/* $Id: HMVMXAll.cpp $ */ /** @file * HM VMX (VT-x) - All contexts. */ /* * Copyright (C) 2018-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_HM #define VMCPU_INCL_CPUM_GST_CTX #include "HMInternal.h" #include #include #include #include #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # include /* ASMCpuId_EAX */ #endif /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #define VMXV_DIAG_DESC(a_Def, a_Desc) #a_Def " - " #a_Desc /** VMX virtual-instructions and VM-exit diagnostics. */ static const char * const g_apszVmxVDiagDesc[] = { /* Internal processing errors. */ VMXV_DIAG_DESC(kVmxVDiag_None , "None" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_1 , "Ipe_1" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_2 , "Ipe_2" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_3 , "Ipe_3" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_4 , "Ipe_4" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_5 , "Ipe_5" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_6 , "Ipe_6" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_7 , "Ipe_7" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_8 , "Ipe_8" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_9 , "Ipe_9" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_10 , "Ipe_10" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_11 , "Ipe_11" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_12 , "Ipe_12" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_13 , "Ipe_13" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_14 , "Ipe_14" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_15 , "Ipe_15" ), VMXV_DIAG_DESC(kVmxVDiag_Ipe_16 , "Ipe_16" ), /* VMXON. */ VMXV_DIAG_DESC(kVmxVDiag_Vmxon_A20M , "A20M" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_Cr0Fixed0 , "Cr0Fixed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_Cr0Fixed1 , "Cr0Fixed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_Cr4Fixed0 , "Cr4Fixed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_Cr4Fixed1 , "Cr4Fixed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_Intercept , "Intercept" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_MsrFeatCtl , "MsrFeatCtl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_PtrAbnormal , "PtrAbnormal" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_PtrAlign , "PtrAlign" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_PtrMap , "PtrMap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_PtrReadPhys , "PtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_PtrWidth , "PtrWidth" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_ShadowVmcs , "ShadowVmcs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_VmxAlreadyRoot , "VmxAlreadyRoot" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_Vmxe , "Vmxe" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_VmcsRevId , "VmcsRevId" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxon_VmxRootCpl , "VmxRootCpl" ), /* VMXOFF. */ VMXV_DIAG_DESC(kVmxVDiag_Vmxoff_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxoff_Intercept , "Intercept" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxoff_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxoff_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxoff_Vmxe , "Vmxe" ), VMXV_DIAG_DESC(kVmxVDiag_Vmxoff_VmxRoot , "VmxRoot" ), /* VMPTRLD. */ VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_PtrAbnormal , "PtrAbnormal" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_PtrAlign , "PtrAlign" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_PtrMap , "PtrMap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_PtrReadPhys , "PtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_PtrVmxon , "PtrVmxon" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_PtrWidth , "PtrWidth" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_RevPtrReadPhys , "RevPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_ShadowVmcs , "ShadowVmcs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_VmcsRevId , "VmcsRevId" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrld_VmxRoot , "VmxRoot" ), /* VMPTRST. */ VMXV_DIAG_DESC(kVmxVDiag_Vmptrst_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrst_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrst_PtrMap , "PtrMap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrst_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmptrst_VmxRoot , "VmxRoot" ), /* VMCLEAR. */ VMXV_DIAG_DESC(kVmxVDiag_Vmclear_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_PtrAbnormal , "PtrAbnormal" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_PtrAlign , "PtrAlign" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_PtrMap , "PtrMap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_PtrReadPhys , "PtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_PtrVmxon , "PtrVmxon" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_PtrWidth , "PtrWidth" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmclear_VmxRoot , "VmxRoot" ), /* VMWRITE. */ VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_FieldInvalid , "FieldInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_FieldRo , "FieldRo" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_LinkPtrInvalid , "LinkPtrInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_PtrInvalid , "PtrInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_PtrMap , "PtrMap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmwrite_VmxRoot , "VmxRoot" ), /* VMREAD. */ VMXV_DIAG_DESC(kVmxVDiag_Vmread_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmread_FieldInvalid , "FieldInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmread_LinkPtrInvalid , "LinkPtrInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmread_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmread_PtrInvalid , "PtrInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmread_PtrMap , "PtrMap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmread_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmread_VmxRoot , "VmxRoot" ), /* INVVPID. */ VMXV_DIAG_DESC(kVmxVDiag_Invvpid_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_DescRsvd , "DescRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_TypeInvalid , "TypeInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_Type0InvalidAddr , "Type0InvalidAddr" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_Type0InvalidVpid , "Type0InvalidVpid" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_Type1InvalidVpid , "Type1InvalidVpid" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_Type3InvalidVpid , "Type3InvalidVpid" ), VMXV_DIAG_DESC(kVmxVDiag_Invvpid_VmxRoot , "VmxRoot" ), /* INVEPT. */ VMXV_DIAG_DESC(kVmxVDiag_Invept_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Invept_DescRsvd , "DescRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Invept_EptpInvalid , "EptpInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Invept_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Invept_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Invept_TypeInvalid , "TypeInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Invept_VmxRoot , "VmxRoot" ), /* VMLAUNCH/VMRESUME. */ VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrApicAccess , "AddrApicAccess" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic , "AddrApicAccessEqVirtApic" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrApicAccessHandlerReg , "AddrApicAccessHandlerReg" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrEntryMsrLoad , "AddrEntryMsrLoad" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrExitMsrLoad , "AddrExitMsrLoad" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrExitMsrStore , "AddrExitMsrStore" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrIoBitmapA , "AddrIoBitmapA" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrIoBitmapB , "AddrIoBitmapB" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrMsrBitmap , "AddrMsrBitmap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrVirtApicPage , "AddrVirtApicPage" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrVmcsLinkPtr , "AddrVmcsLinkPtr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrVmreadBitmap , "AddrVmreadBitmap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_AddrVmwriteBitmap , "AddrVmwriteBitmap" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_ApicRegVirt , "ApicRegVirt" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_BlocKMovSS , "BlockMovSS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_Cpl , "Cpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_Cr3TargetCount , "Cr3TargetCount" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryCtlsAllowed1 , "EntryCtlsAllowed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryCtlsDisallowed0 , "EntryCtlsDisallowed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryInstrLen , "EntryInstrLen" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryInstrLenZero , "EntryInstrLenZero" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryIntInfoErrCodePe , "EntryIntInfoErrCodePe" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec , "EntryIntInfoErrCodeVec" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd , "EntryIntInfoTypeVecRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd , "EntryXcptErrCodeRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EptpAccessDirty , "EptpAccessDirty" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EptpPageWalkLength , "EptpPageWalkLength" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EptpMemType , "EptpMemType" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_EptpRsvd , "EptpRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_ExitCtlsAllowed1 , "ExitCtlsAllowed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_ExitCtlsDisallowed0 , "ExitCtlsDisallowed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestActStateHlt , "GuestActStateHlt" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestActStateRsvd , "GuestActStateRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestActStateShutdown , "GuestActStateShutdown" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestActStateSsDpl , "GuestActStateSsDpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestActStateStiMovSs , "GuestActStateStiMovSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestCr0Fixed0 , "GuestCr0Fixed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestCr0Fixed1 , "GuestCr0Fixed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestCr0PgPe , "GuestCr0PgPe" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestCr3 , "GuestCr3" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestCr4Fixed0 , "GuestCr4Fixed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestCr4Fixed1 , "GuestCr4Fixed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestDebugCtl , "GuestDebugCtl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestDr7 , "GuestDr7" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestEferMsr , "GuestEferMsr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestEferMsrRsvd , "GuestEferMsrRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestGdtrBase , "GuestGdtrBase" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestGdtrLimit , "GuestGdtrLimit" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIdtrBase , "GuestIdtrBase" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIdtrLimit , "GuestIdtrLimit" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateEnclave , "GuestIntStateEnclave" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateExtInt , "GuestIntStateExtInt" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateNmi , "GuestIntStateNmi" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateRFlagsSti , "GuestIntStateRFlagsSti" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateRsvd , "GuestIntStateRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateSmi , "GuestIntStateSmi" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateStiMovSs , "GuestIntStateStiMovSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestIntStateVirtNmi , "GuestIntStateVirtNmi" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPae , "GuestPae" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPatMsr , "GuestPatMsr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPcide , "GuestPcide" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPdpte , "GuestPdpteRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf , "GuestPndDbgXcptBsNoTf" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf , "GuestPndDbgXcptBsTf" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd , "GuestPndDbgXcptRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestPndDbgXcptRtm , "GuestPndDbgXcptRtm" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestRip , "GuestRip" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestRipRsvd , "GuestRipRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestRFlagsIf , "GuestRFlagsIf" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestRFlagsRsvd , "GuestRFlagsRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestRFlagsVm , "GuestRFlagsVm" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrCsDefBig , "GuestSegAttrCsDefBig" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs , "GuestSegAttrCsDplEqSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs , "GuestSegAttrCsDplLtSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrCsDplZero , "GuestSegAttrCsDplZero" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrCsType , "GuestSegAttrCsType" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead , "GuestSegAttrCsTypeRead" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs , "GuestSegAttrDescTypeCs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs , "GuestSegAttrDescTypeDs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs , "GuestSegAttrDescTypeEs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs , "GuestSegAttrDescTypeFs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs , "GuestSegAttrDescTypeGs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs , "GuestSegAttrDescTypeSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDplRplCs , "GuestSegAttrDplRplCs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDplRplDs , "GuestSegAttrDplRplDs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDplRplEs , "GuestSegAttrDplRplEs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDplRplFs , "GuestSegAttrDplRplFs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDplRplGs , "GuestSegAttrDplRplGs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrDplRplSs , "GuestSegAttrDplRplSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrGranCs , "GuestSegAttrGranCs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrGranDs , "GuestSegAttrGranDs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrGranEs , "GuestSegAttrGranEs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrGranFs , "GuestSegAttrGranFs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrGranGs , "GuestSegAttrGranGs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrGranSs , "GuestSegAttrGranSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType , "GuestSegAttrLdtrDescType" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrLdtrGran , "GuestSegAttrLdtrGran" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent , "GuestSegAttrLdtrPresent" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd , "GuestSegAttrLdtrRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrLdtrType , "GuestSegAttrLdtrType" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrPresentCs , "GuestSegAttrPresentCs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrPresentDs , "GuestSegAttrPresentDs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrPresentEs , "GuestSegAttrPresentEs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrPresentFs , "GuestSegAttrPresentFs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrPresentGs , "GuestSegAttrPresentGs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrPresentSs , "GuestSegAttrPresentSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrRsvdCs , "GuestSegAttrRsvdCs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrRsvdDs , "GuestSegAttrRsvdDs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrRsvdEs , "GuestSegAttrRsvdEs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrRsvdFs , "GuestSegAttrRsvdFs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrRsvdGs , "GuestSegAttrRsvdGs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrRsvdSs , "GuestSegAttrRsvdSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl , "GuestSegAttrSsDplEqRpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrSsDplZero , "GuestSegAttrSsDplZero " ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrSsType , "GuestSegAttrSsType" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTrDescType , "GuestSegAttrTrDescType" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTrGran , "GuestSegAttrTrGran" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTrPresent , "GuestSegAttrTrPresent" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTrRsvd , "GuestSegAttrTrRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTrType , "GuestSegAttrTrType" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTrUnusable , "GuestSegAttrTrUnusable" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs , "GuestSegAttrTypeAccCs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs , "GuestSegAttrTypeAccDs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs , "GuestSegAttrTypeAccEs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs , "GuestSegAttrTypeAccFs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs , "GuestSegAttrTypeAccGs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs , "GuestSegAttrTypeAccSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrV86Cs , "GuestSegAttrV86Cs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrV86Ds , "GuestSegAttrV86Ds" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrV86Es , "GuestSegAttrV86Es" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrV86Fs , "GuestSegAttrV86Fs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrV86Gs , "GuestSegAttrV86Gs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegAttrV86Ss , "GuestSegAttrV86Ss" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseCs , "GuestSegBaseCs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseDs , "GuestSegBaseDs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseEs , "GuestSegBaseEs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseFs , "GuestSegBaseFs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseGs , "GuestSegBaseGs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseLdtr , "GuestSegBaseLdtr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseSs , "GuestSegBaseSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseTr , "GuestSegBaseTr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseV86Cs , "GuestSegBaseV86Cs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseV86Ds , "GuestSegBaseV86Ds" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseV86Es , "GuestSegBaseV86Es" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseV86Fs , "GuestSegBaseV86Fs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseV86Gs , "GuestSegBaseV86Gs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegBaseV86Ss , "GuestSegBaseV86Ss" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegLimitV86Cs , "GuestSegLimitV86Cs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegLimitV86Ds , "GuestSegLimitV86Ds" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegLimitV86Es , "GuestSegLimitV86Es" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegLimitV86Fs , "GuestSegLimitV86Fs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegLimitV86Gs , "GuestSegLimitV86Gs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegLimitV86Ss , "GuestSegLimitV86Ss" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegSelCsSsRpl , "GuestSegSelCsSsRpl" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegSelLdtr , "GuestSegSelLdtr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSegSelTr , "GuestSegSelTr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_GuestSysenterEspEip , "GuestSysenterEspEip" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs , "VmcsLinkPtrCurVmcs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys , "VmcsLinkPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmcsLinkPtrRevId , "VmcsLinkPtrRevId" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmcsLinkPtrShadow , "VmcsLinkPtrShadow" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCr0Fixed0 , "HostCr0Fixed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCr0Fixed1 , "HostCr0Fixed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCr3 , "HostCr3" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCr4Fixed0 , "HostCr4Fixed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCr4Fixed1 , "HostCr4Fixed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCr4Pae , "HostCr4Pae" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCr4Pcide , "HostCr4Pcide" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostCsTr , "HostCsTr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostEferMsr , "HostEferMsr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostEferMsrRsvd , "HostEferMsrRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostGuestLongMode , "HostGuestLongMode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostGuestLongModeNoCpu , "HostGuestLongModeNoCpu" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostLongMode , "HostLongMode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostPatMsr , "HostPatMsr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostRip , "HostRip" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostRipRsvd , "HostRipRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostSel , "HostSel" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostSegBase , "HostSegBase" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostSs , "HostSs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_HostSysenterEspEip , "HostSysenterEspEip" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys , "IoBitmapAPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys , "IoBitmapBPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_LongModeCS , "LongModeCS" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys , "MsrBitmapPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_MsrLoad , "MsrLoad" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_MsrLoadCount , "MsrLoadCount" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_MsrLoadPtrReadPhys , "MsrLoadPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_MsrLoadRing3 , "MsrLoadRing3" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_MsrLoadRsvd , "MsrLoadRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_NmiWindowExit , "NmiWindowExit" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_PinCtlsAllowed1 , "PinCtlsAllowed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_PinCtlsDisallowed0 , "PinCtlsDisallowed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_ProcCtlsAllowed1 , "ProcCtlsAllowed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_ProcCtlsDisallowed0 , "ProcCtlsDisallowed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_ProcCtls2Allowed1 , "ProcCtls2Allowed1" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_ProcCtls2Disallowed0 , "ProcCtls2Disallowed0" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_PtrInvalid , "PtrInvalid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_PtrShadowVmcs , "PtrShadowVmcs" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_RealOrV86Mode , "RealOrV86Mode" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_SavePreemptTimer , "SavePreemptTimer" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_TprThresholdRsvd , "TprThresholdRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_TprThresholdVTpr , "TprThresholdVTpr" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys , "VirtApicPageReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VirtIntDelivery , "VirtIntDelivery" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VirtNmi , "VirtNmi" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VirtX2ApicTprShadow , "VirtX2ApicTprShadow" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VirtX2ApicVirtApic , "VirtX2ApicVirtApic" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmcsClear , "VmcsClear" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmcsLaunch , "VmcsLaunch" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys , "VmreadBitmapPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys , "VmwriteBitmapPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_VmxRoot , "VmxRoot" ), VMXV_DIAG_DESC(kVmxVDiag_Vmentry_Vpid , "Vpid" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_HostPdpte , "HostPdpte" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrLoad , "MsrLoad" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrLoadCount , "MsrLoadCount" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrLoadPtrReadPhys , "MsrLoadPtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrLoadRing3 , "MsrLoadRing3" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrLoadRsvd , "MsrLoadRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrStore , "MsrStore" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrStoreCount , "MsrStoreCount" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrStorePtrReadPhys , "MsrStorePtrReadPhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrStorePtrWritePhys , "MsrStorePtrWritePhys" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrStoreRing3 , "MsrStoreRing3" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_MsrStoreRsvd , "MsrStoreRsvd" ), VMXV_DIAG_DESC(kVmxVDiag_Vmexit_VirtApicPagePtrWritePhys , "VirtApicPagePtrWritePhys" ) /* kVmxVDiag_End */ }; AssertCompile(RT_ELEMENTS(g_apszVmxVDiagDesc) == kVmxVDiag_End); #undef VMXV_DIAG_DESC /** * Gets the descriptive name of a VMX instruction/VM-exit diagnostic code. * * @returns The descriptive string. * @param enmDiag The VMX diagnostic. */ VMM_INT_DECL(const char *) HMGetVmxDiagDesc(VMXVDIAG enmDiag) { if (RT_LIKELY((unsigned)enmDiag < RT_ELEMENTS(g_apszVmxVDiagDesc))) return g_apszVmxVDiagDesc[enmDiag]; return "Unknown/invalid"; } /** * Checks if a code selector (CS) is suitable for execution using hardware-assisted * VMX when unrestricted execution isn't available. * * @returns true if selector is suitable for VMX, otherwise * false. * @param pSel Pointer to the selector to check (CS). * @param uStackDpl The CPL, aka the DPL of the stack segment. */ static bool hmVmxIsCodeSelectorOk(PCCPUMSELREG pSel, unsigned uStackDpl) { /* * Segment must be an accessed code segment, it must be present and it must * be usable. * Note! These are all standard requirements and if CS holds anything else * we've got buggy code somewhere! */ AssertCompile(X86DESCATTR_TYPE == 0xf); AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P | X86DESCATTR_UNUSABLE)) == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P), ("%#x\n", pSel->Attr.u), false); /* * For conforming segments, CS.DPL must be <= SS.DPL, while CS.DPL must equal * SS.DPL for non-confroming segments. * Note! This is also a hard requirement like above. */ AssertMsgReturn( pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF ? pSel->Attr.n.u2Dpl <= uStackDpl : pSel->Attr.n.u2Dpl == uStackDpl, ("u4Type=%#x u2Dpl=%u uStackDpl=%u\n", pSel->Attr.n.u4Type, pSel->Attr.n.u2Dpl, uStackDpl), false); /* * The following two requirements are VT-x specific: * - G bit must be set if any high limit bits are set. * - G bit must be clear if any low limit bits are clear. */ if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity) && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity)) return true; return false; } /** * Checks if a data selector (DS/ES/FS/GS) is suitable for execution using * hardware-assisted VMX when unrestricted execution isn't available. * * @returns true if selector is suitable for VMX, otherwise * false. * @param pSel Pointer to the selector to check * (DS/ES/FS/GS). */ static bool hmVmxIsDataSelectorOk(PCCPUMSELREG pSel) { /* * Unusable segments are OK. These days they should be marked as such, as * but as an alternative we for old saved states and AMD<->VT-x migration * we also treat segments with all the attributes cleared as unusable. */ if (pSel->Attr.n.u1Unusable || !pSel->Attr.u) return true; /** @todo tighten these checks. Will require CPUM load adjusting. */ /* Segment must be accessed. */ if (pSel->Attr.u & X86_SEL_TYPE_ACCESSED) { /* Code segments must also be readable. */ if ( !(pSel->Attr.u & X86_SEL_TYPE_CODE) || (pSel->Attr.u & X86_SEL_TYPE_READ)) { /* The S bit must be set. */ if (pSel->Attr.n.u1DescType) { /* Except for conforming segments, DPL >= RPL. */ if ( pSel->Attr.n.u2Dpl >= (pSel->Sel & X86_SEL_RPL) || pSel->Attr.n.u4Type >= X86_SEL_TYPE_ER_ACC) { /* Segment must be present. */ if (pSel->Attr.n.u1Present) { /* * The following two requirements are VT-x specific: * - G bit must be set if any high limit bits are set. * - G bit must be clear if any low limit bits are clear. */ if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity) && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity)) return true; } } } } } return false; } /** * Checks if the stack selector (SS) is suitable for execution using * hardware-assisted VMX when unrestricted execution isn't available. * * @returns true if selector is suitable for VMX, otherwise * false. * @param pSel Pointer to the selector to check (SS). */ static bool hmVmxIsStackSelectorOk(PCCPUMSELREG pSel) { /* * Unusable segments are OK. These days they should be marked as such, as * but as an alternative we for old saved states and AMD<->VT-x migration * we also treat segments with all the attributes cleared as unusable. */ /** @todo r=bird: actually all zeroes isn't gonna cut it... SS.DPL == CPL. */ if (pSel->Attr.n.u1Unusable || !pSel->Attr.u) return true; /* * Segment must be an accessed writable segment, it must be present. * Note! These are all standard requirements and if SS holds anything else * we've got buggy code somewhere! */ AssertCompile(X86DESCATTR_TYPE == 0xf); AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P | X86_SEL_TYPE_CODE)) == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P), ("%#x\n", pSel->Attr.u), false); /* * DPL must equal RPL. But in real mode or soon after enabling protected * mode, it might not be. */ if (pSel->Attr.n.u2Dpl == (pSel->Sel & X86_SEL_RPL)) { /* * The following two requirements are VT-x specific: * - G bit must be set if any high limit bits are set. * - G bit must be clear if any low limit bits are clear. */ if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity) && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity)) return true; } return false; } #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) /** * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count Down at * the Rate Specified" erratum. * * Errata names and related steppings: * - BA86 - D0. * - AAX65 - C2. * - AAU65 - C2, K0. * - AAO95 - B1. * - AAT59 - C2. * - AAK139 - D0. * - AAM126 - C0, C1, D0. * - AAN92 - B1. * - AAJ124 - C0, D0. * - AAP86 - B1. * * Steppings: B1, C0, C1, C2, D0, K0. * * @returns @c true if subject to it, @c false if not. */ VMM_INT_DECL(bool) HMIsSubjectToVmxPreemptTimerErratum(void) { uint32_t u = ASMCpuId_EAX(1); u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31)); if ( u == 0x000206E6 /* 323344.pdf - BA86 - D0 - Xeon Processor 7500 Series */ || u == 0x00020652 /* 323056.pdf - AAX65 - C2 - Xeon Processor L3406 */ /* 322814.pdf - AAT59 - C2 - CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */ /* 322911.pdf - AAU65 - C2 - CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */ || u == 0x00020655 /* 322911.pdf - AAU65 - K0 - CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */ || u == 0x000106E5 /* 322373.pdf - AAO95 - B1 - Xeon Processor 3400 Series */ /* 322166.pdf - AAN92 - B1 - CoreTM i7-800 and i5-700 Desktop Processor Series */ /* 320767.pdf - AAP86 - B1 - Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */ || u == 0x000106A0 /* 321333.pdf - AAM126 - C0 - Xeon Processor 3500 Series Specification */ || u == 0x000106A1 /* 321333.pdf - AAM126 - C1 - Xeon Processor 3500 Series Specification */ || u == 0x000106A4 /* 320836.pdf - AAJ124 - C0 - Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */ || u == 0x000106A5 /* 321333.pdf - AAM126 - D0 - Xeon Processor 3500 Series Specification */ /* 321324.pdf - AAK139 - D0 - Xeon Processor 5500 Series Specification */ /* 320836.pdf - AAJ124 - D0 - Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */ || u == 0x000306A8 /* ?????????? - ?????? - ?? - Xeon E3-1220 v2 */ ) return true; return false; } #endif /** * Checks if the guest is in a suitable state for hardware-assisted VMX execution. * * @returns @c true if it is suitable, @c false otherwise. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest CPU context. * * @remarks @a pCtx can be a partial context and thus may not be necessarily the * same as pVCpu->cpum.GstCtx! Thus don't eliminate the @a pCtx parameter. * Secondly, if additional checks are added that require more of the CPU * state, make sure REM (which supplies a partial state) is updated. */ VMM_INT_DECL(bool) HMCanExecuteVmxGuest(PVMCC pVM, PVMCPUCC pVCpu, PCCPUMCTX pCtx) { Assert(HMIsEnabled(pVM)); bool const fUnrestrictedGuest = CTX_EXPR(pVM->hm.s.vmx.fUnrestrictedGuestCfg, pVM->hmr0.s.vmx.fUnrestrictedGuest, RT_NOTHING); Assert( ( fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS) || (!fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS)); pVCpu->hm.s.fActive = false; bool const fSupportsRealMode = fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM); if (!fUnrestrictedGuest) { /* * The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted * guest execution feature is missing (VT-x only). */ if (fSupportsRealMode) { if (CPUMIsGuestInRealModeEx(pCtx)) { /* * In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector * bases, limits, and attributes, i.e. limit must be 64K, base must be selector * 16, * and attributes must be 0x9b for code and 0x93 for code segments. * If this is not true, we cannot execute real mode as V86 and have to fall * back to emulation. */ if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4) || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4) || pCtx->es.Sel != (pCtx->es.u64Base >> 4) || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4) || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4) || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase); return false; } if ( (pCtx->cs.u32Limit != 0xffff) || (pCtx->ds.u32Limit != 0xffff) || (pCtx->es.u32Limit != 0xffff) || (pCtx->ss.u32Limit != 0xffff) || (pCtx->fs.u32Limit != 0xffff) || (pCtx->gs.u32Limit != 0xffff)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit); return false; } if ( (pCtx->cs.Attr.u != 0x9b) || (pCtx->ds.Attr.u != 0x93) || (pCtx->es.Attr.u != 0x93) || (pCtx->ss.Attr.u != 0x93) || (pCtx->fs.Attr.u != 0x93) || (pCtx->gs.Attr.u != 0x93)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelAttr); return false; } STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk); } else { /* * Verify the requirements for executing code in protected mode. VT-x can't * handle the CPU state right after a switch from real to protected mode * (all sorts of RPL & DPL assumptions). */ PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu); if (pVmcsInfo->fWasInRealMode) { if (!CPUMIsGuestInV86ModeEx(pCtx)) { /* The guest switched to protected mode, check if the state is suitable for VT-x. */ if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl); return false; } if ( !hmVmxIsCodeSelectorOk(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl) || !hmVmxIsDataSelectorOk(&pCtx->ds) || !hmVmxIsDataSelectorOk(&pCtx->es) || !hmVmxIsDataSelectorOk(&pCtx->fs) || !hmVmxIsDataSelectorOk(&pCtx->gs) || !hmVmxIsStackSelectorOk(&pCtx->ss)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel); return false; } } else { /* The guest switched to V86 mode, check if the state is suitable for VT-x. */ if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4) || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4) || pCtx->es.Sel != (pCtx->es.u64Base >> 4) || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4) || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4) || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadV86SelBase); return false; } if ( pCtx->cs.u32Limit != 0xffff || pCtx->ds.u32Limit != 0xffff || pCtx->es.u32Limit != 0xffff || pCtx->ss.u32Limit != 0xffff || pCtx->fs.u32Limit != 0xffff || pCtx->gs.u32Limit != 0xffff) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadV86SelLimit); return false; } if ( pCtx->cs.Attr.u != 0xf3 || pCtx->ds.Attr.u != 0xf3 || pCtx->es.Attr.u != 0xf3 || pCtx->ss.Attr.u != 0xf3 || pCtx->fs.Attr.u != 0xf3 || pCtx->gs.Attr.u != 0xf3) { STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadV86SelAttr); return false; } } } } } else { if (!CPUMIsGuestInLongModeEx(pCtx)) { if (/* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap: */ !CTX_EXPR(pVM->hm.s.fNestedPagingCfg, pVM->hmr0.s.fNestedPaging, RT_NOTHING) /* Requires a fake TSS for real mode - stored in the VMM device heap: */ || CPUMIsGuestInRealModeEx(pCtx)) return false; /* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */ if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0) return false; /* * The guest is about to complete the switch to protected mode. Wait a bit longer. * Windows XP; switch to protected mode; all selectors are marked not present * in the hidden registers (possible recompiler bug; see load_seg_vm). */ /** @todo Is this supposed recompiler bug still relevant with IEM? */ if (pCtx->cs.Attr.n.u1Present == 0) return false; if (pCtx->ss.Attr.n.u1Present == 0) return false; /* * Windows XP: possible same as above, but new recompiler requires new * heuristics? VT-x doesn't seem to like something about the guest state and * this stuff avoids it. */ /** @todo This check is actually wrong, it doesn't take the direction of the * stack segment into account. But, it does the job for now. */ if (pCtx->rsp >= pCtx->ss.u32Limit) return false; } } } if (pVM->hm.s.vmx.fEnabled) { /* If bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */ uint32_t uCr0Mask = (uint32_t)CTX_EXPR(pVM->hm.s.ForR3.vmx.Msrs.u64Cr0Fixed0, g_HmMsrs.u.vmx.u64Cr0Fixed0, RT_NOTHING); /* We ignore the NE bit here on purpose; see HMR0.cpp for details. */ uCr0Mask &= ~X86_CR0_NE; if (fSupportsRealMode) { /* We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */ uCr0Mask &= ~(X86_CR0_PG | X86_CR0_PE); } else { /* We support protected mode without paging using identity mapping. */ uCr0Mask &= ~X86_CR0_PG; } if ((pCtx->cr0 & uCr0Mask) != uCr0Mask) return false; /* If bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */ uCr0Mask = (uint32_t)~CTX_EXPR(pVM->hm.s.ForR3.vmx.Msrs.u64Cr0Fixed1, g_HmMsrs.u.vmx.u64Cr0Fixed1, RT_NOTHING); if ((pCtx->cr0 & uCr0Mask) != 0) return false; /* If bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */ uCr0Mask = (uint32_t)CTX_EXPR(pVM->hm.s.ForR3.vmx.Msrs.u64Cr4Fixed0, g_HmMsrs.u.vmx.u64Cr4Fixed0, RT_NOTHING); uCr0Mask &= ~X86_CR4_VMXE; if ((pCtx->cr4 & uCr0Mask) != uCr0Mask) return false; /* If bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */ uCr0Mask = (uint32_t)~CTX_EXPR(pVM->hm.s.ForR3.vmx.Msrs.u64Cr4Fixed1, g_HmMsrs.u.vmx.u64Cr4Fixed1, RT_NOTHING); if ((pCtx->cr4 & uCr0Mask) != 0) return false; pVCpu->hm.s.fActive = true; return true; } return false; } /** * Dumps the virtual VMCS state to the release log. * * This is a purely a convenience function to output to the release log because * cpumR3InfoVmxVmcs dumps only to the debug console and isn't always easy to use in * case of a crash. * * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(void) HMDumpHwvirtVmxState(PVMCPU pVCpu) { /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */ #define HMVMX_DUMP_HOST_XDTR(a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ LogRel((" %s%-4s = {base=%016RX64}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u)); \ } while (0) #define HMVMX_DUMP_HOST_FS_GS_TR(a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ LogRel((" %s%-4s = {%04x base=%016RX64}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u)); \ } while (0) #define HMVMX_DUMP_GUEST_SEGREG(a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ LogRel((" %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \ (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr)); \ } while (0) #define HMVMX_DUMP_GUEST_XDTR(a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ LogRel((" %s%-4s = {base=%016RX64 limit=%08x}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit)); \ } while (0) PCCPUMCTX const pCtx = &pVCpu->cpum.GstCtx; PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; if (!pVmcs) { LogRel(("Virtual VMCS not allocated\n")); return; } LogRel(("GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon)); LogRel(("GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs)); LogRel(("GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs)); LogRel(("enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag))); LogRel(("uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux)); LogRel(("enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort))); LogRel(("uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux)); LogRel(("fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode)); LogRel(("fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode)); LogRel(("fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents)); LogRel(("fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret)); LogRel(("uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick)); LogRel(("uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick)); LogRel(("uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick)); LogRel(("offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite)); LogRel(("fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking)); LogRel(("VMCS cache:\n")); const char *pszPrefix = " "; /* Header. */ { LogRel(("%sHeader:\n", pszPrefix)); LogRel((" %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId)); LogRel((" %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort))); LogRel((" %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState))); } /* Control fields. */ { /* 16-bit. */ LogRel(("%sControl:\n", pszPrefix)); LogRel((" %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid)); LogRel((" %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector)); LogRel((" %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex)); /* 32-bit. */ LogRel((" %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls)); LogRel((" %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls)); LogRel((" %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2)); LogRel((" %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls)); LogRel((" %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls)); LogRel((" %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap)); LogRel((" %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask)); LogRel((" %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch)); LogRel((" %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount)); LogRel((" %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount)); LogRel((" %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount)); LogRel((" %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount)); LogRel((" %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo)); { uint32_t const fInfo = pVmcs->u32EntryIntInfo; uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo); LogRel((" %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo))); LogRel((" %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType))); LogRel((" %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo))); LogRel((" %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo))); LogRel((" %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo))); } LogRel((" %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode)); LogRel((" %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen)); LogRel((" %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold)); LogRel((" %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap)); LogRel((" %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow)); /* 64-bit. */ LogRel((" %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u)); LogRel((" %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u)); LogRel((" %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u)); LogRel((" %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u)); LogRel((" %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u)); LogRel((" %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u)); LogRel((" %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u)); LogRel((" %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u)); LogRel((" %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u)); LogRel((" %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u)); LogRel((" %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u)); LogRel((" %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u)); LogRel((" %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u)); LogRel((" %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptPtr.u)); LogRel((" %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u)); LogRel((" %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u)); LogRel((" %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u)); LogRel((" %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u)); LogRel((" %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u)); LogRel((" %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u)); LogRel((" %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u)); LogRel((" %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u)); LogRel((" %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u)); LogRel((" %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u)); LogRel((" %sSPP table pointer = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u)); LogRel((" %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u)); LogRel((" %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u)); /* Natural width. */ LogRel((" %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u)); LogRel((" %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u)); LogRel((" %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u)); LogRel((" %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u)); LogRel((" %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u)); LogRel((" %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u)); LogRel((" %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u)); LogRel((" %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u)); } /* Guest state. */ { LogRel(("%sGuest state:\n", pszPrefix)); /* 16-bit. */ HMVMX_DUMP_GUEST_SEGREG(pVmcs, Cs, "cs", pszPrefix); HMVMX_DUMP_GUEST_SEGREG(pVmcs, Ss, "ss", pszPrefix); HMVMX_DUMP_GUEST_SEGREG(pVmcs, Es, "es", pszPrefix); HMVMX_DUMP_GUEST_SEGREG(pVmcs, Ds, "ds", pszPrefix); HMVMX_DUMP_GUEST_SEGREG(pVmcs, Fs, "fs", pszPrefix); HMVMX_DUMP_GUEST_SEGREG(pVmcs, Gs, "gs", pszPrefix); HMVMX_DUMP_GUEST_SEGREG(pVmcs, Ldtr, "ldtr", pszPrefix); HMVMX_DUMP_GUEST_SEGREG(pVmcs, Tr, "tr", pszPrefix); HMVMX_DUMP_GUEST_XDTR( pVmcs, Gdtr, "gdtr", pszPrefix); HMVMX_DUMP_GUEST_XDTR( pVmcs, Idtr, "idtr", pszPrefix); LogRel((" %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus)); LogRel((" %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex)); /* 32-bit. */ LogRel((" %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState)); LogRel((" %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState)); LogRel((" %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase)); LogRel((" %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS)); LogRel((" %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer)); /* 64-bit. */ LogRel((" %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u)); LogRel((" %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u)); LogRel((" %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u)); LogRel((" %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u)); LogRel((" %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u)); LogRel((" %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u)); LogRel((" %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u)); LogRel((" %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u)); LogRel((" %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u)); LogRel((" %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u)); LogRel((" %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u)); /* Natural width. */ LogRel((" %scr0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u)); LogRel((" %scr3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u)); LogRel((" %scr4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u)); LogRel((" %sdr7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u)); LogRel((" %srsp = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u)); LogRel((" %srip = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u)); LogRel((" %srflags = %#RX64\n", pszPrefix, pVmcs->u64GuestRFlags.u)); LogRel((" %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u)); LogRel((" %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u)); LogRel((" %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u)); } /* Host state. */ { LogRel(("%sHost state:\n", pszPrefix)); /* 16-bit. */ LogRel((" %scs = %#RX16\n", pszPrefix, pVmcs->HostCs)); LogRel((" %sss = %#RX16\n", pszPrefix, pVmcs->HostSs)); LogRel((" %sds = %#RX16\n", pszPrefix, pVmcs->HostDs)); LogRel((" %ses = %#RX16\n", pszPrefix, pVmcs->HostEs)); HMVMX_DUMP_HOST_FS_GS_TR(pVmcs, Fs, "fs", pszPrefix); HMVMX_DUMP_HOST_FS_GS_TR(pVmcs, Gs, "gs", pszPrefix); HMVMX_DUMP_HOST_FS_GS_TR(pVmcs, Tr, "tr", pszPrefix); HMVMX_DUMP_HOST_XDTR(pVmcs, Gdtr, "gdtr", pszPrefix); HMVMX_DUMP_HOST_XDTR(pVmcs, Idtr, "idtr", pszPrefix); /* 32-bit. */ LogRel((" %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs)); /* 64-bit. */ LogRel((" %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u)); LogRel((" %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u)); LogRel((" %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u)); /* Natural width. */ LogRel((" %scr0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u)); LogRel((" %scr3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u)); LogRel((" %scr4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u)); LogRel((" %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u)); LogRel((" %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u)); LogRel((" %srsp = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u)); LogRel((" %srip = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u)); } /* Read-only fields. */ { LogRel(("%sRead-only data fields:\n", pszPrefix)); /* 16-bit (none currently). */ /* 32-bit. */ uint32_t const uExitReason = pVmcs->u32RoExitReason; LogRel((" %sExit reason = %u (%s)\n", pszPrefix, uExitReason, HMGetVmxExitName(uExitReason))); LogRel((" %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u)); LogRel((" %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError)); LogRel((" %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo)); { uint32_t const fInfo = pVmcs->u32RoExitIntInfo; uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo); LogRel((" %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo))); LogRel((" %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType))); LogRel((" %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo))); LogRel((" %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo))); LogRel((" %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo))); } LogRel((" %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode)); LogRel((" %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo)); { uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo; uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo); LogRel((" %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo))); LogRel((" %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType))); LogRel((" %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo))); LogRel((" %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo))); } LogRel((" %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode)); LogRel((" %sVM-exit instruction length = %u bytes\n", pszPrefix, pVmcs->u32RoExitInstrLen)); LogRel((" %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo)); /* 64-bit. */ LogRel((" %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u)); /* Natural width. */ LogRel((" %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u)); LogRel((" %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u)); LogRel((" %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u)); LogRel((" %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u)); LogRel((" %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u)); } #undef HMVMX_DUMP_HOST_XDTR #undef HMVMX_DUMP_HOST_FS_GS_TR #undef HMVMX_DUMP_GUEST_SEGREG #undef HMVMX_DUMP_GUEST_XDTR } /** * Gets the active (in use) VMCS info. object for the specified VCPU. * * This is either the guest or nested-guest VMCS info. and need not necessarily * pertain to the "current" VMCS (in the VMX definition of the term). For instance, * if the VM-entry failed due to an invalid-guest state, we may have "cleared" the * current VMCS while returning to ring-3. However, the VMCS info. object for that * VMCS would still be active and returned here so that we could dump the VMCS * fields to ring-3 for diagnostics. This function is thus only used to * distinguish between the nested-guest or guest VMCS. * * @returns The active VMCS information. * @param pVCpu The cross context virtual CPU structure. * * @thread EMT. * @remarks This function may be called with preemption or interrupts disabled! */ VMM_INT_DECL(PVMXVMCSINFOSHARED) hmGetVmxActiveVmcsInfoShared(PVMCPUCC pVCpu) { #ifdef IN_RING0 if (!pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs) #else if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3) #endif return &pVCpu->hm.s.vmx.VmcsInfo; return &pVCpu->hm.s.vmx.VmcsInfoNstGst; } /** * Converts a VMX event type into an appropriate TRPM event type. * * @returns TRPM event. * @param uIntInfo The VMX event. */ VMM_INT_DECL(TRPMEVENT) HMVmxEventTypeToTrpmEventType(uint32_t uIntInfo) { Assert(VMX_IDT_VECTORING_INFO_IS_VALID(uIntInfo)); TRPMEVENT enmTrapType; uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(uIntInfo); uint8_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(uIntInfo); switch (uType) { case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT: enmTrapType = TRPM_HARDWARE_INT; break; case VMX_IDT_VECTORING_INFO_TYPE_NMI: case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT: enmTrapType = TRPM_TRAP; break; case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: /* INT1 (ICEBP). */ Assert(uVector == X86_XCPT_DB); NOREF(uVector); enmTrapType = TRPM_SOFTWARE_INT; break; case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* INT3 (#BP) and INTO (#OF) */ Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF); NOREF(uVector); enmTrapType = TRPM_SOFTWARE_INT; break; case VMX_IDT_VECTORING_INFO_TYPE_SW_INT: enmTrapType = TRPM_SOFTWARE_INT; break; default: AssertMsgFailed(("Invalid trap type %#x\n", uType)); enmTrapType = TRPM_32BIT_HACK; break; } return enmTrapType; } /** * Converts a TRPM event type into an appropriate VMX event type. * * @returns VMX event type mask. * @param uVector The event vector. * @param enmTrpmEvent The TRPM event. * @param fIcebp Whether the \#DB vector is caused by an INT1/ICEBP * instruction. */ VMM_INT_DECL(uint32_t) HMTrpmEventTypeToVmxEventType(uint8_t uVector, TRPMEVENT enmTrpmEvent, bool fIcebp) { uint32_t uIntInfoType = 0; if (enmTrpmEvent == TRPM_TRAP) { Assert(!fIcebp); switch (uVector) { case X86_XCPT_NMI: uIntInfoType |= (VMX_IDT_VECTORING_INFO_TYPE_NMI << VMX_IDT_VECTORING_INFO_TYPE_SHIFT); break; case X86_XCPT_BP: case X86_XCPT_OF: uIntInfoType |= (VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT << VMX_IDT_VECTORING_INFO_TYPE_SHIFT); break; case X86_XCPT_PF: case X86_XCPT_DF: case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP: case X86_XCPT_AC: uIntInfoType |= VMX_IDT_VECTORING_INFO_ERROR_CODE_VALID; RT_FALL_THRU(); default: uIntInfoType |= (VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT << VMX_IDT_VECTORING_INFO_TYPE_SHIFT); break; } } else if (enmTrpmEvent == TRPM_HARDWARE_INT) { Assert(!fIcebp); uIntInfoType |= (VMX_IDT_VECTORING_INFO_TYPE_EXT_INT << VMX_IDT_VECTORING_INFO_TYPE_SHIFT); } else if (enmTrpmEvent == TRPM_SOFTWARE_INT) { switch (uVector) { case X86_XCPT_BP: case X86_XCPT_OF: uIntInfoType |= (VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT << VMX_IDT_VECTORING_INFO_TYPE_SHIFT); break; case X86_XCPT_DB: { if (fIcebp) { uIntInfoType |= (VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT << VMX_IDT_VECTORING_INFO_TYPE_SHIFT); break; } RT_FALL_THRU(); } default: uIntInfoType |= (VMX_IDT_VECTORING_INFO_TYPE_SW_INT << VMX_IDT_VECTORING_INFO_TYPE_SHIFT); break; } } else AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent)); return uIntInfoType; } #ifdef VBOX_WITH_NESTED_HWVIRT_VMX /** * Notification callback for when a VM-exit happens outside VMX R0 code (e.g. in * IEM). * * @param pVCpu The cross context virtual CPU structure. * * @remarks Can be called from ring-0 as well as ring-3. */ VMM_INT_DECL(void) HMNotifyVmxNstGstVmexit(PVMCPU pVCpu) { LogFlowFunc(("\n")); /* * Transitions to ring-3 flag a full CPU-state change except if we transition to ring-3 * in response to a physical CPU interrupt as no changes to the guest-CPU state are * expected (see VINF_EM_RAW_INTERRUPT handling in hmR0VmxExitToRing3). * * However, with nested-guests, the state -can- change on trips to ring-3 for we might * try to inject a nested-guest physical interrupt and cause a VMX_EXIT_EXT_INT VM-exit * for the nested-guest from ring-3. * * Signalling reload of just the guest-CPU state that changed with the VM-exit is -not- * sufficient since HM also needs to reload state related to VM-entry/VM-exit controls * etc. So signal reloading of the entire state. It does not seem worth making this any * more fine grained at the moment. */ CPUM_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ALL); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); /* * Make sure we need to merge the guest VMCS controls with the nested-guest * VMCS controls on the next nested-guest VM-entry. */ pVCpu->hm.s.vmx.fMergedNstGstCtls = false; /* * Flush the TLB before entering the outer guest execution (mainly required since the * APIC-access guest-physical address would have changed and probably more things in * the future). */ pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = true; /** @todo Handle releasing of the page-mapping lock later. */ #if 0 if (pVCpu->hm.s.vmx.fVirtApicPageLocked) { PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &pVCpu->hm.s.vmx.PgMapLockVirtApic); pVCpu->hm.s.vmx.fVirtApicPageLocked = false; } #endif } /** * Notification callback for when the nested hypervisor's current VMCS is loaded or * changed outside VMX R0 code (e.g. in IEM). * * This need -not- be called for modifications to the nested hypervisor's current * VMCS when the guest is in VMX non-root mode as VMCS shadowing is not applicable * there. * * @param pVCpu The cross context virtual CPU structure. * * @remarks Can be called from ring-0 as well as ring-3. */ VMM_INT_DECL(void) HMNotifyVmxNstGstCurrentVmcsChanged(PVMCPU pVCpu) { CPUM_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_HWVIRT); ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, CPUMCTX_EXTRN_HWVIRT); /* * Make sure we need to copy the nested hypervisor's current VMCS into the shadow VMCS * on the next guest VM-entry. */ pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs = false; } #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */