. The only + * exception is the last grain, and only if the image size specifies + * that only some portion holds data. In any case the write must be + * within the image limits, no "overshoot" allowed. */ + if ( cbWrite == 0 + || ( cbWrite < VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) + && pExtent->cNominalSectors - uSector >= pExtent->cSectorsPerGrain) + || uSector % pExtent->cSectorsPerGrain + || uSector + VMDK_BYTE2SECTOR(cbWrite) > pExtent->cNominalSectors) + return VERR_INVALID_PARAMETER; + + /* Clip write range to at most the rest of the grain. */ + cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSector % pExtent->cSectorsPerGrain)); + + /* Do not allow to go back. */ + uGrain = uSector / pExtent->cSectorsPerGrain; + uCacheLine = uGrain % pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE; + uCacheEntry = uGrain % VMDK_GT_CACHELINE_SIZE; + uGDEntry = uGrain / pExtent->cGTEntries; + uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries; + if (uGrain < pExtent->uLastGrainAccess) + return VERR_VD_VMDK_INVALID_WRITE; + + /* Zero byte write optimization. Since we don't tell VBoxHDD that we need + * to allocate something, we also need to detect the situation ourself. */ + if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_HONOR_ZEROES) + && vdIfIoIntIoCtxIsZero(pImage->pIfIo, pIoCtx, cbWrite, true /* fAdvance */)) + return VINF_SUCCESS; + + if (uGDEntry != uLastGDEntry) + { + rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry); + if (RT_FAILURE(rc)) + return rc; + vmdkStreamClearGT(pImage, pExtent); + for (uint32_t i = uLastGDEntry + 1; i < uGDEntry; i++) + { + rc = vmdkStreamFlushGT(pImage, pExtent, i); + if (RT_FAILURE(rc)) + return rc; + } + } + + uint64_t uFileOffset; + uFileOffset = pExtent->uAppendPosition; + if (!uFileOffset) + return VERR_INTERNAL_ERROR; + /* Align to sector, as the previous write could have been any size. */ + uFileOffset = RT_ALIGN_64(uFileOffset, 512); + + /* Paranoia check: extent type, grain table buffer presence and + * grain table buffer space. Also grain table entry must be clear. */ + if ( pExtent->enmType != VMDKETYPE_HOSTED_SPARSE + || !pImage->pGTCache + || pExtent->cGTEntries > VMDK_GT_CACHE_SIZE * VMDK_GT_CACHELINE_SIZE + || pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry]) + return VERR_INTERNAL_ERROR; + + /* Update grain table entry. */ + pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry] = VMDK_BYTE2SECTOR(uFileOffset); + + if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)) + { + vdIfIoIntIoCtxCopyFrom(pImage->pIfIo, pIoCtx, pExtent->pvGrain, cbWrite); + memset((char *)pExtent->pvGrain + cbWrite, '\0', + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbWrite); + pData = pExtent->pvGrain; + } + else + { + RTSGSEG Segment; + unsigned cSegments = 1; + size_t cbSeg = 0; + + cbSeg = vdIfIoIntIoCtxSegArrayCreate(pImage->pIfIo, pIoCtx, &Segment, + &cSegments, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + Assert(cbSeg == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + pData = Segment.pvSeg; + } + rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset, pData, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain), + uSector, &cbGrain); + if (RT_FAILURE(rc)) + { + pExtent->uGrainSectorAbs = 0; + AssertRC(rc); + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write compressed data block in '%s'"), pExtent->pszFullname); + } + pExtent->uLastGrainAccess = uGrain; + pExtent->uAppendPosition += cbGrain; + + return rc; +} + +/** + * Internal: Updates the grain table during grain allocation. + */ +static int vmdkAllocGrainGTUpdate(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, PVDIOCTX pIoCtx, + PVMDKGRAINALLOCASYNC pGrainAlloc) +{ + int rc = VINF_SUCCESS; + PVMDKGTCACHE pCache = pImage->pGTCache; + uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE]; + uint32_t uGTHash, uGTBlockIndex; + uint64_t uGTSector, uRGTSector, uGTBlock; + uint64_t uSector = pGrainAlloc->uSector; + PVMDKGTCACHEENTRY pGTCacheEntry; + + LogFlowFunc(("pImage=%#p pExtent=%#p pCache=%#p pIoCtx=%#p pGrainAlloc=%#p\n", + pImage, pExtent, pCache, pIoCtx, pGrainAlloc)); + + uGTSector = pGrainAlloc->uGTSector; + uRGTSector = pGrainAlloc->uRGTSector; + LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector)); + + /* Update the grain table (and the cache). */ + uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE); + uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent); + pGTCacheEntry = &pCache->aGTCache[uGTHash]; + if ( pGTCacheEntry->uExtent != pExtent->uExtent + || pGTCacheEntry->uGTBlock != uGTBlock) + { + /* Cache miss, fetch data from disk. */ + LogFlow(("Cache miss, fetch data from disk\n")); + PVDMETAXFER pMetaXfer = NULL; + rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), + aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, + &pMetaXfer, vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + { + pGrainAlloc->cIoXfersPending++; + pGrainAlloc->fGTUpdateNeeded = true; + /* Leave early, we will be called again after the read completed. */ + LogFlowFunc(("Metadata read in progress, leaving\n")); + return rc; + } + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot read allocated grain table entry in '%s'"), pExtent->pszFullname); + vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer); + pGTCacheEntry->uExtent = pExtent->uExtent; + pGTCacheEntry->uGTBlock = uGTBlock; + for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) + pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]); + } + else + { + /* Cache hit. Convert grain table block back to disk format, otherwise + * the code below will write garbage for all but the updated entry. */ + for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) + aGTDataTmp[i] = RT_H2LE_U32(pGTCacheEntry->aGTData[i]); + } + pGrainAlloc->fGTUpdateNeeded = false; + uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE; + aGTDataTmp[uGTBlockIndex] = RT_H2LE_U32(VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset)); + pGTCacheEntry->aGTData[uGTBlockIndex] = VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset); + /* Update grain table on disk. */ + rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), + aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, + vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + pGrainAlloc->cIoXfersPending++; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write updated grain table in '%s'"), pExtent->pszFullname); + if (pExtent->pRGD) + { + /* Update backup grain table on disk. */ + rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uRGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), + aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, + vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + pGrainAlloc->cIoXfersPending++; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write updated backup grain table in '%s'"), pExtent->pszFullname); + } + + LogFlowFunc(("leaving rc=%Rrc\n", rc)); + return rc; +} + +/** + * Internal - complete the grain allocation by updating disk grain table if required. + */ +static DECLCALLBACK(int) vmdkAllocGrainComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq) +{ + RT_NOREF1(rcReq); + int rc = VINF_SUCCESS; + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + PVMDKGRAINALLOCASYNC pGrainAlloc = (PVMDKGRAINALLOCASYNC)pvUser; + + LogFlowFunc(("pBackendData=%#p pIoCtx=%#p pvUser=%#p rcReq=%Rrc\n", + pBackendData, pIoCtx, pvUser, rcReq)); + + pGrainAlloc->cIoXfersPending--; + if (!pGrainAlloc->cIoXfersPending && pGrainAlloc->fGTUpdateNeeded) + rc = vmdkAllocGrainGTUpdate(pImage, pGrainAlloc->pExtent, pIoCtx, pGrainAlloc); + + if (!pGrainAlloc->cIoXfersPending) + { + /* Grain allocation completed. */ + RTMemFree(pGrainAlloc); + } + + LogFlowFunc(("Leaving rc=%Rrc\n", rc)); + return rc; +} + +/** + * Internal. Allocates a new grain table (if necessary). + */ +static int vmdkAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, PVDIOCTX pIoCtx, + uint64_t uSector, uint64_t cbWrite) +{ + PVMDKGTCACHE pCache = pImage->pGTCache; NOREF(pCache); + uint64_t uGDIndex, uGTSector, uRGTSector; + uint64_t uFileOffset; + PVMDKGRAINALLOCASYNC pGrainAlloc = NULL; + int rc; + + LogFlowFunc(("pCache=%#p pExtent=%#p pIoCtx=%#p uSector=%llu cbWrite=%llu\n", + pCache, pExtent, pIoCtx, uSector, cbWrite)); + + pGrainAlloc = (PVMDKGRAINALLOCASYNC)RTMemAllocZ(sizeof(VMDKGRAINALLOCASYNC)); + if (!pGrainAlloc) + return VERR_NO_MEMORY; + + pGrainAlloc->pExtent = pExtent; + pGrainAlloc->uSector = uSector; + + uGDIndex = uSector / pExtent->cSectorsPerGDE; + if (uGDIndex >= pExtent->cGDEntries) + { + RTMemFree(pGrainAlloc); + return VERR_OUT_OF_RANGE; + } + uGTSector = pExtent->pGD[uGDIndex]; + if (pExtent->pRGD) + uRGTSector = pExtent->pRGD[uGDIndex]; + else + uRGTSector = 0; /**< avoid compiler warning */ + if (!uGTSector) + { + LogFlow(("Allocating new grain table\n")); + + /* There is no grain table referenced by this grain directory + * entry. So there is absolutely no data in this area. Allocate + * a new grain table and put the reference to it in the GDs. */ + uFileOffset = pExtent->uAppendPosition; + if (!uFileOffset) + { + RTMemFree(pGrainAlloc); + return VERR_INTERNAL_ERROR; + } + Assert(!(uFileOffset % 512)); + + uFileOffset = RT_ALIGN_64(uFileOffset, 512); + uGTSector = VMDK_BYTE2SECTOR(uFileOffset); + + /* Normally the grain table is preallocated for hosted sparse extents + * that support more than 32 bit sector numbers. So this shouldn't + * ever happen on a valid extent. */ + if (uGTSector > UINT32_MAX) + { + RTMemFree(pGrainAlloc); + return VERR_VD_VMDK_INVALID_HEADER; + } + + /* Write grain table by writing the required number of grain table + * cache chunks. Allocate memory dynamically here or we flood the + * metadata cache with very small entries. */ + size_t cbGTDataTmp = pExtent->cGTEntries * sizeof(uint32_t); + uint32_t *paGTDataTmp = (uint32_t *)RTMemTmpAllocZ(cbGTDataTmp); + + if (!paGTDataTmp) + { + RTMemFree(pGrainAlloc); + return VERR_NO_MEMORY; + } + + memset(paGTDataTmp, '\0', cbGTDataTmp); + rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGTSector), + paGTDataTmp, cbGTDataTmp, pIoCtx, + vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + pGrainAlloc->cIoXfersPending++; + else if (RT_FAILURE(rc)) + { + RTMemTmpFree(paGTDataTmp); + RTMemFree(pGrainAlloc); + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write grain table allocation in '%s'"), pExtent->pszFullname); + } + pExtent->uAppendPosition = RT_ALIGN_64( pExtent->uAppendPosition + + cbGTDataTmp, 512); + + if (pExtent->pRGD) + { + AssertReturn(!uRGTSector, VERR_VD_VMDK_INVALID_HEADER); + uFileOffset = pExtent->uAppendPosition; + if (!uFileOffset) + return VERR_INTERNAL_ERROR; + Assert(!(uFileOffset % 512)); + uRGTSector = VMDK_BYTE2SECTOR(uFileOffset); + + /* Normally the redundant grain table is preallocated for hosted + * sparse extents that support more than 32 bit sector numbers. So + * this shouldn't ever happen on a valid extent. */ + if (uRGTSector > UINT32_MAX) + { + RTMemTmpFree(paGTDataTmp); + return VERR_VD_VMDK_INVALID_HEADER; + } + + /* Write grain table by writing the required number of grain table + * cache chunks. Allocate memory dynamically here or we flood the + * metadata cache with very small entries. */ + rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uRGTSector), + paGTDataTmp, cbGTDataTmp, pIoCtx, + vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + pGrainAlloc->cIoXfersPending++; + else if (RT_FAILURE(rc)) + { + RTMemTmpFree(paGTDataTmp); + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain table allocation in '%s'"), pExtent->pszFullname); + } + + pExtent->uAppendPosition = pExtent->uAppendPosition + cbGTDataTmp; + } + + RTMemTmpFree(paGTDataTmp); + + /* Update the grain directory on disk (doing it before writing the + * grain table will result in a garbled extent if the operation is + * aborted for some reason. Otherwise the worst that can happen is + * some unused sectors in the extent. */ + uint32_t uGTSectorLE = RT_H2LE_U64(uGTSector); + rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorGD) + uGDIndex * sizeof(uGTSectorLE), + &uGTSectorLE, sizeof(uGTSectorLE), pIoCtx, + vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + pGrainAlloc->cIoXfersPending++; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write grain directory entry in '%s'"), pExtent->pszFullname); + if (pExtent->pRGD) + { + uint32_t uRGTSectorLE = RT_H2LE_U64(uRGTSector); + rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + uGDIndex * sizeof(uGTSectorLE), + &uRGTSectorLE, sizeof(uRGTSectorLE), pIoCtx, + vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + pGrainAlloc->cIoXfersPending++; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain directory entry in '%s'"), pExtent->pszFullname); + } + + /* As the final step update the in-memory copy of the GDs. */ + pExtent->pGD[uGDIndex] = uGTSector; + if (pExtent->pRGD) + pExtent->pRGD[uGDIndex] = uRGTSector; + } + + LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector)); + pGrainAlloc->uGTSector = uGTSector; + pGrainAlloc->uRGTSector = uRGTSector; + + uFileOffset = pExtent->uAppendPosition; + if (!uFileOffset) + return VERR_INTERNAL_ERROR; + Assert(!(uFileOffset % 512)); + + pGrainAlloc->uGrainOffset = uFileOffset; + + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + AssertMsgReturn(vdIfIoIntIoCtxIsSynchronous(pImage->pIfIo, pIoCtx), + ("Accesses to stream optimized images must be synchronous\n"), + VERR_INVALID_STATE); + + if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)) + return vdIfError(pImage->pIfError, VERR_INTERNAL_ERROR, RT_SRC_POS, N_("VMDK: not enough data for a compressed data block in '%s'"), pExtent->pszFullname); + + /* Invalidate cache, just in case some code incorrectly allows mixing + * of reads and writes. Normally shouldn't be needed. */ + pExtent->uGrainSectorAbs = 0; + + /* Write compressed data block and the markers. */ + uint32_t cbGrain = 0; + size_t cbSeg = 0; + RTSGSEG Segment; + unsigned cSegments = 1; + + cbSeg = vdIfIoIntIoCtxSegArrayCreate(pImage->pIfIo, pIoCtx, &Segment, + &cSegments, cbWrite); + Assert(cbSeg == cbWrite); + + rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset, + Segment.pvSeg, cbWrite, uSector, &cbGrain); + if (RT_FAILURE(rc)) + { + AssertRC(rc); + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write allocated compressed data block in '%s'"), pExtent->pszFullname); + } + pExtent->uLastGrainAccess = uSector / pExtent->cSectorsPerGrain; + pExtent->uAppendPosition += cbGrain; + } + else + { + /* Write the data. Always a full grain, or we're in big trouble. */ + rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pExtent->pFile->pStorage, + uFileOffset, pIoCtx, cbWrite, + vmdkAllocGrainComplete, pGrainAlloc); + if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) + pGrainAlloc->cIoXfersPending++; + else if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: cannot write allocated data block in '%s'"), pExtent->pszFullname); + + pExtent->uAppendPosition += cbWrite; + } + + rc = vmdkAllocGrainGTUpdate(pImage, pExtent, pIoCtx, pGrainAlloc); + + if (!pGrainAlloc->cIoXfersPending) + { + /* Grain allocation completed. */ + RTMemFree(pGrainAlloc); + } + + LogFlowFunc(("leaving rc=%Rrc\n", rc)); + + return rc; +} + +/** + * Internal. Reads the contents by sequentially going over the compressed + * grains (hoping that they are in sequence). + */ +static int vmdkStreamReadSequential(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t uSector, PVDIOCTX pIoCtx, + uint64_t cbRead) +{ + int rc; + + LogFlowFunc(("pImage=%#p pExtent=%#p uSector=%llu pIoCtx=%#p cbRead=%llu\n", + pImage, pExtent, uSector, pIoCtx, cbRead)); + + AssertMsgReturn(vdIfIoIntIoCtxIsSynchronous(pImage->pIfIo, pIoCtx), + ("Async I/O not supported for sequential stream optimized images\n"), + VERR_INVALID_STATE); + + /* Do not allow to go back. */ + uint32_t uGrain = uSector / pExtent->cSectorsPerGrain; + if (uGrain < pExtent->uLastGrainAccess) + return VERR_VD_VMDK_INVALID_STATE; + pExtent->uLastGrainAccess = uGrain; + + /* After a previous error do not attempt to recover, as it would need + * seeking (in the general case backwards which is forbidden). */ + if (!pExtent->uGrainSectorAbs) + return VERR_VD_VMDK_INVALID_STATE; + + /* Check if we need to read something from the image or if what we have + * in the buffer is good to fulfill the request. */ + if (!pExtent->cbGrainStreamRead || uGrain > pExtent->uGrain) + { + uint32_t uGrainSectorAbs = pExtent->uGrainSectorAbs + + VMDK_BYTE2SECTOR(pExtent->cbGrainStreamRead); + + /* Get the marker from the next data block - and skip everything which + * is not a compressed grain. If it's a compressed grain which is for + * the requested sector (or after), read it. */ + VMDKMARKER Marker; + do + { + RT_ZERO(Marker); + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGrainSectorAbs), + &Marker, RT_UOFFSETOF(VMDKMARKER, uType)); + if (RT_FAILURE(rc)) + return rc; + Marker.uSector = RT_LE2H_U64(Marker.uSector); + Marker.cbSize = RT_LE2H_U32(Marker.cbSize); + + if (Marker.cbSize == 0) + { + /* A marker for something else than a compressed grain. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGrainSectorAbs) + + RT_UOFFSETOF(VMDKMARKER, uType), + &Marker.uType, sizeof(Marker.uType)); + if (RT_FAILURE(rc)) + return rc; + Marker.uType = RT_LE2H_U32(Marker.uType); + switch (Marker.uType) + { + case VMDK_MARKER_EOS: + uGrainSectorAbs++; + /* Read (or mostly skip) to the end of file. Uses the + * Marker (LBA sector) as it is unused anyway. This + * makes sure that really everything is read in the + * success case. If this read fails it means the image + * is truncated, but this is harmless so ignore. */ + vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGrainSectorAbs) + + 511, + &Marker.uSector, 1); + break; + case VMDK_MARKER_GT: + uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t)); + break; + case VMDK_MARKER_GD: + uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(RT_ALIGN(pExtent->cGDEntries * sizeof(uint32_t), 512)); + break; + case VMDK_MARKER_FOOTER: + uGrainSectorAbs += 2; + break; + case VMDK_MARKER_UNSPECIFIED: + /* Skip over the contents of the unspecified marker + * type 4 which exists in some vSphere created files. */ + /** @todo figure out what the payload means. */ + uGrainSectorAbs += 1; + break; + default: + AssertMsgFailed(("VMDK: corrupted marker, type=%#x\n", Marker.uType)); + pExtent->uGrainSectorAbs = 0; + return VERR_VD_VMDK_INVALID_STATE; + } + pExtent->cbGrainStreamRead = 0; + } + else + { + /* A compressed grain marker. If it is at/after what we're + * interested in read and decompress data. */ + if (uSector > Marker.uSector + pExtent->cSectorsPerGrain) + { + uGrainSectorAbs += VMDK_BYTE2SECTOR(RT_ALIGN(Marker.cbSize + RT_UOFFSETOF(VMDKMARKER, uType), 512)); + continue; + } + uint64_t uLBA = 0; + uint32_t cbGrainStreamRead = 0; + rc = vmdkFileInflateSync(pImage, pExtent, + VMDK_SECTOR2BYTE(uGrainSectorAbs), + pExtent->pvGrain, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain), + &Marker, &uLBA, &cbGrainStreamRead); + if (RT_FAILURE(rc)) + { + pExtent->uGrainSectorAbs = 0; + return rc; + } + if ( pExtent->uGrain + && uLBA / pExtent->cSectorsPerGrain <= pExtent->uGrain) + { + pExtent->uGrainSectorAbs = 0; + return VERR_VD_VMDK_INVALID_STATE; + } + pExtent->uGrain = uLBA / pExtent->cSectorsPerGrain; + pExtent->cbGrainStreamRead = cbGrainStreamRead; + break; + } + } while (Marker.uType != VMDK_MARKER_EOS); + + pExtent->uGrainSectorAbs = uGrainSectorAbs; + + if (!pExtent->cbGrainStreamRead && Marker.uType == VMDK_MARKER_EOS) + { + pExtent->uGrain = UINT32_MAX; + /* Must set a non-zero value for pExtent->cbGrainStreamRead or + * the next read would try to get more data, and we're at EOF. */ + pExtent->cbGrainStreamRead = 1; + } + } + + if (pExtent->uGrain > uSector / pExtent->cSectorsPerGrain) + { + /* The next data block we have is not for this area, so just return + * that there is no data. */ + LogFlowFunc(("returns VERR_VD_BLOCK_FREE\n")); + return VERR_VD_BLOCK_FREE; + } + + uint32_t uSectorInGrain = uSector % pExtent->cSectorsPerGrain; + vdIfIoIntIoCtxCopyTo(pImage->pIfIo, pIoCtx, + (uint8_t *)pExtent->pvGrain + VMDK_SECTOR2BYTE(uSectorInGrain), + cbRead); + LogFlowFunc(("returns VINF_SUCCESS\n")); + return VINF_SUCCESS; +} + +/** + * Replaces a fragment of a string with the specified string. + * + * @returns Pointer to the allocated UTF-8 string. + * @param pszWhere UTF-8 string to search in. + * @param pszWhat UTF-8 string to search for. + * @param pszByWhat UTF-8 string to replace the found string with. + * + * @note r=bird: This is only used by vmdkRenameWorker(). The first use is + * for updating the base name in the descriptor, the second is for + * generating new filenames for extents. This code borked when + * RTPathAbs started correcting the driver letter case on windows, + * when strstr failed because the pExtent->pszFullname was not + * subjected to RTPathAbs but while pExtent->pszFullname was. I fixed + * this by apply RTPathAbs to the places it wasn't applied. + * + * However, this highlights some undocumented ASSUMPTIONS as well as + * terrible short commings of the approach. + * + * Given the right filename, it may also screw up the descriptor. Take + * the descriptor text 'RW 2048 SPARSE "Test0.vmdk"' for instance, + * we'll be asked to replace "Test0" with something, no problem. No, + * imagine 'RW 2048 SPARSE "SPARSE.vmdk"', 'RW 2048 SPARSE "RW.vmdk"' + * or 'RW 2048 SPARSE "2048.vmdk"', and the strstr approach falls on + * its bum. The descriptor string must be parsed and reconstructed, + * the lazy strstr approach doesn't cut it. + * + * I'm also curious as to what would be the correct escaping of '"' in + * the file name and how that is supposed to be handled, because it + * needs to be or such names must be rejected in several places (maybe + * they are, I didn't check). + * + * When this function is used to replace the start of a path, I think + * the assumption from the prep/setup code is that we kind of knows + * what we're working on (I could be wrong). However, using strstr + * instead of strncmp/RTStrNICmp makes no sense and isn't future proof. + * Especially on unix systems, weird stuff could happen if someone + * unwittingly tinkers with the prep/setup code. What should really be + * done here is using a new RTPathStartEx function that (via flags) + * allows matching partial final component and returns the length of + * what it matched up (in case it skipped slashes and '.' components). + * + */ +static char *vmdkStrReplace(const char *pszWhere, const char *pszWhat, + const char *pszByWhat) +{ + AssertPtr(pszWhere); + AssertPtr(pszWhat); + AssertPtr(pszByWhat); + const char *pszFoundStr = strstr(pszWhere, pszWhat); + if (!pszFoundStr) + { + LogFlowFunc(("Failed to find '%s' in '%s'!\n", pszWhat, pszWhere)); + return NULL; + } + size_t cbFinal = strlen(pszWhere) + 1 + strlen(pszByWhat) - strlen(pszWhat); + char *pszNewStr = RTStrAlloc(cbFinal); + if (pszNewStr) + { + char *pszTmp = pszNewStr; + memcpy(pszTmp, pszWhere, pszFoundStr - pszWhere); + pszTmp += pszFoundStr - pszWhere; + memcpy(pszTmp, pszByWhat, strlen(pszByWhat)); + pszTmp += strlen(pszByWhat); + strcpy(pszTmp, pszFoundStr + strlen(pszWhat)); + } + return pszNewStr; +} + + +/** @copydoc VDIMAGEBACKEND::pfnProbe */ +static DECLCALLBACK(int) vmdkProbe(const char *pszFilename, PVDINTERFACE pVDIfsDisk, + PVDINTERFACE pVDIfsImage, VDTYPE enmDesiredType, VDTYPE *penmType) +{ + RT_NOREF(enmDesiredType); + LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p penmType=%#p\n", + pszFilename, pVDIfsDisk, pVDIfsImage, penmType)); + AssertPtrReturn(pszFilename, VERR_INVALID_POINTER); + AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER); + + int rc = VINF_SUCCESS; + PVMDKIMAGE pImage = (PVMDKIMAGE)RTMemAllocZ(RT_UOFFSETOF(VMDKIMAGE, RegionList.aRegions[1])); + if (RT_LIKELY(pImage)) + { + pImage->pszFilename = pszFilename; + pImage->pFile = NULL; + pImage->pExtents = NULL; + pImage->pFiles = NULL; + pImage->pGTCache = NULL; + pImage->pDescData = NULL; + pImage->pVDIfsDisk = pVDIfsDisk; + pImage->pVDIfsImage = pVDIfsImage; + /** @todo speed up this test open (VD_OPEN_FLAGS_INFO) by skipping as + * much as possible in vmdkOpenImage. */ + rc = vmdkOpenImage(pImage, VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_READONLY); + vmdkFreeImage(pImage, false, false /*fFlush*/); + RTMemFree(pImage); + + if (RT_SUCCESS(rc)) + *penmType = VDTYPE_HDD; + } + else + rc = VERR_NO_MEMORY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnOpen */ +static DECLCALLBACK(int) vmdkOpen(const char *pszFilename, unsigned uOpenFlags, + PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, + VDTYPE enmType, void **ppBackendData) +{ + RT_NOREF1(enmType); /**< @todo r=klaus make use of the type info. */ + + LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p enmType=%u ppBackendData=%#p\n", + pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, enmType, ppBackendData)); + int rc; + + /* Check open flags. All valid flags are supported. */ + AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER); + AssertPtrReturn(pszFilename, VERR_INVALID_POINTER); + AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER); + + + PVMDKIMAGE pImage = (PVMDKIMAGE)RTMemAllocZ(RT_UOFFSETOF(VMDKIMAGE, RegionList.aRegions[1])); + if (RT_LIKELY(pImage)) + { + pImage->pszFilename = pszFilename; + pImage->pFile = NULL; + pImage->pExtents = NULL; + pImage->pFiles = NULL; + pImage->pGTCache = NULL; + pImage->pDescData = NULL; + pImage->pVDIfsDisk = pVDIfsDisk; + pImage->pVDIfsImage = pVDIfsImage; + + rc = vmdkOpenImage(pImage, uOpenFlags); + if (RT_SUCCESS(rc)) + *ppBackendData = pImage; + else + RTMemFree(pImage); + } + else + rc = VERR_NO_MEMORY; + + LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnCreate */ +static DECLCALLBACK(int) vmdkCreate(const char *pszFilename, uint64_t cbSize, + unsigned uImageFlags, const char *pszComment, + PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry, + PCRTUUID pUuid, unsigned uOpenFlags, + unsigned uPercentStart, unsigned uPercentSpan, + PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, + PVDINTERFACE pVDIfsOperation, VDTYPE enmType, + void **ppBackendData) +{ + LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p enmType=%u ppBackendData=%#p\n", + pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, enmType, ppBackendData)); + int rc; + + /* Check the VD container type and image flags. */ + if ( enmType != VDTYPE_HDD + || (uImageFlags & ~VD_VMDK_IMAGE_FLAGS_MASK) != 0) + return VERR_VD_INVALID_TYPE; + + /* Check size. Maximum 256TB-64K for sparse images, otherwise unlimited. */ + if ( !(uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK) + && ( !cbSize + || (!(uImageFlags & VD_IMAGE_FLAGS_FIXED) && cbSize >= _1T * 256 - _64K))) + return VERR_VD_INVALID_SIZE; + + /* Check image flags for invalid combinations. */ + if ( (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + && (uImageFlags & ~(VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED | VD_IMAGE_FLAGS_DIFF))) + return VERR_INVALID_PARAMETER; + + /* Check open flags. All valid flags are supported. */ + AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER); + AssertPtrReturn(pszFilename, VERR_INVALID_POINTER); + AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER); + AssertPtrReturn(pPCHSGeometry, VERR_INVALID_POINTER); + AssertPtrReturn(pLCHSGeometry, VERR_INVALID_POINTER); + AssertReturn(!( uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX + && !(uImageFlags & VD_IMAGE_FLAGS_FIXED)), + VERR_INVALID_PARAMETER); + + PVMDKIMAGE pImage = (PVMDKIMAGE)RTMemAllocZ(RT_UOFFSETOF(VMDKIMAGE, RegionList.aRegions[1])); + if (RT_LIKELY(pImage)) + { + PVDINTERFACEPROGRESS pIfProgress = VDIfProgressGet(pVDIfsOperation); + + pImage->pszFilename = pszFilename; + pImage->pFile = NULL; + pImage->pExtents = NULL; + pImage->pFiles = NULL; + pImage->pGTCache = NULL; + pImage->pDescData = NULL; + pImage->pVDIfsDisk = pVDIfsDisk; + pImage->pVDIfsImage = pVDIfsImage; + /* Descriptors for split images can be pretty large, especially if the + * filename is long. So prepare for the worst, and allocate quite some + * memory for the descriptor in this case. */ + if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G) + pImage->cbDescAlloc = VMDK_SECTOR2BYTE(200); + else + pImage->cbDescAlloc = VMDK_SECTOR2BYTE(20); + pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc); + if (RT_LIKELY(pImage->pDescData)) + { + rc = vmdkCreateImage(pImage, cbSize, uImageFlags, pszComment, + pPCHSGeometry, pLCHSGeometry, pUuid, + pIfProgress, uPercentStart, uPercentSpan); + if (RT_SUCCESS(rc)) + { + /* So far the image is opened in read/write mode. Make sure the + * image is opened in read-only mode if the caller requested that. */ + if (uOpenFlags & VD_OPEN_FLAGS_READONLY) + { + vmdkFreeImage(pImage, false, true /*fFlush*/); + rc = vmdkOpenImage(pImage, uOpenFlags); + } + + if (RT_SUCCESS(rc)) + *ppBackendData = pImage; + } + + if (RT_FAILURE(rc)) + RTMemFree(pImage->pDescData); + } + else + rc = VERR_NO_MEMORY; + + if (RT_FAILURE(rc)) + RTMemFree(pImage); + } + else + rc = VERR_NO_MEMORY; + + LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData)); + return rc; +} + +/** + * Prepares the state for renaming a VMDK image, setting up the state and allocating + * memory. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pRenameState The state to initialize. + * @param pszFilename The new filename. + */ +static int vmdkRenameStatePrepare(PVMDKIMAGE pImage, PVMDKRENAMESTATE pRenameState, const char *pszFilename) +{ + AssertReturn(RTPathFilename(pszFilename) != NULL, VERR_INVALID_PARAMETER); + + int rc = VINF_SUCCESS; + + memset(&pRenameState->DescriptorCopy, 0, sizeof(pRenameState->DescriptorCopy)); + + /* + * Allocate an array to store both old and new names of renamed files + * in case we have to roll back the changes. Arrays are initialized + * with zeros. We actually save stuff when and if we change it. + */ + pRenameState->cExtents = pImage->cExtents; + pRenameState->apszOldName = (char **)RTMemTmpAllocZ((pRenameState->cExtents + 1) * sizeof(char *)); + pRenameState->apszNewName = (char **)RTMemTmpAllocZ((pRenameState->cExtents + 1) * sizeof(char *)); + pRenameState->apszNewLines = (char **)RTMemTmpAllocZ(pRenameState->cExtents * sizeof(char *)); + if ( pRenameState->apszOldName + && pRenameState->apszNewName + && pRenameState->apszNewLines) + { + /* Save the descriptor size and position. */ + if (pImage->pDescData) + { + /* Separate descriptor file. */ + pRenameState->fEmbeddedDesc = false; + } + else + { + /* Embedded descriptor file. */ + pRenameState->ExtentCopy = pImage->pExtents[0]; + pRenameState->fEmbeddedDesc = true; + } + + /* Save the descriptor content. */ + pRenameState->DescriptorCopy.cLines = pImage->Descriptor.cLines; + for (unsigned i = 0; i < pRenameState->DescriptorCopy.cLines; i++) + { + pRenameState->DescriptorCopy.aLines[i] = RTStrDup(pImage->Descriptor.aLines[i]); + if (!pRenameState->DescriptorCopy.aLines[i]) + { + rc = VERR_NO_MEMORY; + break; + } + } + + if (RT_SUCCESS(rc)) + { + /* Prepare both old and new base names used for string replacement. */ + pRenameState->pszNewBaseName = RTStrDup(RTPathFilename(pszFilename)); + AssertReturn(pRenameState->pszNewBaseName, VERR_NO_STR_MEMORY); + RTPathStripSuffix(pRenameState->pszNewBaseName); + + pRenameState->pszOldBaseName = RTStrDup(RTPathFilename(pImage->pszFilename)); + AssertReturn(pRenameState->pszOldBaseName, VERR_NO_STR_MEMORY); + RTPathStripSuffix(pRenameState->pszOldBaseName); + + /* Prepare both old and new full names used for string replacement. + Note! Must abspath the stuff here, so the strstr weirdness later in + the renaming process get a match against abspath'ed extent paths. + See RTPathAbsDup call in vmdkDescriptorReadSparse(). */ + pRenameState->pszNewFullName = RTPathAbsDup(pszFilename); + AssertReturn(pRenameState->pszNewFullName, VERR_NO_STR_MEMORY); + RTPathStripSuffix(pRenameState->pszNewFullName); + + pRenameState->pszOldFullName = RTPathAbsDup(pImage->pszFilename); + AssertReturn(pRenameState->pszOldFullName, VERR_NO_STR_MEMORY); + RTPathStripSuffix(pRenameState->pszOldFullName); + + /* Save the old name for easy access to the old descriptor file. */ + pRenameState->pszOldDescName = RTStrDup(pImage->pszFilename); + AssertReturn(pRenameState->pszOldDescName, VERR_NO_STR_MEMORY); + + /* Save old image name. */ + pRenameState->pszOldImageName = pImage->pszFilename; + } + } + else + rc = VERR_NO_TMP_MEMORY; + + return rc; +} + +/** + * Destroys the given rename state, freeing all allocated memory. + * + * @returns nothing. + * @param pRenameState The rename state to destroy. + */ +static void vmdkRenameStateDestroy(PVMDKRENAMESTATE pRenameState) +{ + for (unsigned i = 0; i < pRenameState->DescriptorCopy.cLines; i++) + if (pRenameState->DescriptorCopy.aLines[i]) + RTStrFree(pRenameState->DescriptorCopy.aLines[i]); + if (pRenameState->apszOldName) + { + for (unsigned i = 0; i <= pRenameState->cExtents; i++) + if (pRenameState->apszOldName[i]) + RTStrFree(pRenameState->apszOldName[i]); + RTMemTmpFree(pRenameState->apszOldName); + } + if (pRenameState->apszNewName) + { + for (unsigned i = 0; i <= pRenameState->cExtents; i++) + if (pRenameState->apszNewName[i]) + RTStrFree(pRenameState->apszNewName[i]); + RTMemTmpFree(pRenameState->apszNewName); + } + if (pRenameState->apszNewLines) + { + for (unsigned i = 0; i < pRenameState->cExtents; i++) + if (pRenameState->apszNewLines[i]) + RTStrFree(pRenameState->apszNewLines[i]); + RTMemTmpFree(pRenameState->apszNewLines); + } + if (pRenameState->pszOldDescName) + RTStrFree(pRenameState->pszOldDescName); + if (pRenameState->pszOldBaseName) + RTStrFree(pRenameState->pszOldBaseName); + if (pRenameState->pszNewBaseName) + RTStrFree(pRenameState->pszNewBaseName); + if (pRenameState->pszOldFullName) + RTStrFree(pRenameState->pszOldFullName); + if (pRenameState->pszNewFullName) + RTStrFree(pRenameState->pszNewFullName); +} + +/** + * Rolls back the rename operation to the original state. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pRenameState The rename state. + */ +static int vmdkRenameRollback(PVMDKIMAGE pImage, PVMDKRENAMESTATE pRenameState) +{ + int rc = VINF_SUCCESS; + + if (!pRenameState->fImageFreed) + { + /* + * Some extents may have been closed, close the rest. We will + * re-open the whole thing later. + */ + vmdkFreeImage(pImage, false, true /*fFlush*/); + } + + /* Rename files back. */ + for (unsigned i = 0; i <= pRenameState->cExtents; i++) + { + if (pRenameState->apszOldName[i]) + { + rc = vdIfIoIntFileMove(pImage->pIfIo, pRenameState->apszNewName[i], pRenameState->apszOldName[i], 0); + AssertRC(rc); + } + } + /* Restore the old descriptor. */ + PVMDKFILE pFile; + rc = vmdkFileOpen(pImage, &pFile, NULL, pRenameState->pszOldDescName, + VDOpenFlagsToFileOpenFlags(VD_OPEN_FLAGS_NORMAL, + false /* fCreate */)); + AssertRC(rc); + if (pRenameState->fEmbeddedDesc) + { + pRenameState->ExtentCopy.pFile = pFile; + pImage->pExtents = &pRenameState->ExtentCopy; + } + else + { + /* Shouldn't be null for separate descriptor. + * There will be no access to the actual content. + */ + pImage->pDescData = pRenameState->pszOldDescName; + pImage->pFile = pFile; + } + pImage->Descriptor = pRenameState->DescriptorCopy; + vmdkWriteDescriptor(pImage, NULL); + vmdkFileClose(pImage, &pFile, false); + /* Get rid of the stuff we implanted. */ + pImage->pExtents = NULL; + pImage->pFile = NULL; + pImage->pDescData = NULL; + /* Re-open the image back. */ + pImage->pszFilename = pRenameState->pszOldImageName; + rc = vmdkOpenImage(pImage, pImage->uOpenFlags); + + return rc; +} + +/** + * Rename worker doing the real work. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pRenameState The rename state. + * @param pszFilename The new filename. + */ +static int vmdkRenameWorker(PVMDKIMAGE pImage, PVMDKRENAMESTATE pRenameState, const char *pszFilename) +{ + int rc = VINF_SUCCESS; + unsigned i, line; + + /* Update the descriptor with modified extent names. */ + for (i = 0, line = pImage->Descriptor.uFirstExtent; + i < pRenameState->cExtents; + i++, line = pImage->Descriptor.aNextLines[line]) + { + /* Update the descriptor. */ + pRenameState->apszNewLines[i] = vmdkStrReplace(pImage->Descriptor.aLines[line], + pRenameState->pszOldBaseName, + pRenameState->pszNewBaseName); + if (!pRenameState->apszNewLines[i]) + { + rc = VERR_NO_MEMORY; + break; + } + pImage->Descriptor.aLines[line] = pRenameState->apszNewLines[i]; + } + + if (RT_SUCCESS(rc)) + { + /* Make sure the descriptor gets written back. */ + pImage->Descriptor.fDirty = true; + /* Flush the descriptor now, in case it is embedded. */ + vmdkFlushImage(pImage, NULL); + + /* Close and rename/move extents. */ + for (i = 0; i < pRenameState->cExtents; i++) + { + PVMDKEXTENT pExtent = &pImage->pExtents[i]; + /* Compose new name for the extent. */ + pRenameState->apszNewName[i] = vmdkStrReplace(pExtent->pszFullname, + pRenameState->pszOldFullName, + pRenameState->pszNewFullName); + if (!pRenameState->apszNewName[i]) + { + rc = VERR_NO_MEMORY; + break; + } + /* Close the extent file. */ + rc = vmdkFileClose(pImage, &pExtent->pFile, false); + if (RT_FAILURE(rc)) + break;; + + /* Rename the extent file. */ + rc = vdIfIoIntFileMove(pImage->pIfIo, pExtent->pszFullname, pRenameState->apszNewName[i], 0); + if (RT_FAILURE(rc)) + break; + /* Remember the old name. */ + pRenameState->apszOldName[i] = RTStrDup(pExtent->pszFullname); + } + + if (RT_SUCCESS(rc)) + { + /* Release all old stuff. */ + rc = vmdkFreeImage(pImage, false, true /*fFlush*/); + if (RT_SUCCESS(rc)) + { + pRenameState->fImageFreed = true; + + /* Last elements of new/old name arrays are intended for + * storing descriptor's names. + */ + pRenameState->apszNewName[pRenameState->cExtents] = RTStrDup(pszFilename); + /* Rename the descriptor file if it's separate. */ + if (!pRenameState->fEmbeddedDesc) + { + rc = vdIfIoIntFileMove(pImage->pIfIo, pImage->pszFilename, pRenameState->apszNewName[pRenameState->cExtents], 0); + if (RT_SUCCESS(rc)) + { + /* Save old name only if we may need to change it back. */ + pRenameState->apszOldName[pRenameState->cExtents] = RTStrDup(pszFilename); + } + } + + /* Update pImage with the new information. */ + pImage->pszFilename = pszFilename; + + /* Open the new image. */ + rc = vmdkOpenImage(pImage, pImage->uOpenFlags); + } + } + } + + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnRename */ +static DECLCALLBACK(int) vmdkRename(void *pBackendData, const char *pszFilename) +{ + LogFlowFunc(("pBackendData=%#p pszFilename=%#p\n", pBackendData, pszFilename)); + + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + VMDKRENAMESTATE RenameState; + + memset(&RenameState, 0, sizeof(RenameState)); + + /* Check arguments. */ + AssertPtrReturn(pImage, VERR_INVALID_POINTER); + AssertPtrReturn(pszFilename, VERR_INVALID_POINTER); + AssertReturn(*pszFilename != '\0', VERR_INVALID_PARAMETER); + AssertReturn(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK), VERR_INVALID_PARAMETER); + + int rc = vmdkRenameStatePrepare(pImage, &RenameState, pszFilename); + if (RT_SUCCESS(rc)) + { + /* --- Up to this point we have not done any damage yet. --- */ + + rc = vmdkRenameWorker(pImage, &RenameState, pszFilename); + /* Roll back all changes in case of failure. */ + if (RT_FAILURE(rc)) + { + int rrc = vmdkRenameRollback(pImage, &RenameState); + AssertRC(rrc); + } + } + + vmdkRenameStateDestroy(&RenameState); + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnClose */ +static DECLCALLBACK(int) vmdkClose(void *pBackendData, bool fDelete) +{ + LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + int rc = vmdkFreeImage(pImage, fDelete, true /*fFlush*/); + RTMemFree(pImage); + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnRead */ +static DECLCALLBACK(int) vmdkRead(void *pBackendData, uint64_t uOffset, size_t cbToRead, + PVDIOCTX pIoCtx, size_t *pcbActuallyRead) +{ + LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToRead=%zu pcbActuallyRead=%#p\n", + pBackendData, uOffset, pIoCtx, cbToRead, pcbActuallyRead)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtr(pImage); + Assert(uOffset % 512 == 0); + Assert(cbToRead % 512 == 0); + AssertPtrReturn(pIoCtx, VERR_INVALID_POINTER); + AssertReturn(cbToRead, VERR_INVALID_PARAMETER); + AssertReturn(uOffset + cbToRead <= pImage->cbSize, VERR_INVALID_PARAMETER); + + /* Find the extent and check access permissions as defined in the extent descriptor. */ + PVMDKEXTENT pExtent; + uint64_t uSectorExtentRel; + int rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset), + &pExtent, &uSectorExtentRel); + if ( RT_SUCCESS(rc) + && pExtent->enmAccess != VMDKACCESS_NOACCESS) + { + /* Clip read range to remain in this extent. */ + cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); + + /* Handle the read according to the current extent type. */ + switch (pExtent->enmType) + { + case VMDKETYPE_HOSTED_SPARSE: + { + uint64_t uSectorExtentAbs; + + rc = vmdkGetSector(pImage, pIoCtx, pExtent, uSectorExtentRel, &uSectorExtentAbs); + if (RT_FAILURE(rc)) + break; + /* Clip read range to at most the rest of the grain. */ + cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain)); + Assert(!(cbToRead % 512)); + if (uSectorExtentAbs == 0) + { + if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) + || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) + rc = VERR_VD_BLOCK_FREE; + else + rc = vmdkStreamReadSequential(pImage, pExtent, + uSectorExtentRel, + pIoCtx, cbToRead); + } + else + { + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + AssertMsg(vdIfIoIntIoCtxIsSynchronous(pImage->pIfIo, pIoCtx), + ("Async I/O is not supported for stream optimized VMDK's\n")); + + uint32_t uSectorInGrain = uSectorExtentRel % pExtent->cSectorsPerGrain; + uSectorExtentAbs -= uSectorInGrain; + if (pExtent->uGrainSectorAbs != uSectorExtentAbs) + { + uint64_t uLBA = 0; /* gcc maybe uninitialized */ + rc = vmdkFileInflateSync(pImage, pExtent, + VMDK_SECTOR2BYTE(uSectorExtentAbs), + pExtent->pvGrain, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain), + NULL, &uLBA, NULL); + if (RT_FAILURE(rc)) + { + pExtent->uGrainSectorAbs = 0; + break; + } + pExtent->uGrainSectorAbs = uSectorExtentAbs; + pExtent->uGrain = uSectorExtentRel / pExtent->cSectorsPerGrain; + Assert(uLBA == uSectorExtentRel); + } + vdIfIoIntIoCtxCopyTo(pImage->pIfIo, pIoCtx, + (uint8_t *)pExtent->pvGrain + + VMDK_SECTOR2BYTE(uSectorInGrain), + cbToRead); + } + else + rc = vdIfIoIntFileReadUser(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uSectorExtentAbs), + pIoCtx, cbToRead); + } + break; + } + case VMDKETYPE_VMFS: + case VMDKETYPE_FLAT: + rc = vdIfIoIntFileReadUser(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uSectorExtentRel), + pIoCtx, cbToRead); + break; + case VMDKETYPE_ZERO: + { + size_t cbSet; + + cbSet = vdIfIoIntIoCtxSet(pImage->pIfIo, pIoCtx, 0, cbToRead); + Assert(cbSet == cbToRead); + break; + } + } + if (pcbActuallyRead) + *pcbActuallyRead = cbToRead; + } + else if (RT_SUCCESS(rc)) + rc = VERR_VD_VMDK_INVALID_STATE; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnWrite */ +static DECLCALLBACK(int) vmdkWrite(void *pBackendData, uint64_t uOffset, size_t cbToWrite, + PVDIOCTX pIoCtx, size_t *pcbWriteProcess, size_t *pcbPreRead, + size_t *pcbPostRead, unsigned fWrite) +{ + LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n", + pBackendData, uOffset, pIoCtx, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc; + + AssertPtr(pImage); + Assert(uOffset % 512 == 0); + Assert(cbToWrite % 512 == 0); + AssertPtrReturn(pIoCtx, VERR_INVALID_POINTER); + AssertReturn(cbToWrite, VERR_INVALID_PARAMETER); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + PVMDKEXTENT pExtent; + uint64_t uSectorExtentRel; + uint64_t uSectorExtentAbs; + + /* No size check here, will do that later when the extent is located. + * There are sparse images out there which according to the spec are + * invalid, because the total size is not a multiple of the grain size. + * Also for sparse images which are stitched together in odd ways (not at + * grain boundaries, and with the nominal size not being a multiple of the + * grain size), this would prevent writing to the last grain. */ + + rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset), + &pExtent, &uSectorExtentRel); + if (RT_SUCCESS(rc)) + { + if ( pExtent->enmAccess != VMDKACCESS_READWRITE + && ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + && !pImage->pExtents[0].uAppendPosition + && pExtent->enmAccess != VMDKACCESS_READONLY)) + rc = VERR_VD_VMDK_INVALID_STATE; + else + { + /* Handle the write according to the current extent type. */ + switch (pExtent->enmType) + { + case VMDKETYPE_HOSTED_SPARSE: + rc = vmdkGetSector(pImage, pIoCtx, pExtent, uSectorExtentRel, &uSectorExtentAbs); + if (RT_SUCCESS(rc)) + { + if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED + && uSectorExtentRel < (uint64_t)pExtent->uLastGrainAccess * pExtent->cSectorsPerGrain) + rc = VERR_VD_VMDK_INVALID_WRITE; + else + { + /* Clip write range to at most the rest of the grain. */ + cbToWrite = RT_MIN(cbToWrite, + VMDK_SECTOR2BYTE( pExtent->cSectorsPerGrain + - uSectorExtentRel % pExtent->cSectorsPerGrain)); + if (uSectorExtentAbs == 0) + { + if (!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + if (cbToWrite == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)) + { + /* Full block write to a previously unallocated block. + * Check if the caller wants to avoid the automatic alloc. */ + if (!(fWrite & VD_WRITE_NO_ALLOC)) + { + /* Allocate GT and find out where to store the grain. */ + rc = vmdkAllocGrain(pImage, pExtent, pIoCtx, + uSectorExtentRel, cbToWrite); + } + else + rc = VERR_VD_BLOCK_FREE; + *pcbPreRead = 0; + *pcbPostRead = 0; + } + else + { + /* Clip write range to remain in this extent. */ + cbToWrite = RT_MIN(cbToWrite, + VMDK_SECTOR2BYTE( pExtent->uSectorOffset + + pExtent->cNominalSectors - uSectorExtentRel)); + *pcbPreRead = VMDK_SECTOR2BYTE(uSectorExtentRel % pExtent->cSectorsPerGrain); + *pcbPostRead = VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbToWrite - *pcbPreRead; + rc = VERR_VD_BLOCK_FREE; + } + } + else + rc = vmdkStreamAllocGrain(pImage, pExtent, uSectorExtentRel, + pIoCtx, cbToWrite); + } + else + { + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + /* A partial write to a streamOptimized image is simply + * invalid. It requires rewriting already compressed data + * which is somewhere between expensive and impossible. */ + rc = VERR_VD_VMDK_INVALID_STATE; + pExtent->uGrainSectorAbs = 0; + AssertRC(rc); + } + else + { + Assert(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)); + rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uSectorExtentAbs), + pIoCtx, cbToWrite, NULL, NULL); + } + } + } + } + break; + case VMDKETYPE_VMFS: + case VMDKETYPE_FLAT: + /* Clip write range to remain in this extent. */ + cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); + rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uSectorExtentRel), + pIoCtx, cbToWrite, NULL, NULL); + break; + case VMDKETYPE_ZERO: + /* Clip write range to remain in this extent. */ + cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); + break; + } + } + + if (pcbWriteProcess) + *pcbWriteProcess = cbToWrite; + } + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnFlush */ +static DECLCALLBACK(int) vmdkFlush(void *pBackendData, PVDIOCTX pIoCtx) +{ + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + return vmdkFlushImage(pImage, pIoCtx); +} + +/** @copydoc VDIMAGEBACKEND::pfnGetVersion */ +static DECLCALLBACK(unsigned) vmdkGetVersion(void *pBackendData) +{ + LogFlowFunc(("pBackendData=%#p\n", pBackendData)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, 0); + + return VMDK_IMAGE_VERSION; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetFileSize */ +static DECLCALLBACK(uint64_t) vmdkGetFileSize(void *pBackendData) +{ + LogFlowFunc(("pBackendData=%#p\n", pBackendData)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + uint64_t cb = 0; + + AssertPtrReturn(pImage, 0); + + if (pImage->pFile != NULL) + { + uint64_t cbFile; + int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pFile->pStorage, &cbFile); + if (RT_SUCCESS(rc)) + cb += cbFile; + } + for (unsigned i = 0; i < pImage->cExtents; i++) + { + if (pImage->pExtents[i].pFile != NULL) + { + uint64_t cbFile; + int rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pExtents[i].pFile->pStorage, &cbFile); + if (RT_SUCCESS(rc)) + cb += cbFile; + } + } + + LogFlowFunc(("returns %lld\n", cb)); + return cb; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetPCHSGeometry */ +static DECLCALLBACK(int) vmdkGetPCHSGeometry(void *pBackendData, PVDGEOMETRY pPCHSGeometry) +{ + LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (pImage->PCHSGeometry.cCylinders) + *pPCHSGeometry = pImage->PCHSGeometry; + else + rc = VERR_VD_GEOMETRY_NOT_SET; + + LogFlowFunc(("returns %Rrc (PCHS=%u/%u/%u)\n", rc, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetPCHSGeometry */ +static DECLCALLBACK(int) vmdkSetPCHSGeometry(void *pBackendData, PCVDGEOMETRY pPCHSGeometry) +{ + LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n", + pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry); + if (RT_SUCCESS(rc)) + pImage->PCHSGeometry = *pPCHSGeometry; + } + else + rc = VERR_NOT_SUPPORTED; + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetLCHSGeometry */ +static DECLCALLBACK(int) vmdkGetLCHSGeometry(void *pBackendData, PVDGEOMETRY pLCHSGeometry) +{ + LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (pImage->LCHSGeometry.cCylinders) + *pLCHSGeometry = pImage->LCHSGeometry; + else + rc = VERR_VD_GEOMETRY_NOT_SET; + + LogFlowFunc(("returns %Rrc (LCHS=%u/%u/%u)\n", rc, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetLCHSGeometry */ +static DECLCALLBACK(int) vmdkSetLCHSGeometry(void *pBackendData, PCVDGEOMETRY pLCHSGeometry) +{ + LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p LCHS=%u/%u/%u\n", + pBackendData, pLCHSGeometry, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry); + if (RT_SUCCESS(rc)) + pImage->LCHSGeometry = *pLCHSGeometry; + } + else + rc = VERR_NOT_SUPPORTED; + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnQueryRegions */ +static DECLCALLBACK(int) vmdkQueryRegions(void *pBackendData, PCVDREGIONLIST *ppRegionList) +{ + LogFlowFunc(("pBackendData=%#p ppRegionList=%#p\n", pBackendData, ppRegionList)); + PVMDKIMAGE pThis = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pThis, VERR_VD_NOT_OPENED); + + *ppRegionList = &pThis->RegionList; + LogFlowFunc(("returns %Rrc\n", VINF_SUCCESS)); + return VINF_SUCCESS; +} + +/** @copydoc VDIMAGEBACKEND::pfnRegionListRelease */ +static DECLCALLBACK(void) vmdkRegionListRelease(void *pBackendData, PCVDREGIONLIST pRegionList) +{ + RT_NOREF1(pRegionList); + LogFlowFunc(("pBackendData=%#p pRegionList=%#p\n", pBackendData, pRegionList)); + PVMDKIMAGE pThis = (PVMDKIMAGE)pBackendData; + AssertPtr(pThis); RT_NOREF(pThis); + + /* Nothing to do here. */ +} + +/** @copydoc VDIMAGEBACKEND::pfnGetImageFlags */ +static DECLCALLBACK(unsigned) vmdkGetImageFlags(void *pBackendData) +{ + LogFlowFunc(("pBackendData=%#p\n", pBackendData)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, 0); + + LogFlowFunc(("returns %#x\n", pImage->uImageFlags)); + return pImage->uImageFlags; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetOpenFlags */ +static DECLCALLBACK(unsigned) vmdkGetOpenFlags(void *pBackendData) +{ + LogFlowFunc(("pBackendData=%#p\n", pBackendData)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, 0); + + LogFlowFunc(("returns %#x\n", pImage->uOpenFlags)); + return pImage->uOpenFlags; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetOpenFlags */ +static DECLCALLBACK(int) vmdkSetOpenFlags(void *pBackendData, unsigned uOpenFlags) +{ + LogFlowFunc(("pBackendData=%#p uOpenFlags=%#x\n", pBackendData, uOpenFlags)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc; + + /* Image must be opened and the new flags must be valid. */ + if (!pImage || (uOpenFlags & ~( VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO + | VD_OPEN_FLAGS_ASYNC_IO | VD_OPEN_FLAGS_SHAREABLE + | VD_OPEN_FLAGS_SEQUENTIAL | VD_OPEN_FLAGS_SKIP_CONSISTENCY_CHECKS))) + rc = VERR_INVALID_PARAMETER; + else + { + /* StreamOptimized images need special treatment: reopen is prohibited. */ + if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) + { + if (pImage->uOpenFlags == uOpenFlags) + rc = VINF_SUCCESS; + else + rc = VERR_INVALID_PARAMETER; + } + else + { + /* Implement this operation via reopening the image. */ + vmdkFreeImage(pImage, false, true /*fFlush*/); + rc = vmdkOpenImage(pImage, uOpenFlags); + } + } + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetComment */ +static DECLCALLBACK(int) vmdkGetComment(void *pBackendData, char *pszComment, size_t cbComment) +{ + LogFlowFunc(("pBackendData=%#p pszComment=%#p cbComment=%zu\n", pBackendData, pszComment, cbComment)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + char *pszCommentEncoded = NULL; + int rc = vmdkDescDDBGetStr(pImage, &pImage->Descriptor, + "ddb.comment", &pszCommentEncoded); + if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) + { + pszCommentEncoded = NULL; + rc = VINF_SUCCESS; + } + + if (RT_SUCCESS(rc)) + { + if (pszComment && pszCommentEncoded) + rc = vmdkDecodeString(pszCommentEncoded, pszComment, cbComment); + else if (pszComment) + *pszComment = '\0'; + + if (pszCommentEncoded) + RTMemTmpFree(pszCommentEncoded); + } + + LogFlowFunc(("returns %Rrc comment='%s'\n", rc, pszComment)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetComment */ +static DECLCALLBACK(int) vmdkSetComment(void *pBackendData, const char *pszComment) +{ + LogFlowFunc(("pBackendData=%#p pszComment=\"%s\"\n", pBackendData, pszComment)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + rc = vmdkSetImageComment(pImage, pszComment); + else + rc = VERR_NOT_SUPPORTED; + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetUuid */ +static DECLCALLBACK(int) vmdkGetUuid(void *pBackendData, PRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + *pUuid = pImage->ImageUuid; + + LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid)); + return VINF_SUCCESS; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetUuid */ +static DECLCALLBACK(int) vmdkSetUuid(void *pBackendData, PCRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + pImage->ImageUuid = *pUuid; + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_IMAGE_UUID, pUuid); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename); + } + else + rc = VERR_NOT_SUPPORTED; + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetModificationUuid */ +static DECLCALLBACK(int) vmdkGetModificationUuid(void *pBackendData, PRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + *pUuid = pImage->ModificationUuid; + + LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid)); + return VINF_SUCCESS; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetModificationUuid */ +static DECLCALLBACK(int) vmdkSetModificationUuid(void *pBackendData, PCRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + /* Only touch the modification uuid if it changed. */ + if (RTUuidCompare(&pImage->ModificationUuid, pUuid)) + { + pImage->ModificationUuid = *pUuid; + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_MODIFICATION_UUID, pUuid); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing modification UUID in descriptor in '%s'"), pImage->pszFilename); + } + } + else + rc = VERR_NOT_SUPPORTED; + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetParentUuid */ +static DECLCALLBACK(int) vmdkGetParentUuid(void *pBackendData, PRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + *pUuid = pImage->ParentUuid; + + LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid)); + return VINF_SUCCESS; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetParentUuid */ +static DECLCALLBACK(int) vmdkSetParentUuid(void *pBackendData, PCRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + pImage->ParentUuid = *pUuid; + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_PARENT_UUID, pUuid); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, + N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename); + } + else + rc = VERR_NOT_SUPPORTED; + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnGetParentModificationUuid */ +static DECLCALLBACK(int) vmdkGetParentModificationUuid(void *pBackendData, PRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + *pUuid = pImage->ParentModificationUuid; + + LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid)); + return VINF_SUCCESS; +} + +/** @copydoc VDIMAGEBACKEND::pfnSetParentModificationUuid */ +static DECLCALLBACK(int) vmdkSetParentModificationUuid(void *pBackendData, PCRTUUID pUuid) +{ + LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + int rc = VINF_SUCCESS; + + AssertPtrReturn(pImage, VERR_VD_NOT_OPENED); + + if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) + { + if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) + { + pImage->ParentModificationUuid = *pUuid; + rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, + VMDK_DDB_PARENT_MODIFICATION_UUID, pUuid); + if (RT_FAILURE(rc)) + rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename); + } + else + rc = VERR_NOT_SUPPORTED; + } + else + rc = VERR_VD_IMAGE_READ_ONLY; + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnDump */ +static DECLCALLBACK(void) vmdkDump(void *pBackendData) +{ + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + + AssertPtrReturnVoid(pImage); + vdIfErrorMessage(pImage->pIfError, "Header: Geometry PCHS=%u/%u/%u LCHS=%u/%u/%u cbSector=%llu\n", + pImage->PCHSGeometry.cCylinders, pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors, + pImage->LCHSGeometry.cCylinders, pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors, + VMDK_BYTE2SECTOR(pImage->cbSize)); + vdIfErrorMessage(pImage->pIfError, "Header: uuidCreation={%RTuuid}\n", &pImage->ImageUuid); + vdIfErrorMessage(pImage->pIfError, "Header: uuidModification={%RTuuid}\n", &pImage->ModificationUuid); + vdIfErrorMessage(pImage->pIfError, "Header: uuidParent={%RTuuid}\n", &pImage->ParentUuid); + vdIfErrorMessage(pImage->pIfError, "Header: uuidParentModification={%RTuuid}\n", &pImage->ParentModificationUuid); +} + + +/** + * Returns the size, in bytes, of the sparse extent overhead for + * the number of desired total sectors and based on the current + * sectors of the extent. + * + * @returns uint64_t size of new overhead in bytes. + * @param pExtent VMDK extent instance. + * @param cSectorsNew Number of desired total sectors. + */ +static uint64_t vmdkGetNewOverhead(PVMDKEXTENT pExtent, uint64_t cSectorsNew) +{ + uint64_t cNewDirEntries = cSectorsNew / pExtent->cSectorsPerGDE; + if (cSectorsNew % pExtent->cSectorsPerGDE) + cNewDirEntries++; + + size_t cbNewGD = cNewDirEntries * sizeof(uint32_t); + uint64_t cbNewDirSize = RT_ALIGN_64(cbNewGD, 512); + uint64_t cbNewAllTablesSize = RT_ALIGN_64(cNewDirEntries * pExtent->cGTEntries * sizeof(uint32_t), 512); + uint64_t cbNewOverhead = RT_ALIGN_Z(RT_MAX(pExtent->uDescriptorSector + + pExtent->cDescriptorSectors, 1) + + cbNewDirSize + cbNewAllTablesSize, 512); + cbNewOverhead += cbNewDirSize + cbNewAllTablesSize; + cbNewOverhead = RT_ALIGN_64(cbNewOverhead, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + + return cbNewOverhead; +} + +/** + * Internal: Replaces the size (in sectors) of an extent in the descriptor file. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pExtent VMDK extent instance. + * @param uLine Line number of descriptor to change. + * @param cSectorsOld Existing number of sectors. + * @param cSectorsNew New number of sectors. + */ +static int vmdkReplaceExtentSize(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, unsigned uLine, uint64_t cSectorsOld, + uint64_t cSectorsNew) +{ + char szOldExtentSectors[UINT64_MAX_BUFF_SIZE]; + char szNewExtentSectors[UINT64_MAX_BUFF_SIZE]; + + ssize_t cbWritten = RTStrPrintf2(szOldExtentSectors, sizeof(szOldExtentSectors), "%llu", cSectorsOld); + if (cbWritten <= 0 || cbWritten > (ssize_t)sizeof(szOldExtentSectors)) + return VERR_BUFFER_OVERFLOW; + + cbWritten = RTStrPrintf2(szNewExtentSectors, sizeof(szNewExtentSectors), "%llu", cSectorsNew); + if (cbWritten <= 0 || cbWritten > (ssize_t)sizeof(szNewExtentSectors)) + return VERR_BUFFER_OVERFLOW; + + char *pszNewExtentLine = vmdkStrReplace(pImage->Descriptor.aLines[uLine], + szOldExtentSectors, + szNewExtentSectors); + + if (RT_UNLIKELY(!pszNewExtentLine)) + return VERR_INVALID_PARAMETER; + + vmdkDescExtRemoveByLine(pImage, &pImage->Descriptor, uLine); + vmdkDescExtInsert(pImage, &pImage->Descriptor, + pExtent->enmAccess, cSectorsNew, + pExtent->enmType, pExtent->pszBasename, pExtent->uSectorOffset); + + RTStrFree(pszNewExtentLine); + pszNewExtentLine = NULL; + + pImage->Descriptor.fDirty = true; + + return VINF_SUCCESS; +} + +/** + * Moves sectors down to make room for new overhead. + * Used for sparse extent resize. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pExtent VMDK extent instance. + * @param cSectorsNew Number of sectors after resize. + */ +static int vmdkRelocateSectorsForSparseResize(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t cSectorsNew) +{ + int rc = VINF_SUCCESS; + + uint64_t cbNewOverhead = vmdkGetNewOverhead(pExtent, cSectorsNew); + + uint64_t cNewOverheadSectors = VMDK_BYTE2SECTOR(cbNewOverhead); + uint64_t cOverheadSectorDiff = cNewOverheadSectors - pExtent->cOverheadSectors; + + uint64_t cbFile = 0; + rc = vdIfIoIntFileGetSize(pImage->pIfIo, pExtent->pFile->pStorage, &cbFile); + + uint64_t uNewAppendPosition; + + /* Calculate how many sectors need to be relocated. */ + unsigned cSectorsReloc = cOverheadSectorDiff; + if (cbNewOverhead % VMDK_SECTOR_SIZE) + cSectorsReloc++; + + if (cSectorsReloc < pExtent->cSectors) + uNewAppendPosition = RT_ALIGN_Z(cbFile + VMDK_SECTOR2BYTE(cOverheadSectorDiff), 512); + else + uNewAppendPosition = cbFile; + + /* + * Get the blocks we need to relocate first, they are appended to the end + * of the image. + */ + void *pvBuf = NULL, *pvZero = NULL; + do + { + /* Allocate data buffer. */ + pvBuf = RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + if (!pvBuf) + { + rc = VERR_NO_MEMORY; + break; + } + + /* Allocate buffer for overwriting with zeroes. */ + pvZero = RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + if (!pvZero) + { + RTMemFree(pvBuf); + pvBuf = NULL; + + rc = VERR_NO_MEMORY; + break; + } + + uint32_t *aGTDataTmp = (uint32_t *)RTMemAllocZ(sizeof(uint32_t) * pExtent->cGTEntries); + if(!aGTDataTmp) + { + RTMemFree(pvBuf); + pvBuf = NULL; + + RTMemFree(pvZero); + pvZero = NULL; + + rc = VERR_NO_MEMORY; + break; + } + + uint32_t *aRGTDataTmp = (uint32_t *)RTMemAllocZ(sizeof(uint32_t) * pExtent->cGTEntries); + if(!aRGTDataTmp) + { + RTMemFree(pvBuf); + pvBuf = NULL; + + RTMemFree(pvZero); + pvZero = NULL; + + RTMemFree(aGTDataTmp); + aGTDataTmp = NULL; + + rc = VERR_NO_MEMORY; + break; + } + + /* Search for overlap sector in the grain table. */ + for (uint32_t idxGD = 0; idxGD < pExtent->cGDEntries; idxGD++) + { + uint64_t uGTSector = pExtent->pGD[idxGD]; + uint64_t uRGTSector = pExtent->pRGD[idxGD]; + + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGTSector), + aGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries); + + if (RT_FAILURE(rc)) + break; + + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uRGTSector), + aRGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries); + + if (RT_FAILURE(rc)) + break; + + for (uint32_t idxGT = 0; idxGT < pExtent->cGTEntries; idxGT++) + { + uint64_t aGTEntryLE = RT_LE2H_U64(aGTDataTmp[idxGT]); + uint64_t aRGTEntryLE = RT_LE2H_U64(aRGTDataTmp[idxGT]); + + /** + * Check if grain table is valid. If not dump out with an error. + * Shoudln't ever get here (given other checks) but good sanity check. + */ + if (aGTEntryLE != aRGTEntryLE) + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: inconsistent references within grain table in '%s'"), pExtent->pszFullname); + break; + } + + if (aGTEntryLE < cNewOverheadSectors + && aGTEntryLE != 0) + { + /* Read data and append grain to the end of the image. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(aGTEntryLE), pvBuf, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + if (RT_FAILURE(rc)) + break; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + uNewAppendPosition, pvBuf, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + if (RT_FAILURE(rc)) + break; + + /* Zero out the old block area. */ + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(aGTEntryLE), pvZero, + VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); + if (RT_FAILURE(rc)) + break; + + /* Write updated grain tables to file */ + aGTDataTmp[idxGT] = VMDK_BYTE2SECTOR(uNewAppendPosition); + aRGTDataTmp[idxGT] = VMDK_BYTE2SECTOR(uNewAppendPosition); + + if (memcmp(aGTDataTmp, aRGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries)) + { + rc = vdIfError(pImage->pIfError, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, + N_("VMDK: inconsistency between grain table and backup grain table in '%s'"), pExtent->pszFullname); + break; + } + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uGTSector), + aGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries); + + if (RT_FAILURE(rc)) + break; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uRGTSector), + aRGTDataTmp, sizeof(uint32_t) * pExtent->cGTEntries); + + break; + } + } + } + + RTMemFree(aGTDataTmp); + aGTDataTmp = NULL; + + RTMemFree(aRGTDataTmp); + aRGTDataTmp = NULL; + + if (RT_FAILURE(rc)) + break; + + uNewAppendPosition += VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain); + } while (0); + + if (pvBuf) + { + RTMemFree(pvBuf); + pvBuf = NULL; + } + + if (pvZero) + { + RTMemFree(pvZero); + pvZero = NULL; + } + + // Update append position for extent + pExtent->uAppendPosition = uNewAppendPosition; + + return rc; +} + +/** + * Resizes meta/overhead for sparse extent resize. + * + * @returns VBox status code. + * @param pImage VMDK image instance. + * @param pExtent VMDK extent instance. + * @param cSectorsNew Number of sectors after resize. + */ +static int vmdkResizeSparseMeta(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, + uint64_t cSectorsNew) +{ + int rc = VINF_SUCCESS; + uint32_t cOldGDEntries = pExtent->cGDEntries; + + uint64_t cNewDirEntries = cSectorsNew / pExtent->cSectorsPerGDE; + if (cSectorsNew % pExtent->cSectorsPerGDE) + cNewDirEntries++; + + size_t cbNewGD = cNewDirEntries * sizeof(uint32_t); + + uint64_t cbNewDirSize = RT_ALIGN_64(cbNewGD, 512); + uint64_t cbCurrDirSize = RT_ALIGN_64(pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE, 512); + uint64_t cDirSectorDiff = VMDK_BYTE2SECTOR(cbNewDirSize - cbCurrDirSize); + + uint64_t cbNewAllTablesSize = RT_ALIGN_64(cNewDirEntries * pExtent->cGTEntries * sizeof(uint32_t), 512); + uint64_t cbCurrAllTablesSize = RT_ALIGN_64(pExtent->cGDEntries * VMDK_GRAIN_TABLE_SIZE, 512); + uint64_t cTableSectorDiff = VMDK_BYTE2SECTOR(cbNewAllTablesSize - cbCurrAllTablesSize); + + uint64_t cbNewOverhead = vmdkGetNewOverhead(pExtent, cSectorsNew); + uint64_t cNewOverheadSectors = VMDK_BYTE2SECTOR(cbNewOverhead); + uint64_t cOverheadSectorDiff = cNewOverheadSectors - pExtent->cOverheadSectors; + + /* + * Get the blocks we need to relocate first, they are appended to the end + * of the image. + */ + void *pvBuf = NULL, *pvZero = NULL; + + do + { + /* Allocate data buffer. */ + pvBuf = RTMemAllocZ(VMDK_GRAIN_TABLE_SIZE); + if (!pvBuf) + { + rc = VERR_NO_MEMORY; + break; + } + + /* Allocate buffer for overwriting with zeroes. */ + pvZero = RTMemAllocZ(VMDK_GRAIN_TABLE_SIZE); + if (!pvZero) + { + RTMemFree(pvBuf); + pvBuf = NULL; + + rc = VERR_NO_MEMORY; + break; + } + + uint32_t uGTStart = VMDK_SECTOR2BYTE(pExtent->uSectorGD) + (cOldGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + + // points to last element in the grain table + uint32_t uGTTail = uGTStart + (pExtent->cGDEntries * VMDK_GRAIN_TABLE_SIZE) - VMDK_GRAIN_TABLE_SIZE; + uint32_t cbGTOff = RT_ALIGN_Z(VMDK_SECTOR2BYTE(cDirSectorDiff + cTableSectorDiff + cDirSectorDiff), 512); + + for (int i = pExtent->cGDEntries - 1; i >= 0; i--) + { + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + uGTTail, pvBuf, + VMDK_GRAIN_TABLE_SIZE); + if (RT_FAILURE(rc)) + break; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + RT_ALIGN_Z(uGTTail + cbGTOff, 512), pvBuf, + VMDK_GRAIN_TABLE_SIZE); + if (RT_FAILURE(rc)) + break; + + // This overshoots when i == 0, but we don't need it anymore. + uGTTail -= VMDK_GRAIN_TABLE_SIZE; + } + + + /* Find the end of the grain directory and start bumping everything down. Update locations of GT entries. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorGD), pvBuf, + pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + if (RT_FAILURE(rc)) + break; + + int * tmpBuf = (int *)pvBuf; + + for (uint32_t i = 0; i < pExtent->cGDEntries; i++) + { + tmpBuf[i] = tmpBuf[i] + VMDK_BYTE2SECTOR(cbGTOff); + pExtent->pGD[i] = pExtent->pGD[i] + VMDK_BYTE2SECTOR(cbGTOff); + } + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + RT_ALIGN_Z(VMDK_SECTOR2BYTE(pExtent->uSectorGD + cTableSectorDiff + cDirSectorDiff), 512), pvBuf, + pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + if (RT_FAILURE(rc)) + break; + + pExtent->uSectorGD = pExtent->uSectorGD + cDirSectorDiff + cTableSectorDiff; + + /* Repeat both steps with the redundant grain table/directory. */ + + uint32_t uRGTStart = VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + (cOldGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + + // points to last element in the grain table + uint32_t uRGTTail = uRGTStart + (pExtent->cGDEntries * VMDK_GRAIN_TABLE_SIZE) - VMDK_GRAIN_TABLE_SIZE; + uint32_t cbRGTOff = RT_ALIGN_Z(VMDK_SECTOR2BYTE(cDirSectorDiff), 512); + + for (int i = pExtent->cGDEntries - 1; i >= 0; i--) + { + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + uRGTTail, pvBuf, + VMDK_GRAIN_TABLE_SIZE); + if (RT_FAILURE(rc)) + break; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + RT_ALIGN_Z(uRGTTail + cbRGTOff, 512), pvBuf, + VMDK_GRAIN_TABLE_SIZE); + if (RT_FAILURE(rc)) + break; + + // This overshoots when i == 0, but we don't need it anymore. + uRGTTail -= VMDK_GRAIN_TABLE_SIZE; + } + + /* Update locations of GT entries. */ + rc = vdIfIoIntFileReadSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorRGD), pvBuf, + pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + if (RT_FAILURE(rc)) + break; + + tmpBuf = (int *)pvBuf; + + for (uint32_t i = 0; i < pExtent->cGDEntries; i++) + { + tmpBuf[i] = tmpBuf[i] + cDirSectorDiff; + pExtent->pRGD[i] = pExtent->pRGD[i] + cDirSectorDiff; + } + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorRGD), pvBuf, + pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + if (RT_FAILURE(rc)) + break; + + pExtent->uSectorRGD = pExtent->uSectorRGD; + pExtent->cOverheadSectors += cOverheadSectorDiff; + + } while (0); + + if (pvBuf) + { + RTMemFree(pvBuf); + pvBuf = NULL; + } + + if (pvZero) + { + RTMemFree(pvZero); + pvZero = NULL; + } + + pExtent->cGDEntries = cNewDirEntries; + + /* Allocate buffer for overwriting with zeroes. */ + pvZero = RTMemAllocZ(VMDK_GRAIN_TABLE_SIZE); + if (!pvZero) + return VERR_NO_MEMORY; + + // Allocate additional grain dir + pExtent->pGD = (uint32_t *) RTMemReallocZ(pExtent->pGD, pExtent->cGDEntries * sizeof(uint32_t), cbNewGD); + if (RT_LIKELY(pExtent->pGD)) + { + if (pExtent->uSectorRGD) + { + pExtent->pRGD = (uint32_t *)RTMemReallocZ(pExtent->pRGD, pExtent->cGDEntries * sizeof(uint32_t), cbNewGD); + if (RT_UNLIKELY(!pExtent->pRGD)) + rc = VERR_NO_MEMORY; + } + } + else + return VERR_NO_MEMORY; + + + uint32_t uTmpDirVal = pExtent->pGD[cOldGDEntries - 1] + VMDK_GRAIN_DIR_ENTRY_SIZE; + for (uint32_t i = cOldGDEntries; i < pExtent->cGDEntries; i++) + { + pExtent->pGD[i] = uTmpDirVal; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uTmpDirVal), pvZero, + VMDK_GRAIN_TABLE_SIZE); + + if (RT_FAILURE(rc)) + return rc; + + uTmpDirVal += VMDK_GRAIN_DIR_ENTRY_SIZE; + } + + uint32_t uRTmpDirVal = pExtent->pRGD[cOldGDEntries - 1] + VMDK_GRAIN_DIR_ENTRY_SIZE; + for (uint32_t i = cOldGDEntries; i < pExtent->cGDEntries; i++) + { + pExtent->pRGD[i] = uRTmpDirVal; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(uRTmpDirVal), pvZero, + VMDK_GRAIN_TABLE_SIZE); + + if (RT_FAILURE(rc)) + return rc; + + uRTmpDirVal += VMDK_GRAIN_DIR_ENTRY_SIZE; + } + + RTMemFree(pvZero); + pvZero = NULL; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorGD), pExtent->pGD, + pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + if (RT_FAILURE(rc)) + return rc; + + rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(pExtent->uSectorRGD), pExtent->pRGD, + pExtent->cGDEntries * VMDK_GRAIN_DIR_ENTRY_SIZE); + if (RT_FAILURE(rc)) + return rc; + + rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent + pExtent->uExtent, + pExtent->cNominalSectors, cSectorsNew); + if (RT_FAILURE(rc)) + return rc; + + return rc; +} + +/** @copydoc VDIMAGEBACKEND::pfnResize */ +static DECLCALLBACK(int) vmdkResize(void *pBackendData, uint64_t cbSize, + PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry, + unsigned uPercentStart, unsigned uPercentSpan, + PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, + PVDINTERFACE pVDIfsOperation) +{ + RT_NOREF5(uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation); + + // Establish variables and objects needed + int rc = VINF_SUCCESS; + PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; + unsigned uImageFlags = pImage->uImageFlags; + PVMDKEXTENT pExtent = &pImage->pExtents[0]; + pExtent->fMetaDirty = true; + + uint64_t cSectorsNew = cbSize / VMDK_SECTOR_SIZE; /** < New number of sectors in the image after the resize */ + if (cbSize % VMDK_SECTOR_SIZE) + cSectorsNew++; + + uint64_t cSectorsOld = pImage->cbSize / VMDK_SECTOR_SIZE; /** < Number of sectors before the resize. Only for FLAT images. */ + if (pImage->cbSize % VMDK_SECTOR_SIZE) + cSectorsOld++; + unsigned cExtents = pImage->cExtents; + + /* Check size is within min/max bounds. */ + if ( !(uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK) + && ( !cbSize + || (!(uImageFlags & VD_IMAGE_FLAGS_FIXED) && cbSize >= _1T * 256 - _64K)) ) + return VERR_VD_INVALID_SIZE; + + /* + * Making the image smaller is not supported at the moment. + */ + /** @todo implement making the image smaller, it is the responsibility of + * the user to know what they're doing. */ + if (cbSize < pImage->cbSize) + rc = VERR_VD_SHRINK_NOT_SUPPORTED; + else if (cbSize > pImage->cbSize) + { + /** + * monolithicFlat. FIXED flag and not split up into 2 GB parts. + */ + if ((uImageFlags & VD_IMAGE_FLAGS_FIXED) && !(uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)) + { + /** Required space in bytes for the extent after the resize. */ + uint64_t cbSectorSpaceNew = cSectorsNew * VMDK_SECTOR_SIZE; + pExtent = &pImage->pExtents[0]; + + rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, cbSectorSpaceNew, + 0 /* fFlags */, NULL, + uPercentStart, uPercentSpan); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname); + + rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent, cSectorsOld, cSectorsNew); + if (RT_FAILURE(rc)) + return rc; + } + + /** + * twoGbMaxExtentFlat. FIXED flag and SPLIT into 2 GB parts. + */ + if ((uImageFlags & VD_IMAGE_FLAGS_FIXED) && (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)) + { + /* Check to see how much space remains in last extent */ + bool fSpaceAvailible = false; + uint64_t cLastExtentRemSectors = cSectorsOld % VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + if (cLastExtentRemSectors) + fSpaceAvailible = true; + + uint64_t cSectorsNeeded = cSectorsNew - cSectorsOld; + + /** Space remaining in current last extent file that we don't need to create another one. */ + if (fSpaceAvailible && cSectorsNeeded + cLastExtentRemSectors <= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE)) + { + pExtent = &pImage->pExtents[cExtents - 1]; + rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, + VMDK_SECTOR2BYTE(cSectorsNeeded + cLastExtentRemSectors), + 0 /* fFlags */, NULL, uPercentStart, uPercentSpan); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname); + + rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent + cExtents - 1, + pExtent->cNominalSectors, cSectorsNeeded + cLastExtentRemSectors); + if (RT_FAILURE(rc)) + return rc; + } + //** Need more extent files to handle all the requested space. */ + else + { + if (fSpaceAvailible) + { + pExtent = &pImage->pExtents[cExtents - 1]; + rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pExtent->pFile->pStorage, VMDK_2G_SPLIT_SIZE, + 0 /* fFlags */, NULL, + uPercentStart, uPercentSpan); + if (RT_FAILURE(rc)) + return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname); + + cSectorsNeeded = cSectorsNeeded - VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE) + cLastExtentRemSectors; + + rc = vmdkReplaceExtentSize(pImage, pExtent, pImage->Descriptor.uFirstExtent + cExtents - 1, + pExtent->cNominalSectors, VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE)); + if (RT_FAILURE(rc)) + return rc; + } + + unsigned cNewExtents = VMDK_SECTOR2BYTE(cSectorsNeeded) / VMDK_2G_SPLIT_SIZE; + if (cNewExtents % VMDK_2G_SPLIT_SIZE || cNewExtents < VMDK_2G_SPLIT_SIZE) + cNewExtents++; + + for (unsigned i = cExtents; + i < cExtents + cNewExtents && cSectorsNeeded >= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + i++) + { + rc = vmdkAddFileBackedExtent(pImage, VMDK_2G_SPLIT_SIZE); + if (RT_FAILURE(rc)) + return rc; + + pExtent = &pImage->pExtents[i]; + + pExtent->cSectors = VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + cSectorsNeeded -= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + } + + if (cSectorsNeeded) + { + rc = vmdkAddFileBackedExtent(pImage, VMDK_SECTOR2BYTE(cSectorsNeeded)); + if (RT_FAILURE(rc)) + return rc; + } + } + } + + /** + * monolithicSparse. + */ + if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE && !(uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)) + { + // 1. Calculate sectors needed for new overhead. + + uint64_t cbNewOverhead = vmdkGetNewOverhead(pExtent, cSectorsNew); + uint64_t cNewOverheadSectors = VMDK_BYTE2SECTOR(cbNewOverhead); + uint64_t cOverheadSectorDiff = cNewOverheadSectors - pExtent->cOverheadSectors; + + // 2. Relocate sectors to make room for new GD/GT, update entries in GD/GT + if (cOverheadSectorDiff > 0) + { + if (pExtent->cSectors > 0) + { + /* Do the relocation. */ + LogFlow(("Relocating VMDK sectors\n")); + rc = vmdkRelocateSectorsForSparseResize(pImage, pExtent, cSectorsNew); + if (RT_FAILURE(rc)) + return rc; + + rc = vmdkFlushImage(pImage, NULL); + if (RT_FAILURE(rc)) + return rc; + } + + rc = vmdkResizeSparseMeta(pImage, pExtent, cSectorsNew); + if (RT_FAILURE(rc)) + return rc; + } + } + + /** + * twoGbSparseExtent + */ + if (pExtent->enmType == VMDKETYPE_HOSTED_SPARSE && (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G)) + { + /* Check to see how much space remains in last extent */ + bool fSpaceAvailible = false; + uint64_t cLastExtentRemSectors = cSectorsOld % VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + if (cLastExtentRemSectors) + fSpaceAvailible = true; + + uint64_t cSectorsNeeded = cSectorsNew - cSectorsOld; + + if (fSpaceAvailible && cSectorsNeeded + cLastExtentRemSectors <= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE)) + { + pExtent = &pImage->pExtents[cExtents - 1]; + rc = vmdkRelocateSectorsForSparseResize(pImage, pExtent, cSectorsNeeded + cLastExtentRemSectors); + if (RT_FAILURE(rc)) + return rc; + + rc = vmdkFlushImage(pImage, NULL); + if (RT_FAILURE(rc)) + return rc; + + rc = vmdkResizeSparseMeta(pImage, pExtent, cSectorsNeeded + cLastExtentRemSectors); + if (RT_FAILURE(rc)) + return rc; + } + else + { + if (fSpaceAvailible) + { + pExtent = &pImage->pExtents[cExtents - 1]; + rc = vmdkRelocateSectorsForSparseResize(pImage, pExtent, VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE)); + if (RT_FAILURE(rc)) + return rc; + + rc = vmdkFlushImage(pImage, NULL); + if (RT_FAILURE(rc)) + return rc; + + rc = vmdkResizeSparseMeta(pImage, pExtent, VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE)); + if (RT_FAILURE(rc)) + return rc; + + cSectorsNeeded = cSectorsNeeded - VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE) + cLastExtentRemSectors; + } + + unsigned cNewExtents = VMDK_SECTOR2BYTE(cSectorsNeeded) / VMDK_2G_SPLIT_SIZE; + if (cNewExtents % VMDK_2G_SPLIT_SIZE || cNewExtents < VMDK_2G_SPLIT_SIZE) + cNewExtents++; + + for (unsigned i = cExtents; + i < cExtents + cNewExtents && cSectorsNeeded >= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + i++) + { + rc = vmdkAddFileBackedExtent(pImage, VMDK_2G_SPLIT_SIZE); + if (RT_FAILURE(rc)) + return rc; + + pExtent = &pImage->pExtents[i]; + + rc = vmdkFlushImage(pImage, NULL); + if (RT_FAILURE(rc)) + return rc; + + pExtent->cSectors = VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + cSectorsNeeded -= VMDK_BYTE2SECTOR(VMDK_2G_SPLIT_SIZE); + } + + if (cSectorsNeeded) + { + rc = vmdkAddFileBackedExtent(pImage, VMDK_SECTOR2BYTE(cSectorsNeeded)); + if (RT_FAILURE(rc)) + return rc; + + pExtent = &pImage->pExtents[pImage->cExtents]; + + rc = vmdkFlushImage(pImage, NULL); + if (RT_FAILURE(rc)) + return rc; + } + } + } + + /* Successful resize. Update metadata */ + if (RT_SUCCESS(rc)) + { + /* Update size and new block count. */ + pImage->cbSize = cbSize; + pExtent->cNominalSectors = cSectorsNew; + pExtent->cSectors = cSectorsNew; + + /* Update geometry. */ + pImage->PCHSGeometry = *pPCHSGeometry; + pImage->LCHSGeometry = *pLCHSGeometry; + } + + /* Update header information in base image file. */ + pImage->Descriptor.fDirty = true; + rc = vmdkWriteDescriptor(pImage, NULL); + + if (RT_SUCCESS(rc)) + rc = vmdkFlushImage(pImage, NULL); + } + /* Same size doesn't change the image at all. */ + + LogFlowFunc(("returns %Rrc\n", rc)); + return rc; +} + +const VDIMAGEBACKEND g_VmdkBackend = +{ + /* u32Version */ + VD_IMGBACKEND_VERSION, + /* pszBackendName */ + "VMDK", + /* uBackendCaps */ + VD_CAP_UUID | VD_CAP_CREATE_FIXED | VD_CAP_CREATE_DYNAMIC + | VD_CAP_CREATE_SPLIT_2G | VD_CAP_DIFF | VD_CAP_FILE | VD_CAP_ASYNC + | VD_CAP_VFS | VD_CAP_PREFERRED, + /* paFileExtensions */ + s_aVmdkFileExtensions, + /* paConfigInfo */ + s_aVmdkConfigInfo, + /* pfnProbe */ + vmdkProbe, + /* pfnOpen */ + vmdkOpen, + /* pfnCreate */ + vmdkCreate, + /* pfnRename */ + vmdkRename, + /* pfnClose */ + vmdkClose, + /* pfnRead */ + vmdkRead, + /* pfnWrite */ + vmdkWrite, + /* pfnFlush */ + vmdkFlush, + /* pfnDiscard */ + NULL, + /* pfnGetVersion */ + vmdkGetVersion, + /* pfnGetFileSize */ + vmdkGetFileSize, + /* pfnGetPCHSGeometry */ + vmdkGetPCHSGeometry, + /* pfnSetPCHSGeometry */ + vmdkSetPCHSGeometry, + /* pfnGetLCHSGeometry */ + vmdkGetLCHSGeometry, + /* pfnSetLCHSGeometry */ + vmdkSetLCHSGeometry, + /* pfnQueryRegions */ + vmdkQueryRegions, + /* pfnRegionListRelease */ + vmdkRegionListRelease, + /* pfnGetImageFlags */ + vmdkGetImageFlags, + /* pfnGetOpenFlags */ + vmdkGetOpenFlags, + /* pfnSetOpenFlags */ + vmdkSetOpenFlags, + /* pfnGetComment */ + vmdkGetComment, + /* pfnSetComment */ + vmdkSetComment, + /* pfnGetUuid */ + vmdkGetUuid, + /* pfnSetUuid */ + vmdkSetUuid, + /* pfnGetModificationUuid */ + vmdkGetModificationUuid, + /* pfnSetModificationUuid */ + vmdkSetModificationUuid, + /* pfnGetParentUuid */ + vmdkGetParentUuid, + /* pfnSetParentUuid */ + vmdkSetParentUuid, + /* pfnGetParentModificationUuid */ + vmdkGetParentModificationUuid, + /* pfnSetParentModificationUuid */ + vmdkSetParentModificationUuid, + /* pfnDump */ + vmdkDump, + /* pfnGetTimestamp */ + NULL, + /* pfnGetParentTimestamp */ + NULL, + /* pfnSetParentTimestamp */ + NULL, + /* pfnGetParentFilename */ + NULL, + /* pfnSetParentFilename */ + NULL, + /* pfnComposeLocation */ + genericFileComposeLocation, + /* pfnComposeName */ + genericFileComposeName, + /* pfnCompact */ + NULL, + /* pfnResize */ + vmdkResize, + /* pfnRepair */ + NULL, + /* pfnTraverseMetadata */ + NULL, + /* u32VersionEnd */ + VD_IMGBACKEND_VERSION +}; |