/* $Id: nocrt-per-thread-2.cpp $ */ /** @file * IPRT - No-Crt - Per Thread Data, Managment code */ /* * Copyright (C) 2006-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #include "internal/nocrt.h" #include #include #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Init/term once state. */ static RTONCE g_NoCrtPerThreadOnce = RTONCE_INITIALIZER; /** List of heap allocations (PRTNOCRTTHREADDATA). */ static RTLISTANCHOR g_NoCrtPerThreadHeapList; /** Critical section protecting g_NoCrtPerThreadHeapList. */ static RTCRITSECT g_NoCrtPerThreadCritSect; /** Allocation bitmap for g_aNoCrtPerThreadStatic. * * In debug builds we only have one slot here, so we have a better chance of * testing the heap code path. */ #ifdef DEBUG static uint32_t volatile g_fNoCrtPerThreadStaticAlloc = UINT32_C(0xffffefff); #else static uint32_t volatile g_fNoCrtPerThreadStaticAlloc = 0; #endif /* Static allocations to avoid the heap and associate slowness. */ static RTNOCRTTHREADDATA g_aNoCrtPerThreadStatic[32]; /** * @callback_method_impl{FNRTTLSDTOR} */ static DECLCALLBACK(void) rtNoCrtPerThreadDtor(void *pvValue) { PRTNOCRTTHREADDATA pNoCrtData = (PRTNOCRTTHREADDATA)pvValue; if (pNoCrtData->enmAllocType == RTNOCRTTHREADDATA::kAllocType_Heap) { AssertReturnVoid(RTOnceWasInitialized(&g_NoCrtPerThreadOnce)); RTCritSectEnter(&g_NoCrtPerThreadCritSect); /* timeout? */ RTListNodeRemove(&pNoCrtData->ListEntry); pNoCrtData->enmAllocType = RTNOCRTTHREADDATA::kAllocType_End; RTCritSectLeave(&g_NoCrtPerThreadCritSect); RTMemFree(pNoCrtData); } else if (pNoCrtData->enmAllocType == RTNOCRTTHREADDATA::kAllocType_Static) { size_t iSlot = (size_t)(pNoCrtData - &g_aNoCrtPerThreadStatic[0]); AssertReturnVoid(iSlot < RT_ELEMENTS(g_aNoCrtPerThreadStatic)); pNoCrtData->enmAllocType = RTNOCRTTHREADDATA::kAllocType_Invalid; ASMAtomicAndU32(&g_fNoCrtPerThreadStaticAlloc, ~(uint32_t)iSlot); } } /** * @callback_method_impl{FNRTONCE} */ static DECLCALLBACK(int32_t) rtNoCrtPerThreadInit(void *pvUser) { RTListInit(&g_NoCrtPerThreadHeapList); RTTLS iTls = NIL_RTTLS; int rc = RTTlsAllocEx(&iTls, rtNoCrtPerThreadDtor); if (iTls != NIL_RTTLS) { rc = RTCritSectInit(&g_NoCrtPerThreadCritSect); if (RT_SUCCESS(rc)) { g_iTlsRtNoCrtPerThread = iTls; return VINF_SUCCESS; } RTTlsFree(iTls); } RT_NOREF(pvUser); return rc; } /** * @callback_method_impl{FNRTONCECLEANUP} */ static DECLCALLBACK(void) rtNoCrtPerThreadCleanup(void *pvUser, bool fLazyCleanUpOk) { RT_NOREF(pvUser); if (fLazyCleanUpOk) return; /* * First destroy the TLS entry. */ RTTLS iTls = g_iTlsRtNoCrtPerThread; g_iTlsRtNoCrtPerThread = NIL_RTTLS; int rc = RTTlsFree(iTls); AssertRC(rc); /* * Then destroy the critical section and free all entries in the list. */ RTCritSectDelete(&g_NoCrtPerThreadCritSect); PRTNOCRTTHREADDATA pNoCrtData; while ((pNoCrtData = RTListRemoveFirst(&g_NoCrtPerThreadHeapList, RTNOCRTTHREADDATA, ListEntry)) != NULL) { AssertContinue(pNoCrtData->enmAllocType == RTNOCRTTHREADDATA::kAllocType_Heap); pNoCrtData->enmAllocType = RTNOCRTTHREADDATA::kAllocType_End; RTMemFree(pNoCrtData); } } PRTNOCRTTHREADDATA rtNoCrtThreadDataGet(void) { int rc = RTOnceEx(&g_NoCrtPerThreadOnce, rtNoCrtPerThreadInit, rtNoCrtPerThreadCleanup, NULL); if (RT_SUCCESS(rc)) { /* * We typically have an entry already. */ PRTNOCRTTHREADDATA pNoCrtData = (PRTNOCRTTHREADDATA)RTTlsGet(g_iTlsRtNoCrtPerThread); if (pNoCrtData) { AssertReturn( pNoCrtData->enmAllocType > RTNOCRTTHREADDATA::kAllocType_Invalid && pNoCrtData->enmAllocType < RTNOCRTTHREADDATA::kAllocType_End, NULL); return pNoCrtData; } /* * Okay, allocate a new entry first using some of the statically allocated * ones then falling back on heap allocations. */ for (;;) { uint32_t const fAlloc = ASMAtomicUoReadU32(&g_fNoCrtPerThreadStaticAlloc); uint32_t iSlot = ASMBitFirstSetU32(~fAlloc); if (iSlot != 0) iSlot--; else break; if (ASMAtomicCmpXchgU32(&g_fNoCrtPerThreadStaticAlloc, fAlloc | RT_BIT_32(iSlot), fAlloc)) { pNoCrtData = &g_aNoCrtPerThreadStatic[iSlot]; /* Init the entry in case it's being re-used: */ Assert(pNoCrtData->enmAllocType == RTNOCRTTHREADDATA::kAllocType_Invalid); rc = RTTlsSet(g_iTlsRtNoCrtPerThread, pNoCrtData); AssertRC(rc); if (RT_SUCCESS(rc)) { pNoCrtData->enmAllocType = RTNOCRTTHREADDATA::kAllocType_Static; RTListInit(&pNoCrtData->ListEntry); pNoCrtData->iErrno = 0; pNoCrtData->pszStrToken = NULL; return pNoCrtData; } ASMAtomicOrU32(&g_fNoCrtPerThreadStaticAlloc, RT_BIT_32(iSlot)); return NULL; } ASMNopPause(); } /* * Heap. */ pNoCrtData = (PRTNOCRTTHREADDATA)RTMemAllocZ(sizeof(*pNoCrtData)); if (pNoCrtData) { pNoCrtData->enmAllocType = RTNOCRTTHREADDATA::kAllocType_Heap; RTCritSectEnter(&g_NoCrtPerThreadCritSect); RTListAppend(&g_NoCrtPerThreadHeapList, &pNoCrtData->ListEntry); RTCritSectLeave(&g_NoCrtPerThreadCritSect); rc = RTTlsSet(g_iTlsRtNoCrtPerThread, pNoCrtData); AssertRC(rc); if (RT_SUCCESS(rc)) return pNoCrtData; RTCritSectEnter(&g_NoCrtPerThreadCritSect); RTListNodeRemove(&pNoCrtData->ListEntry); RTCritSectLeave(&g_NoCrtPerThreadCritSect); pNoCrtData->enmAllocType = RTNOCRTTHREADDATA::kAllocType_End; RTMemFree(pNoCrtData); } } return NULL; }