/* $Id: GIMAllHv.cpp $ */ /** @file * GIM - Guest Interface Manager, Microsoft Hyper-V, All Contexts. */ /* * Copyright (C) 2014-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_GIM #include #include #include #include #include #include #include #include #include #include #include "GIMHvInternal.h" #include "GIMInternal.h" #include #include #ifdef IN_RING3 # include #endif #ifdef IN_RING3 /** * Read and validate slow hypercall parameters. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pCtx Pointer to the guest-CPU context. * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not. * @param enmParam The hypercall parameter type. * @param prcHv Where to store the Hyper-V status code. Only valid * to the caller when this function returns * VINF_SUCCESS. */ static int gimHvReadSlowHypercallParam(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, GIMHVHYPERCALLPARAM enmParam, int *prcHv) { int rc = VINF_SUCCESS; PGIMHV pHv = &pVM->gim.s.u.Hv; RTGCPHYS GCPhysParam; void *pvDst; if (enmParam == GIMHVHYPERCALLPARAM_IN) { GCPhysParam = fIs64BitMode ? pCtx->rdx : (pCtx->rbx << 32) | pCtx->ecx; pvDst = pHv->pbHypercallIn; pHv->GCPhysHypercallIn = GCPhysParam; } else { GCPhysParam = fIs64BitMode ? pCtx->r8 : (pCtx->rdi << 32) | pCtx->esi; pvDst = pHv->pbHypercallOut; pHv->GCPhysHypercallOut = GCPhysParam; Assert(enmParam == GIMHVHYPERCALLPARAM_OUT); } const char *pcszParam = enmParam == GIMHVHYPERCALLPARAM_IN ? "input" : "output"; NOREF(pcszParam); if (RT_ALIGN_64(GCPhysParam, 8) == GCPhysParam) { if (PGMPhysIsGCPhysNormal(pVM, GCPhysParam)) { rc = PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysParam, GIM_HV_PAGE_SIZE); if (RT_SUCCESS(rc)) { *prcHv = GIM_HV_STATUS_SUCCESS; return VINF_SUCCESS; } LogRel(("GIM: HyperV: Failed reading %s param at %#RGp. rc=%Rrc\n", pcszParam, GCPhysParam, rc)); rc = VERR_GIM_HYPERCALL_MEMORY_READ_FAILED; } else { Log(("GIM: HyperV: Invalid %s param address %#RGp\n", pcszParam, GCPhysParam)); *prcHv = GIM_HV_STATUS_INVALID_PARAMETER; } } else { Log(("GIM: HyperV: Misaligned %s param address %#RGp\n", pcszParam, GCPhysParam)); *prcHv = GIM_HV_STATUS_INVALID_ALIGNMENT; } return rc; } /** * Helper for reading and validating slow hypercall input and output parameters. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pCtx Pointer to the guest-CPU context. * @param fIs64BitMode Whether the guest is currently in 64-bit mode or not. * @param prcHv Where to store the Hyper-V status code. Only valid * to the caller when this function returns * VINF_SUCCESS. */ static int gimHvReadSlowHypercallParamsInOut(PVM pVM, PCPUMCTX pCtx, bool fIs64BitMode, int *prcHv) { int rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, prcHv); if ( RT_SUCCESS(rc) && *prcHv == GIM_HV_STATUS_SUCCESS) rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, prcHv); return rc; } #endif /** * Handles all Hyper-V hypercalls. * * @returns Strict VBox status code. * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation * failed). * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3. * @retval VERR_GIM_HYPERCALLS_NOT_ENABLED hypercalls are disabled by the * guest. * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient. * @retval VERR_GIM_HYPERCALL_MEMORY_READ_FAILED hypercall failed while reading * memory. * @retval VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED hypercall failed while * writing memory. * * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest-CPU context. * * @thread EMT(pVCpu). */ VMM_INT_DECL(VBOXSTRICTRC) gimHvHypercall(PVMCPUCC pVCpu, PCPUMCTX pCtx) { VMCPU_ASSERT_EMT(pVCpu); #ifndef IN_RING3 RT_NOREF_PV(pVCpu); RT_NOREF_PV(pCtx); return VINF_GIM_R3_HYPERCALL; #else PVM pVM = pVCpu->CTX_SUFF(pVM); STAM_REL_COUNTER_INC(&pVM->gim.s.StatHypercalls); /* * Verify that hypercalls are enabled by the guest. */ if (!gimHvAreHypercallsEnabled(pVM)) return VERR_GIM_HYPERCALLS_NOT_ENABLED; /* * Verify guest is in ring-0 protected mode. */ uint32_t uCpl = CPUMGetGuestCPL(pVCpu); if ( uCpl || CPUMIsGuestInRealModeEx(pCtx)) { return VERR_GIM_HYPERCALL_ACCESS_DENIED; } /* * Get the hypercall operation code and modes. * Fast hypercalls have only two or fewer inputs but no output parameters. */ const bool fIs64BitMode = CPUMIsGuestIn64BitCodeEx(pCtx); const uint64_t uHyperIn = fIs64BitMode ? pCtx->rcx : (pCtx->rdx << 32) | pCtx->eax; const uint16_t uHyperOp = GIM_HV_HYPERCALL_IN_CALL_CODE(uHyperIn); const bool fHyperFast = GIM_HV_HYPERCALL_IN_IS_FAST(uHyperIn); const uint16_t cHyperReps = GIM_HV_HYPERCALL_IN_REP_COUNT(uHyperIn); const uint16_t idxHyperRepStart = GIM_HV_HYPERCALL_IN_REP_START_IDX(uHyperIn); uint64_t cHyperRepsDone = 0; /* Currently no repeating hypercalls are supported. */ RT_NOREF2(cHyperReps, idxHyperRepStart); int rc = VINF_SUCCESS; int rcHv = GIM_HV_STATUS_OPERATION_DENIED; PGIMHV pHv = &pVM->gim.s.u.Hv; /* * Validate common hypercall input parameters. */ if ( !GIM_HV_HYPERCALL_IN_RSVD_1(uHyperIn) && !GIM_HV_HYPERCALL_IN_RSVD_2(uHyperIn) && !GIM_HV_HYPERCALL_IN_RSVD_3(uHyperIn)) { /* * Perform the hypercall. */ switch (uHyperOp) { case GIM_HV_HYPERCALL_OP_RETREIVE_DEBUG_DATA: /* Non-rep, memory IO. */ { if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING) { rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv); if ( RT_SUCCESS(rc) && rcHv == GIM_HV_STATUS_SUCCESS) { LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via hypercall\n")); rc = gimR3HvHypercallRetrieveDebugData(pVM, &rcHv); if (RT_FAILURE(rc)) LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallRetrieveDebugData failed. rc=%Rrc\n", rc)); } } else rcHv = GIM_HV_STATUS_ACCESS_DENIED; break; } case GIM_HV_HYPERCALL_OP_POST_DEBUG_DATA: /* Non-rep, memory IO. */ { if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING) { rc = gimHvReadSlowHypercallParamsInOut(pVM, pCtx, fIs64BitMode, &rcHv); if ( RT_SUCCESS(rc) && rcHv == GIM_HV_STATUS_SUCCESS) { LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via hypercall\n")); rc = gimR3HvHypercallPostDebugData(pVM, &rcHv); if (RT_FAILURE(rc)) LogRelMax(10, ("GIM: HyperV: gimR3HvHypercallPostDebugData failed. rc=%Rrc\n", rc)); } } else rcHv = GIM_HV_STATUS_ACCESS_DENIED; break; } case GIM_HV_HYPERCALL_OP_RESET_DEBUG_SESSION: /* Non-rep, fast (register IO). */ { if (pHv->uPartFlags & GIM_HV_PART_FLAGS_DEBUGGING) { uint32_t fFlags = 0; if (!fHyperFast) { rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv); if ( RT_SUCCESS(rc) && rcHv == GIM_HV_STATUS_SUCCESS) { PGIMHVDEBUGRESETIN pIn = (PGIMHVDEBUGRESETIN)pHv->pbHypercallIn; fFlags = pIn->fFlags; } } else { rcHv = GIM_HV_STATUS_SUCCESS; fFlags = fIs64BitMode ? pCtx->rdx : pCtx->ebx; } /* * Nothing to flush on the sending side as we don't maintain our own buffers. */ /** @todo We should probably ask the debug receive thread to flush it's buffer. */ if (rcHv == GIM_HV_STATUS_SUCCESS) { if (fFlags) LogRel(("GIM: HyperV: Resetting debug session via hypercall\n")); else rcHv = GIM_HV_STATUS_INVALID_PARAMETER; } } else rcHv = GIM_HV_STATUS_ACCESS_DENIED; break; } case GIM_HV_HYPERCALL_OP_POST_MESSAGE: /* Non-rep, memory IO. */ { if (pHv->fIsInterfaceVs) { rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_IN, &rcHv); if ( RT_SUCCESS(rc) && rcHv == GIM_HV_STATUS_SUCCESS) { PGIMHVPOSTMESSAGEIN pMsgIn = (PGIMHVPOSTMESSAGEIN)pHv->pbHypercallIn; PCGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; if ( pMsgIn->uConnectionId == GIM_HV_VMBUS_MSG_CONNECTION_ID && pMsgIn->enmMessageType == GIMHVMSGTYPE_VMBUS && !MSR_GIM_HV_SINT_IS_MASKED(pHvCpu->auSintMsrs[GIM_HV_VMBUS_MSG_SINT]) && MSR_GIM_HV_SIMP_IS_ENABLED(pHvCpu->uSimpMsr)) { RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(pHvCpu->uSimpMsr); if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp)) { /* * The VMBus client (guest) expects to see 0xf at offsets 4 and 16 and 1 at offset 0. */ GIMHVMSG HvMsg; RT_ZERO(HvMsg); HvMsg.MsgHdr.enmMessageType = GIMHVMSGTYPE_VMBUS; HvMsg.MsgHdr.cbPayload = 0xf; HvMsg.aPayload[0] = 0xf; uint16_t const offMsg = GIM_HV_VMBUS_MSG_SINT * sizeof(GIMHVMSG); int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp + offMsg, &HvMsg, sizeof(HvMsg)); if (RT_SUCCESS(rc2)) LogRel(("GIM: HyperV: SIMP hypercall faking message at %#RGp:%u\n", GCPhysSimp, offMsg)); else { LogRel(("GIM: HyperV: Failed to write SIMP message at %#RGp:%u, rc=%Rrc\n", GCPhysSimp, offMsg, rc)); } } } /* * Make the call fail after updating the SIMP, so the guest can go back to using * the Hyper-V debug MSR interface. Any error code below GIM_HV_STATUS_NOT_ACKNOWLEDGED * and the guest tries to proceed with initializing VMBus which is totally unnecessary * for what we're trying to accomplish, i.e. convince guest to use Hyper-V debugging. Also, * we don't implement other VMBus/SynIC functionality so the guest would #GP and die. */ rcHv = GIM_HV_STATUS_NOT_ACKNOWLEDGED; } else rcHv = GIM_HV_STATUS_INVALID_PARAMETER; } else rcHv = GIM_HV_STATUS_ACCESS_DENIED; break; } case GIM_HV_EXT_HYPERCALL_OP_QUERY_CAP: /* Non-rep, extended hypercall. */ { if (pHv->uPartFlags & GIM_HV_PART_FLAGS_EXTENDED_HYPERCALLS) { rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, &rcHv); if ( RT_SUCCESS(rc) && rcHv == GIM_HV_STATUS_SUCCESS) { rc = gimR3HvHypercallExtQueryCap(pVM, &rcHv); } } else { LogRel(("GIM: HyperV: Denied HvExtCallQueryCapabilities when the feature is not exposed\n")); rcHv = GIM_HV_STATUS_ACCESS_DENIED; } break; } case GIM_HV_EXT_HYPERCALL_OP_GET_BOOT_ZEROED_MEM: /* Non-rep, extended hypercall. */ { if (pHv->uPartFlags & GIM_HV_PART_FLAGS_EXTENDED_HYPERCALLS) { rc = gimHvReadSlowHypercallParam(pVM, pCtx, fIs64BitMode, GIMHVHYPERCALLPARAM_OUT, &rcHv); if ( RT_SUCCESS(rc) && rcHv == GIM_HV_STATUS_SUCCESS) { rc = gimR3HvHypercallExtGetBootZeroedMem(pVM, &rcHv); } } else { LogRel(("GIM: HyperV: Denied HvExtCallGetBootZeroedMemory when the feature is not exposed\n")); rcHv = GIM_HV_STATUS_ACCESS_DENIED; } break; } default: { LogRel(("GIM: HyperV: Unknown/invalid hypercall opcode %#x (%u)\n", uHyperOp, uHyperOp)); rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_CODE; break; } } } else rcHv = GIM_HV_STATUS_INVALID_HYPERCALL_INPUT; /* * Update the guest with results of the hypercall. */ if (RT_SUCCESS(rc)) { if (fIs64BitMode) pCtx->rax = (cHyperRepsDone << 32) | rcHv; else { pCtx->edx = cHyperRepsDone; pCtx->eax = rcHv; } } return rc; #endif } /** * Returns a pointer to the MMIO2 regions supported by Hyper-V. * * @returns Pointer to an array of MMIO2 regions. * @param pVM The cross context VM structure. * @param pcRegions Where to store the number of regions in the array. */ VMM_INT_DECL(PGIMMMIO2REGION) gimHvGetMmio2Regions(PVM pVM, uint32_t *pcRegions) { Assert(GIMIsEnabled(pVM)); PGIMHV pHv = &pVM->gim.s.u.Hv; AssertCompile(RT_ELEMENTS(pHv->aMmio2Regions) <= 8); *pcRegions = RT_ELEMENTS(pHv->aMmio2Regions); return pHv->aMmio2Regions; } /** * Returns whether the guest has configured and enabled the use of Hyper-V's * hypercall interface. * * @returns true if hypercalls are enabled, false otherwise. * @param pVM The cross context VM structure. */ VMM_INT_DECL(bool) gimHvAreHypercallsEnabled(PCVM pVM) { return RT_BOOL(pVM->gim.s.u.Hv.u64GuestOsIdMsr != 0); } /** * Returns whether the guest has configured and enabled the use of Hyper-V's * paravirtualized TSC. * * @returns true if paravirt. TSC is enabled, false otherwise. * @param pVM The cross context VM structure. */ VMM_INT_DECL(bool) gimHvIsParavirtTscEnabled(PVM pVM) { return MSR_GIM_HV_REF_TSC_IS_ENABLED(pVM->gim.s.u.Hv.u64TscPageMsr); } #ifdef IN_RING3 /** * Gets the descriptive OS ID variant as identified via the * MSR_GIM_HV_GUEST_OS_ID MSR. * * @returns The name. * @param uGuestOsIdMsr The MSR_GIM_HV_GUEST_OS_ID MSR. */ static const char *gimHvGetGuestOsIdVariantName(uint64_t uGuestOsIdMsr) { /* Refer the Hyper-V spec, section 3.6 "Reporting the Guest OS Identity". */ uint32_t uVendor = MSR_GIM_HV_GUEST_OS_ID_VENDOR(uGuestOsIdMsr); if (uVendor == 1 /* Microsoft */) { uint32_t uOsVariant = MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uGuestOsIdMsr); switch (uOsVariant) { case 0: return "Undefined"; case 1: return "MS-DOS"; case 2: return "Windows 3.x"; case 3: return "Windows 9x"; case 4: return "Windows NT or derivative"; case 5: return "Windows CE"; default: return "Unknown"; } } return "Unknown"; } #endif /** * Gets the time reference count for the current VM. * * @returns The time reference count. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(uint64_t) gimHvGetTimeRefCount(PVMCPUCC pVCpu) { /* Hyper-V reports the time in 100 ns units (10 MHz). */ VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); PCGIMHV pHv = &pVCpu->CTX_SUFF(pVM)->gim.s.u.Hv; uint64_t const u64Tsc = TMCpuTickGet(pVCpu); /** @todo should we be passing VCPU0 always? */ uint64_t const u64TscHz = pHv->cTscTicksPerSecond; uint64_t const u64Tsc100NS = u64TscHz / UINT64_C(10000000); /* 100 ns */ uint64_t const uTimeRefCount = (u64Tsc / u64Tsc100NS); return uTimeRefCount; } /** * Starts the synthetic timer. * * @param pVCpu The cross context virtual CPU structure. * @param pHvStimer Pointer to the Hyper-V synthetic timer. * * @remarks Caller needs to hold the timer critical section. * @thread Any. */ VMM_INT_DECL(void) gimHvStartStimer(PVMCPUCC pVCpu, PCGIMHVSTIMER pHvStimer) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); TMTIMERHANDLE hTimer = pHvStimer->hTimer; Assert(TMTimerIsLockOwner(pVM, hTimer)); uint64_t const uTimerCount = pHvStimer->uStimerCountMsr; if (uTimerCount) { uint64_t const uTimerCountNS = uTimerCount * 100; /* For periodic timers, 'uTimerCountNS' represents the relative interval. */ if (MSR_GIM_HV_STIMER_IS_PERIODIC(pHvStimer->uStimerConfigMsr)) { TMTimerSetNano(pVM, hTimer, uTimerCountNS); LogFlow(("GIM%u: HyperV: Started relative periodic STIMER%u with uTimerCountNS=%RU64\n", pVCpu->idCpu, pHvStimer->idxStimer, uTimerCountNS)); } else { /* For one-shot timers, 'uTimerCountNS' represents an absolute expiration wrt to Hyper-V reference time, we convert it to a relative time and program the timer. */ uint64_t const uCurRefTimeNS = gimHvGetTimeRefCount(pVCpu) * 100; if (uTimerCountNS > uCurRefTimeNS) { uint64_t const uRelativeNS = uTimerCountNS - uCurRefTimeNS; TMTimerSetNano(pVM, hTimer, uRelativeNS); LogFlow(("GIM%u: HyperV: Started one-shot relative STIMER%u with uRelativeNS=%RU64\n", pVCpu->idCpu, pHvStimer->idxStimer, uRelativeNS)); } } /** @todo frequency hinting? */ } } /** * Stops the synthetic timer for the given VCPU. * * @param pVCpu The cross context virtual CPU structure. * @param pHvStimer Pointer to the Hyper-V synthetic timer. * * @remarks Caller needs to the hold the timer critical section. * @thread EMT(pVCpu). */ static void gimHvStopStimer(PVMCPUCC pVCpu, PGIMHVSTIMER pHvStimer) { VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); PVMCC pVM = pVCpu->CTX_SUFF(pVM); TMTIMERHANDLE hTimer = pHvStimer->hTimer; Assert(TMTimerIsLockOwner(pVM, hTimer)); if (TMTimerIsActive(pVM, hTimer)) TMTimerStop(pVM, hTimer); } /** * MSR read handler for Hyper-V. * * @returns Strict VBox status code like CPUMQueryGuestMsr(). * @retval VINF_CPUM_R3_MSR_READ * @retval VERR_CPUM_RAISE_GP_0 * * @param pVCpu The cross context virtual CPU structure. * @param idMsr The MSR being read. * @param pRange The range this MSR belongs to. * @param puValue Where to store the MSR value read. * * @thread EMT. */ VMM_INT_DECL(VBOXSTRICTRC) gimHvReadMsr(PVMCPUCC pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t *puValue) { NOREF(pRange); PVMCC pVM = pVCpu->CTX_SUFF(pVM); PCGIMHV pHv = &pVM->gim.s.u.Hv; switch (idMsr) { case MSR_GIM_HV_TIME_REF_COUNT: *puValue = gimHvGetTimeRefCount(pVCpu); return VINF_SUCCESS; case MSR_GIM_HV_VP_INDEX: *puValue = pVCpu->idCpu; return VINF_SUCCESS; case MSR_GIM_HV_TPR: *puValue = APICHvGetTpr(pVCpu); return VINF_SUCCESS; case MSR_GIM_HV_ICR: *puValue = APICHvGetIcr(pVCpu); return VINF_SUCCESS; case MSR_GIM_HV_GUEST_OS_ID: *puValue = pHv->u64GuestOsIdMsr; return VINF_SUCCESS; case MSR_GIM_HV_HYPERCALL: *puValue = pHv->u64HypercallMsr; return VINF_SUCCESS; case MSR_GIM_HV_REF_TSC: *puValue = pHv->u64TscPageMsr; return VINF_SUCCESS; case MSR_GIM_HV_TSC_FREQ: *puValue = TMCpuTicksPerSecond(pVM); return VINF_SUCCESS; case MSR_GIM_HV_APIC_FREQ: { int rc = APICGetTimerFreq(pVM, puValue); if (RT_FAILURE(rc)) return VERR_CPUM_RAISE_GP_0; return VINF_SUCCESS; } case MSR_GIM_HV_SYNTH_DEBUG_STATUS: *puValue = pHv->uDbgStatusMsr; return VINF_SUCCESS; case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3: case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7: case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11: case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15: { PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; *puValue = pHvCpu->auSintMsrs[idMsr - MSR_GIM_HV_SINT0]; return VINF_SUCCESS; } case MSR_GIM_HV_STIMER0_CONFIG: case MSR_GIM_HV_STIMER1_CONFIG: case MSR_GIM_HV_STIMER2_CONFIG: case MSR_GIM_HV_STIMER3_CONFIG: { PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1; PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer]; *puValue = pcHvStimer->uStimerConfigMsr; return VINF_SUCCESS; } case MSR_GIM_HV_STIMER0_COUNT: case MSR_GIM_HV_STIMER1_COUNT: case MSR_GIM_HV_STIMER2_COUNT: case MSR_GIM_HV_STIMER3_COUNT: { PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_COUNT) >> 1; PCGIMHVSTIMER pcHvStimer = &pHvCpu->aStimers[idxStimer]; *puValue = pcHvStimer->uStimerCountMsr; return VINF_SUCCESS; } case MSR_GIM_HV_EOM: { *puValue = 0; return VINF_SUCCESS; } case MSR_GIM_HV_SCONTROL: { PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; *puValue = pHvCpu->uSControlMsr; return VINF_SUCCESS; } case MSR_GIM_HV_SIMP: { PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; *puValue = pHvCpu->uSimpMsr; return VINF_SUCCESS; } case MSR_GIM_HV_SVERSION: *puValue = GIM_HV_SVERSION; return VINF_SUCCESS; case MSR_GIM_HV_RESET: *puValue = 0; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_CTL: *puValue = pHv->uCrashCtlMsr; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P0: *puValue = pHv->uCrashP0Msr; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P1: *puValue = pHv->uCrashP1Msr; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P2: *puValue = pHv->uCrashP2Msr; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P3: *puValue = pHv->uCrashP3Msr; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P4: *puValue = pHv->uCrashP4Msr; return VINF_SUCCESS; case MSR_GIM_HV_DEBUG_OPTIONS_MSR: { if (pHv->fIsVendorMsHv) { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_READ; #else LogRelMax(1, ("GIM: HyperV: Guest querying debug options, suggesting %s interface\n", pHv->fDbgHypercallInterface ? "hypercall" : "MSR")); *puValue = pHv->fDbgHypercallInterface ? GIM_HV_DEBUG_OPTIONS_USE_HYPERCALLS : 0; return VINF_SUCCESS; #endif } break; } /* Write-only MSRs: */ case MSR_GIM_HV_EOI: /* Reserved/unknown MSRs: */ default: { #ifdef IN_RING3 static uint32_t s_cTimes = 0; if (s_cTimes++ < 20) LogRel(("GIM: HyperV: Unknown/invalid RdMsr (%#x) -> #GP(0)\n", idMsr)); LogFunc(("Unknown/invalid RdMsr (%#RX32) -> #GP(0)\n", idMsr)); break; #else return VINF_CPUM_R3_MSR_READ; #endif } } return VERR_CPUM_RAISE_GP_0; } /** * MSR write handler for Hyper-V. * * @returns Strict VBox status code like CPUMSetGuestMsr(). * @retval VINF_CPUM_R3_MSR_WRITE * @retval VERR_CPUM_RAISE_GP_0 * * @param pVCpu The cross context virtual CPU structure. * @param idMsr The MSR being written. * @param pRange The range this MSR belongs to. * @param uRawValue The raw value with the ignored bits not masked. * * @thread EMT. */ VMM_INT_DECL(VBOXSTRICTRC) gimHvWriteMsr(PVMCPUCC pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t uRawValue) { NOREF(pRange); PVMCC pVM = pVCpu->CTX_SUFF(pVM); PGIMHV pHv = &pVM->gim.s.u.Hv; switch (idMsr) { case MSR_GIM_HV_TPR: return APICHvSetTpr(pVCpu, uRawValue); case MSR_GIM_HV_EOI: return APICHvSetEoi(pVCpu, uRawValue); case MSR_GIM_HV_ICR: return APICHvSetIcr(pVCpu, uRawValue); case MSR_GIM_HV_GUEST_OS_ID: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else /* Disable the hypercall-page and hypercalls if 0 is written to this MSR. */ if (!uRawValue) { if (MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(pHv->u64HypercallMsr)) { gimR3HvDisableHypercallPage(pVM); pHv->u64HypercallMsr &= ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE; LogRel(("GIM: HyperV: Hypercall page disabled via Guest OS ID MSR\n")); } } else { LogRel(("GIM: HyperV: Guest OS reported ID %#RX64\n", uRawValue)); LogRel(("GIM: HyperV: Open-source=%RTbool Vendor=%#x OS=%#x (%s) Major=%u Minor=%u ServicePack=%u Build=%u\n", MSR_GIM_HV_GUEST_OS_ID_IS_OPENSOURCE(uRawValue), MSR_GIM_HV_GUEST_OS_ID_VENDOR(uRawValue), MSR_GIM_HV_GUEST_OS_ID_OS_VARIANT(uRawValue), gimHvGetGuestOsIdVariantName(uRawValue), MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue), MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue))); /* Update the CPUID leaf, see Hyper-V spec. "Microsoft Hypervisor CPUID Leaves". */ CPUMCPUIDLEAF HyperLeaf; RT_ZERO(HyperLeaf); HyperLeaf.uLeaf = UINT32_C(0x40000002); HyperLeaf.uEax = MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue); HyperLeaf.uEbx = MSR_GIM_HV_GUEST_OS_ID_MINOR_VERSION(uRawValue) | (MSR_GIM_HV_GUEST_OS_ID_MAJOR_VERSION(uRawValue) << 16); HyperLeaf.uEcx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue); HyperLeaf.uEdx = MSR_GIM_HV_GUEST_OS_ID_SERVICE_VERSION(uRawValue) | (MSR_GIM_HV_GUEST_OS_ID_BUILD(uRawValue) << 24); int rc2 = CPUMR3CpuIdInsert(pVM, &HyperLeaf); AssertRC(rc2); } pHv->u64GuestOsIdMsr = uRawValue; /* * Update EM on hypercall instruction enabled state. */ if (uRawValue) for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) EMSetHypercallInstructionsEnabled(pVM->CTX_SUFF(apCpus)[idCpu], true); else for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) EMSetHypercallInstructionsEnabled(pVM->CTX_SUFF(apCpus)[idCpu], false); return VINF_SUCCESS; #endif /* IN_RING3 */ } case MSR_GIM_HV_HYPERCALL: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else /** @todo There is/was a problem with hypercalls for FreeBSD 10.1 guests, * see @bugref{7270#c116}. */ /* First, update all but the hypercall page enable bit. */ pHv->u64HypercallMsr = (uRawValue & ~MSR_GIM_HV_HYPERCALL_PAGE_ENABLE); /* Hypercall page can only be enabled when the guest has enabled hypercalls. */ bool fEnable = MSR_GIM_HV_HYPERCALL_PAGE_IS_ENABLED(uRawValue); if ( fEnable && !gimHvAreHypercallsEnabled(pVM)) { return VINF_SUCCESS; } /* Is the guest disabling the hypercall-page? Allow it regardless of the Guest-OS Id Msr. */ if (!fEnable) { gimR3HvDisableHypercallPage(pVM); pHv->u64HypercallMsr = uRawValue; return VINF_SUCCESS; } /* Enable the hypercall-page. */ RTGCPHYS GCPhysHypercallPage = MSR_GIM_HV_HYPERCALL_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT; int rc = gimR3HvEnableHypercallPage(pVM, GCPhysHypercallPage); if (RT_SUCCESS(rc)) { pHv->u64HypercallMsr = uRawValue; return VINF_SUCCESS; } return VERR_CPUM_RAISE_GP_0; #endif } case MSR_GIM_HV_REF_TSC: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else /* IN_RING3 */ /* First, update all but the TSC page enable bit. */ pHv->u64TscPageMsr = (uRawValue & ~MSR_GIM_HV_REF_TSC_ENABLE); /* Is the guest disabling the TSC page? */ bool fEnable = MSR_GIM_HV_REF_TSC_IS_ENABLED(uRawValue); if (!fEnable) { gimR3HvDisableTscPage(pVM); pHv->u64TscPageMsr = uRawValue; return VINF_SUCCESS; } /* Enable the TSC page. */ RTGCPHYS GCPhysTscPage = MSR_GIM_HV_REF_TSC_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT; int rc = gimR3HvEnableTscPage(pVM, GCPhysTscPage, false /* fUseThisTscSequence */, 0 /* uTscSequence */); if (RT_SUCCESS(rc)) { pHv->u64TscPageMsr = uRawValue; return VINF_SUCCESS; } return VERR_CPUM_RAISE_GP_0; #endif /* IN_RING3 */ } case MSR_GIM_HV_APIC_ASSIST_PAGE: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else /* IN_RING3 */ PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; pHvCpu->uApicAssistPageMsr = uRawValue; if (MSR_GIM_HV_APICASSIST_PAGE_IS_ENABLED(uRawValue)) { RTGCPHYS GCPhysApicAssistPage = MSR_GIM_HV_APICASSIST_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT; if (PGMPhysIsGCPhysNormal(pVM, GCPhysApicAssistPage)) { int rc = gimR3HvEnableApicAssistPage(pVCpu, GCPhysApicAssistPage); if (RT_SUCCESS(rc)) { pHvCpu->uApicAssistPageMsr = uRawValue; return VINF_SUCCESS; } } else { LogRelMax(5, ("GIM%u: HyperV: APIC-assist page address %#RGp invalid!\n", pVCpu->idCpu, GCPhysApicAssistPage)); } } else gimR3HvDisableApicAssistPage(pVCpu); return VERR_CPUM_RAISE_GP_0; #endif /* IN_RING3 */ } case MSR_GIM_HV_RESET: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else if (MSR_GIM_HV_RESET_IS_ENABLED(uRawValue)) { LogRel(("GIM: HyperV: Reset initiated through MSR\n")); int rc = PDMDevHlpVMReset(pVM->gim.s.pDevInsR3, PDMVMRESET_F_GIM); AssertRC(rc); /* Note! Not allowed to return VINF_EM_RESET / VINF_EM_HALT here, so ignore them. */ } /* else: Ignore writes to other bits. */ return VINF_SUCCESS; #endif /* IN_RING3 */ } case MSR_GIM_HV_CRASH_CTL: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else if (uRawValue & MSR_GIM_HV_CRASH_CTL_NOTIFY) { LogRel(("GIM: HyperV: Guest indicates a fatal condition! P0=%#RX64 P1=%#RX64 P2=%#RX64 P3=%#RX64 P4=%#RX64\n", pHv->uCrashP0Msr, pHv->uCrashP1Msr, pHv->uCrashP2Msr, pHv->uCrashP3Msr, pHv->uCrashP4Msr)); DBGFR3ReportBugCheck(pVM, pVCpu, DBGFEVENT_BSOD_MSR, pHv->uCrashP0Msr, pHv->uCrashP1Msr, pHv->uCrashP2Msr, pHv->uCrashP3Msr, pHv->uCrashP4Msr); /* (Do not try pass VINF_EM_DBG_EVENT, doesn't work from here!) */ } return VINF_SUCCESS; #endif } case MSR_GIM_HV_SYNTH_DEBUG_SEND_BUFFER: { if (!pHv->fDbgEnabled) return VERR_CPUM_RAISE_GP_0; #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue; pHv->uDbgSendBufferMsr = GCPhysBuffer; if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer)) LogRel(("GIM: HyperV: Set up debug send buffer at %#RGp\n", GCPhysBuffer)); else LogRel(("GIM: HyperV: Destroyed debug send buffer\n")); pHv->uDbgSendBufferMsr = uRawValue; return VINF_SUCCESS; #endif } case MSR_GIM_HV_SYNTH_DEBUG_RECEIVE_BUFFER: { if (!pHv->fDbgEnabled) return VERR_CPUM_RAISE_GP_0; #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue; pHv->uDbgRecvBufferMsr = GCPhysBuffer; if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer)) LogRel(("GIM: HyperV: Set up debug receive buffer at %#RGp\n", GCPhysBuffer)); else LogRel(("GIM: HyperV: Destroyed debug receive buffer\n")); return VINF_SUCCESS; #endif } case MSR_GIM_HV_SYNTH_DEBUG_PENDING_BUFFER: { if (!pHv->fDbgEnabled) return VERR_CPUM_RAISE_GP_0; #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else RTGCPHYS GCPhysBuffer = (RTGCPHYS)uRawValue; pHv->uDbgPendingBufferMsr = GCPhysBuffer; if (PGMPhysIsGCPhysNormal(pVM, GCPhysBuffer)) LogRel(("GIM: HyperV: Set up debug pending buffer at %#RGp\n", uRawValue)); else LogRel(("GIM: HyperV: Destroyed debug pending buffer\n")); return VINF_SUCCESS; #endif } case MSR_GIM_HV_SYNTH_DEBUG_CONTROL: { if (!pHv->fDbgEnabled) return VERR_CPUM_RAISE_GP_0; #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else if ( MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue) && MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue)) { LogRel(("GIM: HyperV: Requesting both read and write through debug control MSR -> #GP(0)\n")); return VERR_CPUM_RAISE_GP_0; } if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_WRITE(uRawValue)) { uint32_t cbWrite = MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue); if ( cbWrite > 0 && cbWrite < GIM_HV_PAGE_SIZE) { if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgSendBufferMsr)) { Assert(pHv->pvDbgBuffer); int rc = PGMPhysSimpleReadGCPhys(pVM, pHv->pvDbgBuffer, (RTGCPHYS)pHv->uDbgSendBufferMsr, cbWrite); if (RT_SUCCESS(rc)) { LogRelMax(1, ("GIM: HyperV: Initiated debug data transmission via MSR\n")); uint32_t cbWritten = 0; rc = gimR3HvDebugWrite(pVM, pHv->pvDbgBuffer, cbWrite, &cbWritten, false /*fUdpPkt*/); if ( RT_SUCCESS(rc) && cbWrite == cbWritten) pHv->uDbgStatusMsr = MSR_GIM_HV_SYNTH_DEBUG_STATUS_W_SUCCESS; else pHv->uDbgStatusMsr = 0; } else LogRelMax(5, ("GIM: HyperV: Failed to read debug send buffer at %#RGp, rc=%Rrc\n", (RTGCPHYS)pHv->uDbgSendBufferMsr, rc)); } else LogRelMax(5, ("GIM: HyperV: Debug send buffer address %#RGp invalid! Ignoring debug write!\n", (RTGCPHYS)pHv->uDbgSendBufferMsr)); } else LogRelMax(5, ("GIM: HyperV: Invalid write size %u specified in MSR, ignoring debug write!\n", MSR_GIM_HV_SYNTH_DEBUG_CONTROL_W_LEN(uRawValue))); } else if (MSR_GIM_HV_SYNTH_DEBUG_CONTROL_IS_READ(uRawValue)) { if (PGMPhysIsGCPhysNormal(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr)) { LogRelMax(1, ("GIM: HyperV: Initiated debug data reception via MSR\n")); uint32_t cbReallyRead; Assert(pHv->pvDbgBuffer); int rc = gimR3HvDebugRead(pVM, pHv->pvDbgBuffer, GIM_HV_PAGE_SIZE, GIM_HV_PAGE_SIZE, &cbReallyRead, 0, false /*fUdpPkt*/); if ( RT_SUCCESS(rc) && cbReallyRead > 0) { rc = PGMPhysSimpleWriteGCPhys(pVM, (RTGCPHYS)pHv->uDbgRecvBufferMsr, pHv->pvDbgBuffer, cbReallyRead); if (RT_SUCCESS(rc)) { pHv->uDbgStatusMsr = ((uint16_t)cbReallyRead) << 16; pHv->uDbgStatusMsr |= MSR_GIM_HV_SYNTH_DEBUG_STATUS_R_SUCCESS; } else { pHv->uDbgStatusMsr = 0; LogRelMax(5, ("GIM: HyperV: PGMPhysSimpleWriteGCPhys failed. rc=%Rrc\n", rc)); } } else pHv->uDbgStatusMsr = 0; } else { LogRelMax(5, ("GIM: HyperV: Debug receive buffer address %#RGp invalid! Ignoring debug read!\n", (RTGCPHYS)pHv->uDbgRecvBufferMsr)); } } return VINF_SUCCESS; #endif } case MSR_GIM_HV_SINT0: case MSR_GIM_HV_SINT1: case MSR_GIM_HV_SINT2: case MSR_GIM_HV_SINT3: case MSR_GIM_HV_SINT4: case MSR_GIM_HV_SINT5: case MSR_GIM_HV_SINT6: case MSR_GIM_HV_SINT7: case MSR_GIM_HV_SINT8: case MSR_GIM_HV_SINT9: case MSR_GIM_HV_SINT10: case MSR_GIM_HV_SINT11: case MSR_GIM_HV_SINT12: case MSR_GIM_HV_SINT13: case MSR_GIM_HV_SINT14: case MSR_GIM_HV_SINT15: { uint8_t uVector = MSR_GIM_HV_SINT_GET_VECTOR(uRawValue); bool const fVMBusMsg = RT_BOOL(idMsr == GIM_HV_VMBUS_MSG_SINT); size_t const idxSintMsr = idMsr - MSR_GIM_HV_SINT0; const char *pszDesc = fVMBusMsg ? "VMBus Message" : "Generic"; if (uVector < GIM_HV_SINT_VECTOR_VALID_MIN) { LogRel(("GIM%u: HyperV: Programmed an invalid vector in SINT%u (%s), uVector=%u -> #GP(0)\n", pVCpu->idCpu, idxSintMsr, pszDesc, uVector)); return VERR_CPUM_RAISE_GP_0; } PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; pHvCpu->auSintMsrs[idxSintMsr] = uRawValue; if (fVMBusMsg) { if (MSR_GIM_HV_SINT_IS_MASKED(uRawValue)) Log(("GIM%u: HyperV: Masked SINT%u (%s)\n", pVCpu->idCpu, idxSintMsr, pszDesc)); else Log(("GIM%u: HyperV: Unmasked SINT%u (%s), uVector=%u\n", pVCpu->idCpu, idxSintMsr, pszDesc, uVector)); } Log(("GIM%u: HyperV: Written SINT%u=%#RX64\n", pVCpu->idCpu, idxSintMsr, uRawValue)); return VINF_SUCCESS; } case MSR_GIM_HV_SCONTROL: { #ifndef IN_RING3 /** @todo make this RZ later? */ return VINF_CPUM_R3_MSR_WRITE; #else PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; pHvCpu->uSControlMsr = uRawValue; if (MSR_GIM_HV_SCONTROL_IS_ENABLED(uRawValue)) LogRel(("GIM%u: HyperV: Synthetic interrupt control enabled\n", pVCpu->idCpu)); else LogRel(("GIM%u: HyperV: Synthetic interrupt control disabled\n", pVCpu->idCpu)); return VINF_SUCCESS; #endif } case MSR_GIM_HV_STIMER0_CONFIG: case MSR_GIM_HV_STIMER1_CONFIG: case MSR_GIM_HV_STIMER2_CONFIG: case MSR_GIM_HV_STIMER3_CONFIG: { PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1; /* Validate the writable bits. */ if (RT_LIKELY(!(uRawValue & ~MSR_GIM_HV_STIMER_RW_VALID))) { Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers)); PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer]; /* Lock to prevent concurrent access from the timer callback. */ int rc = TMTimerLock(pVM, pHvStimer->hTimer, VERR_IGNORED); if (rc == VINF_SUCCESS) { /* Update the MSR value. */ pHvStimer->uStimerConfigMsr = uRawValue; Log(("GIM%u: HyperV: Set STIMER_CONFIG%u=%#RX64\n", pVCpu->idCpu, idxStimer, uRawValue)); /* Process the MSR bits. */ if ( !MSR_GIM_HV_STIMER_GET_SINTX(uRawValue) /* Writing SINTx as 0 causes the timer to be disabled. */ || !MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue)) { pHvStimer->uStimerConfigMsr &= ~MSR_GIM_HV_STIMER_ENABLE; gimHvStopStimer(pVCpu, pHvStimer); Log(("GIM%u: HyperV: Disabled STIMER_CONFIG%u\n", pVCpu->idCpu, idxStimer)); } else if (MSR_GIM_HV_STIMER_IS_ENABLED(uRawValue)) { /* Auto-enable implies writing to the STIMERx_COUNT MSR is what starts the timer. */ if (!MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(uRawValue)) { if (!TMTimerIsActive(pVM, pHvStimer->hTimer)) { gimHvStartStimer(pVCpu, pHvStimer); Log(("GIM%u: HyperV: Started STIMER%u\n", pVCpu->idCpu, idxStimer)); } else { /* * Enabling a timer that's already enabled is undefined behaviour, * see Hyper-V spec. 15.3.1 "Synthetic Timer Configuration Register". * * Our implementation just re-starts the timer. Guests that comform to * the Hyper-V specs. should not be doing this anyway. */ AssertFailed(); gimHvStopStimer(pVCpu, pHvStimer); gimHvStartStimer(pVCpu, pHvStimer); } } } TMTimerUnlock(pVM, pHvStimer->hTimer); } return rc; } #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else LogRel(("GIM%u: HyperV: Setting reserved bits of STIMER%u MSR (uRawValue=%#RX64) -> #GP(0)\n", pVCpu->idCpu, idxStimer, uRawValue)); return VERR_CPUM_RAISE_GP_0; #endif } case MSR_GIM_HV_STIMER0_COUNT: case MSR_GIM_HV_STIMER1_COUNT: case MSR_GIM_HV_STIMER2_COUNT: case MSR_GIM_HV_STIMER3_COUNT: { PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; uint8_t const idxStimer = (idMsr - MSR_GIM_HV_STIMER0_CONFIG) >> 1; Assert(idxStimer < RT_ELEMENTS(pHvCpu->aStimers)); PGIMHVSTIMER pHvStimer = &pHvCpu->aStimers[idxStimer]; int const rcBusy = VINF_CPUM_R3_MSR_WRITE; /* * Writing zero to this MSR disables the timer regardless of whether the auto-enable * flag is set in the config MSR corresponding to the timer. */ if (!uRawValue) { gimHvStopStimer(pVCpu, pHvStimer); pHvStimer->uStimerCountMsr = 0; Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64, stopped timer\n", pVCpu->idCpu, idxStimer, uRawValue)); return VINF_SUCCESS; } /* * Concurrent writes to the config. MSR can't happen as it's serialized by way * of being done on the same EMT as this. */ if (MSR_GIM_HV_STIMER_IS_AUTO_ENABLED(pHvStimer->uStimerConfigMsr)) { int rc = TMTimerLock(pVM, pHvStimer->hTimer, rcBusy); if (rc == VINF_SUCCESS) { pHvStimer->uStimerCountMsr = uRawValue; gimHvStartStimer(pVCpu, pHvStimer); TMTimerUnlock(pVM, pHvStimer->hTimer); Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64 %RU64 msec, auto-started timer\n", pVCpu->idCpu, idxStimer, uRawValue, (uRawValue * 100) / RT_NS_1MS_64)); } return rc; } /* Simple update of the counter without any timer start/stop side-effects. */ pHvStimer->uStimerCountMsr = uRawValue; Log(("GIM%u: HyperV: Set STIMER_COUNT%u=%RU64\n", pVCpu->idCpu, idxStimer, uRawValue)); return VINF_SUCCESS; } case MSR_GIM_HV_EOM: { /** @todo implement EOM. */ Log(("GIM%u: HyperV: EOM\n", pVCpu->idCpu)); return VINF_SUCCESS; } case MSR_GIM_HV_SIEFP: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; pHvCpu->uSiefpMsr = uRawValue; if (MSR_GIM_HV_SIEF_PAGE_IS_ENABLED(uRawValue)) { RTGCPHYS GCPhysSiefPage = MSR_GIM_HV_SIEF_GUEST_PFN(uRawValue) << GUEST_PAGE_SHIFT; if (PGMPhysIsGCPhysNormal(pVM, GCPhysSiefPage)) { int rc = gimR3HvEnableSiefPage(pVCpu, GCPhysSiefPage); if (RT_SUCCESS(rc)) { LogRel(("GIM%u: HyperV: Enabled synthetic interrupt event flags page at %#RGp\n", pVCpu->idCpu, GCPhysSiefPage)); /** @todo SIEF setup. */ return VINF_SUCCESS; } } else LogRelMax(5, ("GIM%u: HyperV: SIEF page address %#RGp invalid!\n", pVCpu->idCpu, GCPhysSiefPage)); } else gimR3HvDisableSiefPage(pVCpu); return VERR_CPUM_RAISE_GP_0; #endif break; } case MSR_GIM_HV_SIMP: { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else PGIMHVCPU pHvCpu = &pVCpu->gim.s.u.HvCpu; pHvCpu->uSimpMsr = uRawValue; if (MSR_GIM_HV_SIMP_IS_ENABLED(uRawValue)) { RTGCPHYS GCPhysSimp = MSR_GIM_HV_SIMP_GPA(uRawValue); if (PGMPhysIsGCPhysNormal(pVM, GCPhysSimp)) { uint8_t abSimp[GIM_HV_PAGE_SIZE]; RT_ZERO(abSimp); int rc2 = PGMPhysSimpleWriteGCPhys(pVM, GCPhysSimp, &abSimp[0], sizeof(abSimp)); if (RT_SUCCESS(rc2)) LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at %#RGp\n", pVCpu->idCpu, GCPhysSimp)); else { LogRel(("GIM%u: HyperV: Failed to update synthetic interrupt message page at %#RGp. uSimpMsr=%#RX64 rc=%Rrc\n", pVCpu->idCpu, pHvCpu->uSimpMsr, GCPhysSimp, rc2)); return VERR_CPUM_RAISE_GP_0; } } else { LogRel(("GIM%u: HyperV: Enabled synthetic interrupt message page at invalid address %#RGp\n", pVCpu->idCpu, GCPhysSimp)); } } else LogRel(("GIM%u: HyperV: Disabled synthetic interrupt message page\n", pVCpu->idCpu)); return VINF_SUCCESS; #endif } case MSR_GIM_HV_CRASH_P0: pHv->uCrashP0Msr = uRawValue; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P1: pHv->uCrashP1Msr = uRawValue; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P2: pHv->uCrashP2Msr = uRawValue; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P3: pHv->uCrashP3Msr = uRawValue; return VINF_SUCCESS; case MSR_GIM_HV_CRASH_P4: pHv->uCrashP4Msr = uRawValue; return VINF_SUCCESS; case MSR_GIM_HV_TIME_REF_COUNT: /* Read-only MSRs. */ case MSR_GIM_HV_VP_INDEX: case MSR_GIM_HV_TSC_FREQ: case MSR_GIM_HV_APIC_FREQ: LogFunc(("WrMsr on read-only MSR %#RX32 -> #GP(0)\n", idMsr)); break; case MSR_GIM_HV_DEBUG_OPTIONS_MSR: { if (pHv->fIsVendorMsHv) { #ifndef IN_RING3 return VINF_CPUM_R3_MSR_WRITE; #else LogRelMax(5, ("GIM: HyperV: Write debug options MSR with %#RX64 ignored\n", uRawValue)); return VINF_SUCCESS; #endif } return VERR_CPUM_RAISE_GP_0; } default: { #ifdef IN_RING3 static uint32_t s_cTimes = 0; if (s_cTimes++ < 20) LogRel(("GIM: HyperV: Unknown/invalid WrMsr (%#x,%#x`%08x) -> #GP(0)\n", idMsr, uRawValue & UINT64_C(0xffffffff00000000), uRawValue & UINT64_C(0xffffffff))); LogFunc(("Unknown/invalid WrMsr (%#RX32,%#RX64) -> #GP(0)\n", idMsr, uRawValue)); break; #else return VINF_CPUM_R3_MSR_WRITE; #endif } } return VERR_CPUM_RAISE_GP_0; } /** * Whether we need to trap \#UD exceptions in the guest. * * We only needed to trap \#UD exceptions for the old raw-mode guests when * hypercalls are enabled. For HM VMs, the hypercall would be handled via the * VMCALL/VMMCALL VM-exit. * * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(bool) gimHvShouldTrapXcptUD(PVMCPU pVCpu) { RT_NOREF(pVCpu); return false; } /** * Checks the instruction and executes the hypercall if it's a valid hypercall * instruction. * * This interface is used by \#UD handlers and IEM. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest-CPU context. * @param uDisOpcode The disassembler opcode. * @param cbInstr The instruction length. * * @thread EMT(pVCpu). */ VMM_INT_DECL(VBOXSTRICTRC) gimHvHypercallEx(PVMCPUCC pVCpu, PCPUMCTX pCtx, unsigned uDisOpcode, uint8_t cbInstr) { Assert(pVCpu); Assert(pCtx); VMCPU_ASSERT_EMT(pVCpu); PVM pVM = pVCpu->CTX_SUFF(pVM); CPUMCPUVENDOR const enmGuestCpuVendor = (CPUMCPUVENDOR)pVM->cpum.ro.GuestFeatures.enmCpuVendor; if ( ( uDisOpcode == OP_VMCALL && ( enmGuestCpuVendor == CPUMCPUVENDOR_INTEL || enmGuestCpuVendor == CPUMCPUVENDOR_VIA || enmGuestCpuVendor == CPUMCPUVENDOR_SHANGHAI)) || ( uDisOpcode == OP_VMMCALL && ( enmGuestCpuVendor == CPUMCPUVENDOR_AMD || enmGuestCpuVendor == CPUMCPUVENDOR_HYGON)) ) return gimHvHypercall(pVCpu, pCtx); RT_NOREF_PV(cbInstr); return VERR_GIM_INVALID_HYPERCALL_INSTR; } /** * Exception handler for \#UD. * * @returns Strict VBox status code. * @retval VINF_SUCCESS if the hypercall succeeded (even if its operation * failed). * @retval VINF_GIM_R3_HYPERCALL re-start the hypercall from ring-3. * @retval VINF_GIM_HYPERCALL_CONTINUING continue hypercall without updating * RIP. * @retval VERR_GIM_HYPERCALL_ACCESS_DENIED CPL is insufficient. * @retval VERR_GIM_INVALID_HYPERCALL_INSTR instruction at RIP is not a valid * hypercall instruction. * * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest-CPU context. * @param pDis Pointer to the disassembled instruction state at RIP. * Optional, can be NULL. * @param pcbInstr Where to store the instruction length of the hypercall * instruction. Optional, can be NULL. * * @thread EMT(pVCpu). */ VMM_INT_DECL(VBOXSTRICTRC) gimHvXcptUD(PVMCPUCC pVCpu, PCPUMCTX pCtx, PDISCPUSTATE pDis, uint8_t *pcbInstr) { VMCPU_ASSERT_EMT(pVCpu); /* * If we didn't ask for #UD to be trapped, bail. */ if (!gimHvShouldTrapXcptUD(pVCpu)) return VERR_GIM_IPE_1; if (!pDis) { /* * Disassemble the instruction at RIP to figure out if it's the Intel VMCALL instruction * or the AMD VMMCALL instruction and if so, handle it as a hypercall. */ unsigned cbInstr; DISCPUSTATE Dis; int rc = EMInterpretDisasCurrent(pVCpu, &Dis, &cbInstr); if (RT_SUCCESS(rc)) { if (pcbInstr) *pcbInstr = (uint8_t)cbInstr; return gimHvHypercallEx(pVCpu, pCtx, Dis.pCurInstr->uOpcode, Dis.cbInstr); } Log(("GIM: HyperV: Failed to disassemble instruction at CS:RIP=%04x:%08RX64. rc=%Rrc\n", pCtx->cs.Sel, pCtx->rip, rc)); return rc; } return gimHvHypercallEx(pVCpu, pCtx, pDis->pCurInstr->uOpcode, pDis->cbInstr); }