/* $Id: IEMAllCImplSvmInstr.cpp $ */ /** @file * IEM - AMD-V (Secure Virtual Machine) instruction implementation. */ /* * Copyright (C) 2011-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_IEM_SVM #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #include #include #include #include #ifdef VBOX_WITH_NESTED_HWVIRT_SVM # include #endif #include #include #include "IEMInternal.h" #include #include #include /* for OP_VMMCALL */ #include #include #include #include #include #include "IEMInline.h" #ifdef VBOX_WITH_NESTED_HWVIRT_SVM /* Almost the whole file. */ /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** * Check the common SVM instruction preconditions. */ # define IEM_SVM_INSTR_COMMON_CHECKS(a_pVCpu, a_Instr) \ do { \ if (!CPUMIsGuestSvmEnabled(IEM_GET_CTX(a_pVCpu))) \ { \ Log((RT_STR(a_Instr) ": EFER.SVME not enabled -> #UD\n")); \ return iemRaiseUndefinedOpcode(a_pVCpu); \ } \ if (IEM_IS_REAL_OR_V86_MODE(a_pVCpu)) \ { \ Log((RT_STR(a_Instr) ": Real or v8086 mode -> #UD\n")); \ return iemRaiseUndefinedOpcode(a_pVCpu); \ } \ if ((a_pVCpu)->iem.s.uCpl != 0) \ { \ Log((RT_STR(a_Instr) ": CPL != 0 -> #GP(0)\n")); \ return iemRaiseGeneralProtectionFault0(a_pVCpu); \ } \ } while (0) /** * Converts an IEM exception event type to an SVM event type. * * @returns The SVM event type. * @retval UINT8_MAX if the specified type of event isn't among the set * of recognized IEM event types. * * @param uVector The vector of the event. * @param fIemXcptFlags The IEM exception / interrupt flags. */ IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags) { if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT) { if (uVector != X86_XCPT_NMI) return SVM_EVENT_EXCEPTION; return SVM_EVENT_NMI; } /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */ if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR)) return SVM_EVENT_EXCEPTION; if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT) return SVM_EVENT_EXTERNAL_IRQ; if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT) return SVM_EVENT_SOFTWARE_INT; AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector)); return UINT8_MAX; } /** * Performs an SVM world-switch (VMRUN, \#VMEXIT) updating PGM and IEM internals. * * @returns Strict VBox status code from PGMChangeMode. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(VBOXSTRICTRC) iemSvmWorldSwitch(PVMCPUCC pVCpu) { /* * Inform PGM about paging mode changes. * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet, * see comment in iemMemPageTranslateAndCheckAccess(). */ int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, true /* fForce */); AssertRCReturn(rc, rc); /* Invalidate IEM TLBs now that we've forced a PGM mode change. */ IEMTlbInvalidateAll(pVCpu); /* Inform CPUM (recompiler), can later be removed. */ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL); /* Re-initialize IEM cache/state after the drastic mode switch. */ iemReInitExec(pVCpu); return rc; } /** * SVM \#VMEXIT handler. * * @returns Strict VBox status code. * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful. * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's * "host state" and a shutdown is required. * * @param pVCpu The cross context virtual CPU structure. * @param uExitCode The exit code. * @param uExitInfo1 The exit info. 1 field. * @param uExitInfo2 The exit info. 2 field. */ VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT { VBOXSTRICTRC rcStrict; if ( CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu)) || uExitCode == SVM_EXIT_INVALID) { Log2(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uExitCode, uExitInfo1, uExitInfo2)); /* * Disable the global-interrupt flag to prevent interrupts during the 'atomic' world switch. */ CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false); /* * Map the nested-guest VMCB from its location in guest memory. * Write exactly what the CPU does on #VMEXIT thereby preserving most other bits in the * guest's VMCB in memory, see @bugref{7243#c113} and related comment on iemSvmVmrun(). */ PSVMVMCB pVmcbMem; PGMPAGEMAPLOCK PgLockMem; PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl; rcStrict = iemMemPageMap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, (void **)&pVmcbMem, &PgLockMem); if (rcStrict == VINF_SUCCESS) { /* * Notify HM in case the nested-guest was executed using hardware-assisted SVM (which * would have modified some VMCB state) that might need to be restored on #VMEXIT before * writing the VMCB back to guest memory. */ HMNotifySvmNstGstVmexit(pVCpu, IEM_GET_CTX(pVCpu)); Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.es)); Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.cs)); Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss)); Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ds)); /* * Save the nested-guest state into the VMCB state-save area. */ PSVMVMCBSTATESAVE pVmcbMemState = &pVmcbMem->guest; HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, ES, es); HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, CS, cs); HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, SS, ss); HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), pVmcbMemState, DS, ds); pVmcbMemState->GDTR.u32Limit = pVCpu->cpum.GstCtx.gdtr.cbGdt; pVmcbMemState->GDTR.u64Base = pVCpu->cpum.GstCtx.gdtr.pGdt; pVmcbMemState->IDTR.u32Limit = pVCpu->cpum.GstCtx.idtr.cbIdt; pVmcbMemState->IDTR.u64Base = pVCpu->cpum.GstCtx.idtr.pIdt; pVmcbMemState->u64EFER = pVCpu->cpum.GstCtx.msrEFER; pVmcbMemState->u64CR4 = pVCpu->cpum.GstCtx.cr4; pVmcbMemState->u64CR3 = pVCpu->cpum.GstCtx.cr3; pVmcbMemState->u64CR2 = pVCpu->cpum.GstCtx.cr2; pVmcbMemState->u64CR0 = pVCpu->cpum.GstCtx.cr0; /** @todo Nested paging. */ pVmcbMemState->u64RFlags = pVCpu->cpum.GstCtx.rflags.u; pVmcbMemState->u64RIP = pVCpu->cpum.GstCtx.rip; pVmcbMemState->u64RSP = pVCpu->cpum.GstCtx.rsp; pVmcbMemState->u64RAX = pVCpu->cpum.GstCtx.rax; pVmcbMemState->u64DR7 = pVCpu->cpum.GstCtx.dr[7]; pVmcbMemState->u64DR6 = pVCpu->cpum.GstCtx.dr[6]; pVmcbMemState->u8CPL = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */ Assert(CPUMGetGuestCPL(pVCpu) == pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl); if (CPUMIsGuestSvmNestedPagingEnabled(pVCpu, IEM_GET_CTX(pVCpu))) pVmcbMemState->u64PAT = pVCpu->cpum.GstCtx.msrPAT; /* * Save additional state and intercept information. * * - V_IRQ: Tracked using VMCPU_FF_INTERRUPT_NESTED_GUEST force-flag and updated below. * - V_TPR: Updated by iemCImpl_load_CrX or by the physical CPU for hardware-assisted * SVM execution. * - Interrupt shadow: Tracked using VMCPU_FF_INHIBIT_INTERRUPTS and RIP. */ PSVMVMCBCTRL pVmcbMemCtrl = &pVmcbMem->ctrl; if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) /* V_IRQ. */ pVmcbMemCtrl->IntCtrl.n.u1VIrqPending = 0; else { Assert(pVmcbCtrl->IntCtrl.n.u1VIrqPending); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST); } pVmcbMemCtrl->IntCtrl.n.u8VTPR = pVmcbCtrl->IntCtrl.n.u8VTPR; /* V_TPR. */ if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx)) /* Interrupt shadow. */ pVmcbMemCtrl->IntShadow.n.u1IntShadow = 0; else { pVmcbMemCtrl->IntShadow.n.u1IntShadow = 1; LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pVCpu->cpum.GstCtx.rip)); CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); } /* * Save nRIP, instruction length and byte fields. */ pVmcbMemCtrl->u64NextRIP = pVmcbCtrl->u64NextRIP; pVmcbMemCtrl->cbInstrFetched = pVmcbCtrl->cbInstrFetched; memcpy(&pVmcbMemCtrl->abInstr[0], &pVmcbCtrl->abInstr[0], sizeof(pVmcbMemCtrl->abInstr)); /* * Save exit information. */ pVmcbMemCtrl->u64ExitCode = uExitCode; pVmcbMemCtrl->u64ExitInfo1 = uExitInfo1; pVmcbMemCtrl->u64ExitInfo2 = uExitInfo2; /* * Update the exit interrupt-information field if this #VMEXIT happened as a result * of delivering an event through IEM. * * Don't update the exit interrupt-information field if the event wasn't being injected * through IEM, as it would have been updated by real hardware if the nested-guest was * executed using hardware-assisted SVM. */ { uint8_t uExitIntVector; uint32_t uExitIntErr; uint32_t fExitIntFlags; bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr, NULL /* uExitIntCr2 */); if (fRaisingEvent) { pVmcbCtrl->ExitIntInfo.n.u1Valid = 1; pVmcbCtrl->ExitIntInfo.n.u8Vector = uExitIntVector; pVmcbCtrl->ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags); if (fExitIntFlags & IEM_XCPT_FLAGS_ERR) { pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid = true; pVmcbCtrl->ExitIntInfo.n.u32ErrorCode = uExitIntErr; } } } /* * Save the exit interrupt-information field. * * We write the whole field including overwriting reserved bits as it was observed on an * AMD Ryzen 5 Pro 1500 that the CPU does not preserve reserved bits in EXITINTINFO. */ pVmcbMemCtrl->ExitIntInfo = pVmcbCtrl->ExitIntInfo; /* * Clear event injection. */ pVmcbMemCtrl->EventInject.n.u1Valid = 0; iemMemPageUnmap(pVCpu, pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, IEM_ACCESS_DATA_RW, pVmcbMem, &PgLockMem); } /* * Prepare for guest's "host mode" by clearing internal processor state bits. * * We don't need to zero out the state-save area, just the controls should be * sufficient because it has the critical bit of indicating whether we're inside * the nested-guest or not. */ memset(pVmcbCtrl, 0, sizeof(*pVmcbCtrl)); Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))); /* * Restore the subset of the inhibit flags that were preserved. */ pVCpu->cpum.GstCtx.eflags.uBoth |= pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit; if (rcStrict == VINF_SUCCESS) { /** @todo Nested paging. */ /** @todo ASID. */ /* * If we are switching to PAE mode host, validate the PDPEs first. * Any invalid PDPEs here causes a VCPU shutdown. */ PCSVMHOSTSTATE pHostState = &pVCpu->cpum.GstCtx.hwvirt.svm.HostState; bool const fHostInPaeMode = CPUMIsPaePagingEnabled(pHostState->uCr0, pHostState->uCr4, pHostState->uEferMsr); if (fHostInPaeMode) rcStrict = PGMGstMapPaePdpesAtCr3(pVCpu, pHostState->uCr3); if (RT_SUCCESS(rcStrict)) { /* * Reload the host state. */ CPUMSvmVmExitRestoreHostState(pVCpu, IEM_GET_CTX(pVCpu)); /* * Update PGM, IEM and others of a world-switch. */ rcStrict = iemSvmWorldSwitch(pVCpu); if (rcStrict == VINF_SUCCESS) rcStrict = VINF_SVM_VMEXIT; else if (RT_SUCCESS(rcStrict)) { LogFlow(("iemSvmVmexit: Setting passup status from iemSvmWorldSwitch %Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); iemSetPassUpStatus(pVCpu, rcStrict); rcStrict = VINF_SVM_VMEXIT; } else LogFlow(("iemSvmVmexit: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); } else { Log(("iemSvmVmexit: PAE PDPEs invalid while restoring host state. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); rcStrict = VINF_EM_TRIPLE_FAULT; } } else { AssertMsgFailed(("iemSvmVmexit: Mapping VMCB at %#RGp failed. rc=%Rrc\n", pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict))); rcStrict = VINF_EM_TRIPLE_FAULT; } } else { AssertMsgFailed(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode, uExitInfo1, uExitInfo2)); rcStrict = VERR_SVM_IPE_3; } # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3) /* CLGI/STGI may not have been intercepted and thus not executed in IEM. */ if ( HMIsEnabled(pVCpu->CTX_SUFF(pVM)) && HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))) return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false); # endif return rcStrict; } /** * Interface for HM and EM to emulate \#VMEXIT. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uExitCode The exit code. * @param uExitInfo1 The exit info. 1 field. * @param uExitInfo2 The exit info. 2 field. * @thread EMT(pVCpu) */ VMM_INT_DECL(VBOXSTRICTRC) IEMExecSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) { IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMEXIT_MASK); VBOXSTRICTRC rcStrict = iemSvmVmexit(pVCpu, uExitCode, uExitInfo1, uExitInfo2); if (pVCpu->iem.s.cActiveMappings) iemMemRollback(pVCpu); return iemExecStatusCodeFiddling(pVCpu, rcStrict); } /** * Performs the operations necessary that are part of the vmrun instruction * execution in the guest. * * @returns Strict VBox status code (i.e. informational status codes too). * @retval VINF_SUCCESS successfully executed VMRUN and entered nested-guest * code execution. * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT * (SVM_EXIT_INVALID most likely). * * @param pVCpu The cross context virtual CPU structure. * @param cbInstr The length of the VMRUN instruction. * @param GCPhysVmcb Guest physical address of the VMCB to run. */ static VBOXSTRICTRC iemSvmVmrun(PVMCPUCC pVCpu, uint8_t cbInstr, RTGCPHYS GCPhysVmcb) RT_NOEXCEPT { LogFlow(("iemSvmVmrun\n")); /* * Cache the physical address of the VMCB for #VMEXIT exceptions. */ pVCpu->cpum.GstCtx.hwvirt.svm.GCPhysVmcb = GCPhysVmcb; /* * Save the host state. */ CPUMSvmVmRunSaveHostState(IEM_GET_CTX(pVCpu), cbInstr); /* * Read the guest VMCB. */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); int rc = PGMPhysSimpleReadGCPhys(pVM, &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb, GCPhysVmcb, sizeof(SVMVMCB)); if (RT_SUCCESS(rc)) { /* * AMD-V seems to preserve reserved fields and only writes back selected, recognized * fields on #VMEXIT. However, not all reserved bits are preserved (e.g, EXITINTINFO) * but in our implementation we try to preserve as much as we possibly can. * * We could read the entire page here and only write back the relevant fields on * #VMEXIT but since our internal VMCB is also being used by HM during hardware-assisted * SVM execution, it creates a potential for a nested-hypervisor to set bits that are * currently reserved but may be recognized as features bits in future CPUs causing * unexpected & undesired results. Hence, we zero out unrecognized fields here as we * typically enter hardware-assisted SVM soon anyway, see @bugref{7243#c113}. */ PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl; PSVMVMCBSTATESAVE pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.guest; RT_ZERO(pVmcbCtrl->u8Reserved0); RT_ZERO(pVmcbCtrl->u8Reserved1); RT_ZERO(pVmcbCtrl->u8Reserved2); RT_ZERO(pVmcbNstGst->u8Reserved0); RT_ZERO(pVmcbNstGst->u8Reserved1); RT_ZERO(pVmcbNstGst->u8Reserved2); RT_ZERO(pVmcbNstGst->u8Reserved3); RT_ZERO(pVmcbNstGst->u8Reserved4); RT_ZERO(pVmcbNstGst->u8Reserved5); pVmcbCtrl->u32Reserved0 = 0; pVmcbCtrl->TLBCtrl.n.u24Reserved = 0; pVmcbCtrl->IntCtrl.n.u6Reserved = 0; pVmcbCtrl->IntCtrl.n.u3Reserved = 0; pVmcbCtrl->IntCtrl.n.u5Reserved = 0; pVmcbCtrl->IntCtrl.n.u24Reserved = 0; pVmcbCtrl->IntShadow.n.u30Reserved = 0; pVmcbCtrl->ExitIntInfo.n.u19Reserved = 0; pVmcbCtrl->NestedPagingCtrl.n.u29Reserved = 0; pVmcbCtrl->EventInject.n.u19Reserved = 0; pVmcbCtrl->LbrVirt.n.u30Reserved = 0; /* * Validate guest-state and controls. */ /* VMRUN must always be intercepted. */ if (!CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_VMRUN)) { Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Nested paging. */ if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging) { Log(("iemSvmVmrun: Nested paging not supported -> Disabling\n")); pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging = 0; } /* AVIC. */ if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable && !pVM->cpum.ro.GuestFeatures.fSvmAvic) { Log(("iemSvmVmrun: AVIC not supported -> Disabling\n")); pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0; } /* Last branch record (LBR) virtualization. */ if ( pVmcbCtrl->LbrVirt.n.u1LbrVirt && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt) { Log(("iemSvmVmrun: LBR virtualization not supported -> Disabling\n")); pVmcbCtrl->LbrVirt.n.u1LbrVirt = 0; } /* Virtualized VMSAVE/VMLOAD. */ if ( pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload && !pVM->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload) { Log(("iemSvmVmrun: Virtualized VMSAVE/VMLOAD not supported -> Disabling\n")); pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload = 0; } /* Virtual GIF. */ if ( pVmcbCtrl->IntCtrl.n.u1VGifEnable && !pVM->cpum.ro.GuestFeatures.fSvmVGif) { Log(("iemSvmVmrun: Virtual GIF not supported -> Disabling\n")); pVmcbCtrl->IntCtrl.n.u1VGifEnable = 0; } /* Guest ASID. */ if (!pVmcbCtrl->TLBCtrl.n.u32ASID) { Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Guest AVIC. */ if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable && !pVM->cpum.ro.GuestFeatures.fSvmAvic) { Log(("iemSvmVmrun: AVIC not supported -> Disabling\n")); pVmcbCtrl->IntCtrl.n.u1AvicEnable = 0; } /* Guest Secure Encrypted Virtualization. */ if ( ( pVmcbCtrl->NestedPagingCtrl.n.u1Sev || pVmcbCtrl->NestedPagingCtrl.n.u1SevEs) && !pVM->cpum.ro.GuestFeatures.fSvmAvic) { Log(("iemSvmVmrun: SEV not supported -> Disabling\n")); pVmcbCtrl->NestedPagingCtrl.n.u1Sev = 0; pVmcbCtrl->NestedPagingCtrl.n.u1SevEs = 0; } /* Flush by ASID. */ if ( !pVM->cpum.ro.GuestFeatures.fSvmFlusbByAsid && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_NOTHING && pVmcbCtrl->TLBCtrl.n.u8TLBFlush != SVM_TLB_FLUSH_ENTIRE) { Log(("iemSvmVmrun: Flush-by-ASID not supported -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* IO permission bitmap. */ RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr; if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap) || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE) || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1))) { Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* MSR permission bitmap. */ RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr; if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap) || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE)) { Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* CR0. */ if ( !(pVmcbNstGst->u64CR0 & X86_CR0_CD) && (pVmcbNstGst->u64CR0 & X86_CR0_NW)) { Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if (pVmcbNstGst->u64CR0 >> 32) { Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64CR0)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */ /* DR6 and DR7. */ if ( pVmcbNstGst->u64DR6 >> 32 || pVmcbNstGst->u64DR7 >> 32) { Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64DR6, pVmcbNstGst->u64DR6)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * PAT (Page Attribute Table) MSR. * * The CPU only validates and loads it when nested-paging is enabled. * See AMD spec. "15.25.4 Nested Paging and VMRUN/#VMEXIT". */ if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging && !CPUMIsPatMsrValid(pVmcbNstGst->u64PAT)) { Log(("iemSvmVmrun: PAT invalid. u64PAT=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64PAT)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Copy the IO permission bitmap into the cache. */ AssertCompile(sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap) == SVM_IOPM_PAGES * X86_PAGE_4K_SIZE); rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, GCPhysIOBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap)); if (RT_FAILURE(rc)) { Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Copy the MSR permission bitmap into the cache. */ AssertCompile(sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap) == SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE); rc = PGMPhysSimpleReadGCPhys(pVM, pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap, GCPhysMsrBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap)); if (RT_FAILURE(rc)) { Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Copy segments from nested-guest VMCB state to the guest-CPU state. * * We do this here as we need to use the CS attributes and it's easier this way * then using the VMCB format selectors. It doesn't really matter where we copy * the state, we restore the guest-CPU context state on the \#VMEXIT anyway. */ HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, ES, es); HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, CS, cs); HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, SS, ss); HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), pVmcbNstGst, DS, ds); /** @todo Segment attribute overrides by VMRUN. */ /* * CPL adjustments and overrides. * * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL(). * We shall thus adjust both CS.DPL and SS.DPL here. */ pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = pVmcbNstGst->u8CPL; if (CPUMIsGuestInV86ModeEx(IEM_GET_CTX(pVCpu))) pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 3; if (CPUMIsGuestInRealModeEx(IEM_GET_CTX(pVCpu))) pVCpu->cpum.GstCtx.cs.Attr.n.u2Dpl = pVCpu->cpum.GstCtx.ss.Attr.n.u2Dpl = 0; Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.GstCtx.ss)); /* * Continue validating guest-state and controls. * * We pass CR0 as 0 to CPUMIsGuestEferMsrWriteValid() below to skip the illegal * EFER.LME bit transition check. We pass the nested-guest's EFER as both the * old and new EFER value to not have any guest EFER bits influence the new * nested-guest EFER. */ uint64_t uValidEfer; rc = CPUMIsGuestEferMsrWriteValid(pVM, 0 /* CR0 */, pVmcbNstGst->u64EFER, pVmcbNstGst->u64EFER, &uValidEfer); if (RT_FAILURE(rc)) { Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 -> #VMEXIT\n", pVmcbNstGst->u64EFER)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Validate paging and CPU mode bits. */ bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME); bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode); bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME); bool const fPaging = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PG); bool const fPae = RT_BOOL(pVmcbNstGst->u64CR4 & X86_CR4_PAE); bool const fProtMode = RT_BOOL(pVmcbNstGst->u64CR0 & X86_CR0_PE); bool const fLongModeWithPaging = fLongModeEnabled && fPaging; bool const fLongModeConformCS = pVCpu->cpum.GstCtx.cs.Attr.n.u1Long && pVCpu->cpum.GstCtx.cs.Attr.n.u1DefBig; /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */ if (fLongModeWithPaging) uValidEfer |= MSR_K6_EFER_LMA; bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA)); if ( !fSvm || (!fLongModeSupported && fLongModeActiveOrEnabled) || (fLongModeWithPaging && !fPae) || (fLongModeWithPaging && !fProtMode) || ( fLongModeEnabled && fPaging && fPae && fLongModeConformCS)) { Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Preserve the required force-flags. * * We only preserve the force-flags that would affect the execution of the * nested-guest (or the guest). * * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the * execution of a subsequent IRET instruction in the guest. * * The remaining FFs (e.g. timers) can stay in place so that we will be able to * generate interrupts that should cause #VMEXITs for the nested-guest. * * VMRUN has implicit GIF (Global Interrupt Flag) handling, we don't need to * preserve VMCPU_FF_INHIBIT_INTERRUPTS. */ pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_INHIBIT_NMI; pVCpu->cpum.GstCtx.eflags.uBoth &= ~CPUMCTX_INHIBIT_NMI; /* * Pause filter. */ if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilter) { pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = pVmcbCtrl->u16PauseFilterCount; if (pVM->cpum.ro.GuestFeatures.fSvmPauseFilterThreshold) pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold = pVmcbCtrl->u16PauseFilterCount; } /* * Interrupt shadow. */ if (pVmcbCtrl->IntShadow.n.u1IntShadow) { LogFlow(("iemSvmVmrun: setting interrupt shadow. inhibit PC=%#RX64\n", pVmcbNstGst->u64RIP)); /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */ CPUMSetInInterruptShadowEx(&pVCpu->cpum.GstCtx, pVmcbNstGst->u64RIP); } /* * TLB flush control. * Currently disabled since it's redundant as we unconditionally flush the TLB * in iemSvmWorldSwitch() below. */ # if 0 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */ if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS) PGMFlushTLB(pVCpu, pVmcbNstGst->u64CR3, true /* fGlobal */); # endif /* * Validate and map PAE PDPEs if the guest will be using PAE paging. * Invalid PAE PDPEs here causes a #VMEXIT. */ if ( !pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging && CPUMIsPaePagingEnabled(pVmcbNstGst->u64CR0, pVmcbNstGst->u64CR4, uValidEfer)) { rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcbNstGst->u64CR3); if (RT_SUCCESS(rc)) { /* likely */ } else { Log(("iemSvmVmrun: PAE PDPEs invalid -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } } /* * Copy the remaining guest state from the VMCB to the guest-CPU context. */ pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcbNstGst->GDTR.u32Limit; pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcbNstGst->GDTR.u64Base; pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcbNstGst->IDTR.u32Limit; pVCpu->cpum.GstCtx.idtr.pIdt = pVmcbNstGst->IDTR.u64Base; CPUMSetGuestCR0(pVCpu, pVmcbNstGst->u64CR0); CPUMSetGuestCR4(pVCpu, pVmcbNstGst->u64CR4); pVCpu->cpum.GstCtx.cr3 = pVmcbNstGst->u64CR3; pVCpu->cpum.GstCtx.cr2 = pVmcbNstGst->u64CR2; pVCpu->cpum.GstCtx.dr[6] = pVmcbNstGst->u64DR6; pVCpu->cpum.GstCtx.dr[7] = pVmcbNstGst->u64DR7; pVCpu->cpum.GstCtx.rflags.u = pVmcbNstGst->u64RFlags; pVCpu->cpum.GstCtx.rax = pVmcbNstGst->u64RAX; pVCpu->cpum.GstCtx.rsp = pVmcbNstGst->u64RSP; pVCpu->cpum.GstCtx.rip = pVmcbNstGst->u64RIP; CPUMSetGuestEferMsrNoChecks(pVCpu, pVCpu->cpum.GstCtx.msrEFER, uValidEfer); if (pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging) pVCpu->cpum.GstCtx.msrPAT = pVmcbNstGst->u64PAT; /* Mask DR6, DR7 bits mandatory set/clear bits. */ pVCpu->cpum.GstCtx.dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK); pVCpu->cpum.GstCtx.dr[6] |= X86_DR6_RA1_MASK; pVCpu->cpum.GstCtx.dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); pVCpu->cpum.GstCtx.dr[7] |= X86_DR7_RA1_MASK; /* * Check for pending virtual interrupts. */ if (pVmcbCtrl->IntCtrl.n.u1VIrqPending) VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST); else Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)); /* * Update PGM, IEM and others of a world-switch. */ VBOXSTRICTRC rcStrict = iemSvmWorldSwitch(pVCpu); if (rcStrict == VINF_SUCCESS) { /* likely */ } else if (RT_SUCCESS(rcStrict)) { LogFlow(("iemSvmVmrun: iemSvmWorldSwitch returned %Rrc, setting passup status\n", VBOXSTRICTRC_VAL(rcStrict))); rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); } else { LogFlow(("iemSvmVmrun: iemSvmWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* * Set the global-interrupt flag to allow interrupts in the guest. */ CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true); /* * Event injection. */ PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject; pVCpu->cpum.GstCtx.hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid; if (pEventInject->n.u1Valid) { uint8_t const uVector = pEventInject->n.u8Vector; TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject, uVector); uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0; /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */ if (RT_UNLIKELY(enmType == TRPM_32BIT_HACK)) { Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION) { if ( uVector == X86_XCPT_NMI || uVector > X86_XCPT_LAST) { Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector)); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if ( uVector == X86_XCPT_BR && CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu))) { Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /** @todo any others? */ } /* * Invalidate the exit interrupt-information field here. This field is fully updated * on #VMEXIT as events other than the one below can also cause intercepts during * their injection (e.g. exceptions). */ pVmcbCtrl->ExitIntInfo.n.u1Valid = 0; /* * Clear the event injection valid bit here. While the AMD spec. mentions that the CPU * clears this bit from the VMCB unconditionally on #VMEXIT, internally the CPU could be * clearing it at any time, most likely before/after injecting the event. Since VirtualBox * doesn't have any virtual-CPU internal representation of this bit, we clear/update the * VMCB here. This also has the added benefit that we avoid the risk of injecting the event * twice if we fallback to executing the nested-guest using hardware-assisted SVM after * injecting the event through IEM here. */ pVmcbCtrl->EventInject.n.u1Valid = 0; /** @todo NRIP: Software interrupts can only be pushed properly if we support * NRIP for the nested-guest to calculate the instruction length * below. */ LogFlow(("iemSvmVmrun: Injecting event: %04x:%08RX64 vec=%#x type=%d uErr=%u cr2=%#RX64 cr3=%#RX64 efer=%#RX64\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uVector, enmType, uErrorCode, pVCpu->cpum.GstCtx.cr2, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.msrEFER)); /* * We shall not inject the event here right away. There may be paging mode related updates * as a result of the world-switch above that are yet to be honored. Instead flag the event * as pending for injection. */ TRPMAssertTrap(pVCpu, uVector, enmType); if (pEventInject->n.u1ErrorCodeValid) TRPMSetErrorCode(pVCpu, uErrorCode); if ( enmType == TRPM_TRAP && uVector == X86_XCPT_PF) TRPMSetFaultAddress(pVCpu, pVCpu->cpum.GstCtx.cr2); } else LogFlow(("iemSvmVmrun: Entering nested-guest: %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#x\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, pVCpu->cpum.GstCtx.eflags.u)); LogFlow(("iemSvmVmrun: returns %d\n", VBOXSTRICTRC_VAL(rcStrict))); # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3) /* If CLGI/STGI isn't intercepted we force IEM-only nested-guest execution here. */ if ( HMIsEnabled(pVM) && HMIsSvmVGifActive(pVM)) return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true); # endif return rcStrict; } /* Shouldn't really happen as the caller should've validated the physical address already. */ Log(("iemSvmVmrun: Failed to read nested-guest VMCB at %#RGp (rc=%Rrc) -> #VMEXIT\n", GCPhysVmcb, rc)); return rc; } /** * Checks if the event intercepts and performs the \#VMEXIT if the corresponding * intercept is active. * * @returns Strict VBox status code. * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or * we're not executing a nested-guest. * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred * successfully. * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT * failed and a shutdown needs to be initiated for the guest. * * @returns VBox strict status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param u8Vector The interrupt or exception vector. * @param fFlags The exception flags (see IEM_XCPT_FLAGS_XXX). * @param uErr The error-code associated with the exception. * @param uCr2 The CR2 value in case of a \#PF exception. */ VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT { Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))); /* * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts". * * - NMI intercepts have their own exit code and do not cause SVM_EXIT_XCPT_2 #VMEXITs. * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts * even when they use a vector in the range 0 to 31. * - ICEBP should not trigger #DB intercept, but its own intercept. * - For #PF exceptions, its intercept is checked before CR2 is written by the exception. */ /* Check NMI intercept */ if ( u8Vector == X86_XCPT_NMI && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT) && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI)) { Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Check ICEBP intercept. */ if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR) && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP)) { Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n")); IEM_SVM_UPDATE_NRIP(pVCpu); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Check CPU exception intercepts. */ if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT) && IEM_SVM_IS_XCPT_INTERCEPT_SET(pVCpu, u8Vector)) { Assert(u8Vector <= X86_XCPT_LAST); uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0; uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0; if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists && u8Vector == X86_XCPT_PF && !(uErr & X86_TRAP_PF_ID)) { PSVMVMCBCTRL pVmcbCtrl = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl; # ifdef IEM_WITH_CODE_TLB uint8_t const *pbInstrBuf = pVCpu->iem.s.pbInstrBuf; uint8_t const cbInstrBuf = pVCpu->iem.s.cbInstrBuf; pVmcbCtrl->cbInstrFetched = RT_MIN(cbInstrBuf, SVM_CTRL_GUEST_INSTR_BYTES_MAX); if ( pbInstrBuf && cbInstrBuf > 0) memcpy(&pVmcbCtrl->abInstr[0], pbInstrBuf, pVmcbCtrl->cbInstrFetched); # else uint8_t const cbOpcode = pVCpu->iem.s.cbOpcode; pVmcbCtrl->cbInstrFetched = RT_MIN(cbOpcode, SVM_CTRL_GUEST_INSTR_BYTES_MAX); if (cbOpcode > 0) memcpy(&pVmcbCtrl->abInstr[0], &pVCpu->iem.s.abOpcode[0], pVmcbCtrl->cbInstrFetched); # endif } if (u8Vector == X86_XCPT_BR) IEM_SVM_UPDATE_NRIP(pVCpu); Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept u32InterceptXcpt=%#RX32 u8Vector=%#x " "uExitInfo1=%#RX64 uExitInfo2=%#RX64 -> #VMEXIT\n", pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb.ctrl.u32InterceptXcpt, u8Vector, uExitInfo1, uExitInfo2)); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_XCPT_0 + u8Vector, uExitInfo1, uExitInfo2); } /* Check software interrupt (INTn) intercepts. */ if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT && IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN)) { uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssists ? u8Vector : 0; Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector)); IEM_SVM_UPDATE_NRIP(pVCpu); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */); } return VINF_SVM_INTERCEPT_NOT_ACTIVE; } /** * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the * corresponding intercept is active. * * @returns Strict VBox status code. * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or * we're not executing a nested-guest. * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred * successfully. * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT * failed and a shutdown needs to be initiated for the guest. * * @returns VBox strict status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param u16Port The IO port being accessed. * @param enmIoType The type of IO access. * @param cbReg The IO operand size in bytes. * @param cAddrSizeBits The address size bits (for 16, 32 or 64). * @param iEffSeg The effective segment number. * @param fRep Whether this is a repeating IO instruction (REP prefix). * @param fStrIo Whether this is a string IO instruction. * @param cbInstr The length of the IO instruction in bytes. */ VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg, uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT { Assert(IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT)); Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64); Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8); Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port)); SVMIOIOEXITINFO IoExitInfo; bool const fIntercept = CPUMIsSvmIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo, &IoExitInfo); if (fIntercept) { Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) -> #VMEXIT\n", u16Port, u16Port)); IEM_SVM_UPDATE_NRIP(pVCpu); return iemSvmVmexit(pVCpu, SVM_EXIT_IOIO, IoExitInfo.u, pVCpu->cpum.GstCtx.rip + cbInstr); } /** @todo remove later (for debugging as VirtualBox always traps all IO * intercepts). */ AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n")); return VINF_SVM_INTERCEPT_NOT_ACTIVE; } /** * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the * corresponding intercept is active. * * @returns Strict VBox status code. * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not * specify interception of the accessed MSR @a idMsr. * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred * successfully. * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT * failed and a shutdown needs to be initiated for the guest. * * @param pVCpu The cross context virtual CPU structure. * @param idMsr The MSR being accessed in the nested-guest. * @param fWrite Whether this is an MSR write access, @c false implies an * MSR read. * @param cbInstr The length of the MSR read/write instruction in bytes. */ VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite) RT_NOEXCEPT { /* * Check if any MSRs are being intercepted. */ Assert(CPUMIsGuestSvmCtrlInterceptSet(pVCpu, IEM_GET_CTX(pVCpu), SVM_CTRL_INTERCEPT_MSR_PROT)); Assert(CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))); uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ; /* * Get the byte and bit offset of the permission bits corresponding to the MSR. */ uint16_t offMsrpm; uint8_t uMsrpmBit; int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit); if (RT_SUCCESS(rc)) { Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6); Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT); if (fWrite) ++uMsrpmBit; /* * Check if the bit is set, if so, trigger a #VMEXIT. */ if (pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit)) { IEM_SVM_UPDATE_NRIP(pVCpu); return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */); } } else { /* * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (nested hypervisor) deal with it. */ Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite)); return iemSvmVmexit(pVCpu, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */); } return VINF_SVM_INTERCEPT_NOT_ACTIVE; } /** * Implements 'VMRUN'. */ IEM_CIMPL_DEF_0(iemCImpl_vmrun) { # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3) RT_NOREF2(pVCpu, cbInstr); return VINF_EM_RAW_EMULATE_INSTR; # else LogFlow(("iemCImpl_vmrun\n")); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun); /** @todo Check effective address size using address size prefix. */ RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax; if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb)) { Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN)) { Log(("vmrun: Guest intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, cbInstr, GCPhysVmcb); if (rcStrict == VERR_SVM_VMEXIT_FAILED) { Assert(!CPUMIsGuestInSvmNestedHwVirtMode(IEM_GET_CTX(pVCpu))); rcStrict = VINF_EM_TRIPLE_FAULT; } return rcStrict; # endif } /** * Interface for HM and EM to emulate the VMRUN instruction. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param cbInstr The instruction length in bytes. * @thread EMT(pVCpu) */ VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmrun(PVMCPUCC pVCpu, uint8_t cbInstr) { IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3); IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_SVM_VMRUN_MASK); iemInitExec(pVCpu, false /*fBypassHandlers*/); VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmrun); Assert(!pVCpu->iem.s.cActiveMappings); return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict); } /** * Implements 'VMLOAD'. */ IEM_CIMPL_DEF_0(iemCImpl_vmload) { # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3) RT_NOREF2(pVCpu, cbInstr); return VINF_EM_RAW_EMULATE_INSTR; # else LogFlow(("iemCImpl_vmload\n")); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload); /** @todo Check effective address size using address size prefix. */ RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax; if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb)) { Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD)) { Log(("vmload: Guest intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } SVMVMCBSTATESAVE VmcbNstGst; VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest), sizeof(SVMVMCBSTATESAVE)); if (rcStrict == VINF_SUCCESS) { LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode)); HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs); HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs); HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr); HMSVM_SEG_REG_COPY_FROM_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr); pVCpu->cpum.GstCtx.msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase; pVCpu->cpum.GstCtx.msrSTAR = VmcbNstGst.u64STAR; pVCpu->cpum.GstCtx.msrLSTAR = VmcbNstGst.u64LSTAR; pVCpu->cpum.GstCtx.msrCSTAR = VmcbNstGst.u64CSTAR; pVCpu->cpum.GstCtx.msrSFMASK = VmcbNstGst.u64SFMASK; pVCpu->cpum.GstCtx.SysEnter.cs = VmcbNstGst.u64SysEnterCS; pVCpu->cpum.GstCtx.SysEnter.esp = VmcbNstGst.u64SysEnterESP; pVCpu->cpum.GstCtx.SysEnter.eip = VmcbNstGst.u64SysEnterEIP; rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); } return rcStrict; # endif } /** * Interface for HM and EM to emulate the VMLOAD instruction. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param cbInstr The instruction length in bytes. * @thread EMT(pVCpu) */ VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmload(PVMCPUCC pVCpu, uint8_t cbInstr) { IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3); iemInitExec(pVCpu, false /*fBypassHandlers*/); VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmload); Assert(!pVCpu->iem.s.cActiveMappings); return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict); } /** * Implements 'VMSAVE'. */ IEM_CIMPL_DEF_0(iemCImpl_vmsave) { # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3) RT_NOREF2(pVCpu, cbInstr); return VINF_EM_RAW_EMULATE_INSTR; # else LogFlow(("iemCImpl_vmsave\n")); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave); /** @todo Check effective address size using address size prefix. */ RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax; if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb)) { Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE)) { Log(("vmsave: Guest intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } SVMVMCBSTATESAVE VmcbNstGst; VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest), sizeof(SVMVMCBSTATESAVE)); if (rcStrict == VINF_SUCCESS) { LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode)); IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS); HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, FS, fs); HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, GS, gs); HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, TR, tr); HMSVM_SEG_REG_COPY_TO_VMCB(IEM_GET_CTX(pVCpu), &VmcbNstGst, LDTR, ldtr); VmcbNstGst.u64KernelGSBase = pVCpu->cpum.GstCtx.msrKERNELGSBASE; VmcbNstGst.u64STAR = pVCpu->cpum.GstCtx.msrSTAR; VmcbNstGst.u64LSTAR = pVCpu->cpum.GstCtx.msrLSTAR; VmcbNstGst.u64CSTAR = pVCpu->cpum.GstCtx.msrCSTAR; VmcbNstGst.u64SFMASK = pVCpu->cpum.GstCtx.msrSFMASK; VmcbNstGst.u64SysEnterCS = pVCpu->cpum.GstCtx.SysEnter.cs; VmcbNstGst.u64SysEnterESP = pVCpu->cpum.GstCtx.SysEnter.esp; VmcbNstGst.u64SysEnterEIP = pVCpu->cpum.GstCtx.SysEnter.eip; rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_UOFFSETOF(SVMVMCB, guest), &VmcbNstGst, sizeof(SVMVMCBSTATESAVE)); if (rcStrict == VINF_SUCCESS) rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); } return rcStrict; # endif } /** * Interface for HM and EM to emulate the VMSAVE instruction. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param cbInstr The instruction length in bytes. * @thread EMT(pVCpu) */ VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmsave(PVMCPUCC pVCpu, uint8_t cbInstr) { IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3); iemInitExec(pVCpu, false /*fBypassHandlers*/); VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmsave); Assert(!pVCpu->iem.s.cActiveMappings); return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict); } /** * Implements 'CLGI'. */ IEM_CIMPL_DEF_0(iemCImpl_clgi) { # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3) RT_NOREF2(pVCpu, cbInstr); return VINF_EM_RAW_EMULATE_INSTR; # else LogFlow(("iemCImpl_clgi\n")); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi); if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI)) { Log(("clgi: Guest intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } CPUMSetGuestGif(&pVCpu->cpum.GstCtx, false); # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3) iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true); # else return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); # endif # endif } /** * Interface for HM and EM to emulate the CLGI instruction. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param cbInstr The instruction length in bytes. * @thread EMT(pVCpu) */ VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedClgi(PVMCPUCC pVCpu, uint8_t cbInstr) { IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3); iemInitExec(pVCpu, false /*fBypassHandlers*/); VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_clgi); Assert(!pVCpu->iem.s.cActiveMappings); return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict); } /** * Implements 'STGI'. */ IEM_CIMPL_DEF_0(iemCImpl_stgi) { # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3) RT_NOREF2(pVCpu, cbInstr); return VINF_EM_RAW_EMULATE_INSTR; # else LogFlow(("iemCImpl_stgi\n")); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi); if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI)) { Log2(("stgi: Guest intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } CPUMSetGuestGif(&pVCpu->cpum.GstCtx, true); # if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3) iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); return EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false); # else return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); # endif # endif } /** * Interface for HM and EM to emulate the STGI instruction. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param cbInstr The instruction length in bytes. * @thread EMT(pVCpu) */ VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedStgi(PVMCPUCC pVCpu, uint8_t cbInstr) { IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3); iemInitExec(pVCpu, false /*fBypassHandlers*/); VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_stgi); Assert(!pVCpu->iem.s.cActiveMappings); return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict); } /** * Implements 'INVLPGA'. */ IEM_CIMPL_DEF_0(iemCImpl_invlpga) { /** @todo Check effective address size using address size prefix. */ RTGCPTR const GCPtrPage = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT ? pVCpu->cpum.GstCtx.rax : pVCpu->cpum.GstCtx.eax; /** @todo PGM needs virtual ASID support. */ # if 0 uint32_t const uAsid = pVCpu->cpum.GstCtx.ecx; # endif IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga); if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA)) { Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage)); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } PGMInvalidatePage(pVCpu, GCPtrPage); return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); } /** * Interface for HM and EM to emulate the INVLPGA instruction. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param cbInstr The instruction length in bytes. * @thread EMT(pVCpu) */ VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvlpga(PVMCPUCC pVCpu, uint8_t cbInstr) { IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3); iemInitExec(pVCpu, false /*fBypassHandlers*/); VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_invlpga); Assert(!pVCpu->iem.s.cActiveMappings); return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict); } /** * Implements 'SKINIT'. */ IEM_CIMPL_DEF_0(iemCImpl_skinit) { IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga); uint32_t uIgnore; uint32_t fFeaturesECX; CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, -1 /*f64BitMode*/, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore); if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT)) return iemRaiseUndefinedOpcode(pVCpu); if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT)) { Log2(("skinit: Guest intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } RT_NOREF(cbInstr); return VERR_IEM_INSTR_NOT_IMPLEMENTED; } /** * Implements SVM's implementation of PAUSE. */ IEM_CIMPL_DEF_0(iemCImpl_svm_pause) { bool fCheckIntercept = true; if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilter) { IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT); /* TSC based pause-filter thresholding. */ if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmPauseFilterThreshold && pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold > 0) { uint64_t const uTick = TMCpuTickGet(pVCpu); if (uTick - pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick > pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilterThreshold) pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter = CPUMGetGuestSvmPauseFilterCount(pVCpu, IEM_GET_CTX(pVCpu)); pVCpu->cpum.GstCtx.hwvirt.svm.uPrevPauseTick = uTick; } /* Simple pause-filter counter. */ if (pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter > 0) { --pVCpu->cpum.GstCtx.hwvirt.svm.cPauseFilter; fCheckIntercept = false; } } if (fCheckIntercept) IEM_SVM_CHECK_INSTR_INTERCEPT(pVCpu, SVM_CTRL_INTERCEPT_PAUSE, SVM_EXIT_PAUSE, 0, 0); return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); } #endif /* VBOX_WITH_NESTED_HWVIRT_SVM */ /** * Common code for iemCImpl_vmmcall and iemCImpl_vmcall (latter in IEMAllCImplVmxInstr.cpp.h). */ IEM_CIMPL_DEF_1(iemCImpl_Hypercall, uint16_t, uDisOpcode) { if (EMAreHypercallInstructionsEnabled(pVCpu)) { NOREF(uDisOpcode); VBOXSTRICTRC rcStrict = GIMHypercallEx(pVCpu, IEM_GET_CTX(pVCpu), uDisOpcode, cbInstr); if (RT_SUCCESS(rcStrict)) { /** @todo finish: Sort out assertion here when iemRegAddToRipAndFinishingClearingRF * starts returning non-VINF_SUCCESS statuses. */ if (rcStrict == VINF_SUCCESS) rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr); if ( rcStrict == VINF_SUCCESS || rcStrict == VINF_GIM_HYPERCALL_CONTINUING) return VINF_SUCCESS; AssertMsgReturn(rcStrict == VINF_GIM_R3_HYPERCALL, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4); return rcStrict; } AssertMsgReturn( rcStrict == VERR_GIM_HYPERCALL_ACCESS_DENIED || rcStrict == VERR_GIM_HYPERCALLS_NOT_AVAILABLE || rcStrict == VERR_GIM_NOT_ENABLED || rcStrict == VERR_GIM_HYPERCALL_MEMORY_READ_FAILED || rcStrict == VERR_GIM_HYPERCALL_MEMORY_WRITE_FAILED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IEM_IPE_4); /* Raise #UD on all failures. */ } return iemRaiseUndefinedOpcode(pVCpu); } /** * Implements 'VMMCALL'. */ IEM_CIMPL_DEF_0(iemCImpl_vmmcall) { if (IEM_SVM_IS_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL)) { Log(("vmmcall: Guest intercept -> #VMEXIT\n")); IEM_SVM_VMEXIT_RET(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* This is a little bit more complicated than the VT-x version because HM/SVM may patch MOV CR8 instructions to speed up APIC.TPR access for 32-bit windows guests. */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); if (VM_IS_HM_ENABLED(pVM)) { int rc = HMHCMaybeMovTprSvmHypercall(pVM, pVCpu); if (RT_SUCCESS(rc)) { Log(("vmmcall: MovTpr\n")); return VINF_SUCCESS; } } /* Join forces with vmcall. */ return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMMCALL); }