/* $Id: CPUMR0.cpp $ */ /** @file * CPUM - Host Context Ring 0. */ /* * Copyright (C) 2006-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #define CPUM_WITH_NONCONST_HOST_FEATURES #include #include #include "CPUMInternal.h" #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Host CPU features. */ DECL_HIDDEN_DATA(CPUHOSTFEATURES) g_CpumHostFeatures; /** Static storage for host MSRs. */ static CPUMMSRS g_CpumHostMsrs; /** * CPUID bits to unify among all cores. */ static struct { uint32_t uLeaf; /**< Leaf to check. */ uint32_t uEcx; /**< which bits in ecx to unify between CPUs. */ uint32_t uEdx; /**< which bits in edx to unify between CPUs. */ } const g_aCpuidUnifyBits[] = { { 0x00000001, X86_CPUID_FEATURE_ECX_CX16 | X86_CPUID_FEATURE_ECX_MONITOR, X86_CPUID_FEATURE_EDX_CX8 } }; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static int cpumR0SaveHostDebugState(PVMCPUCC pVCpu); /** * Check the CPUID features of this particular CPU and disable relevant features * for the guest which do not exist on this CPU. * * We have seen systems where the X86_CPUID_FEATURE_ECX_MONITOR feature flag is * only set on some host CPUs, see @bugref{5436}. * * @note This function might be called simultaneously on more than one CPU! * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Leaf array. * @param pvUser2 Number of leaves. */ static DECLCALLBACK(void) cpumR0CheckCpuid(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PCPUMCPUIDLEAF const paLeaves = (PCPUMCPUIDLEAF)pvUser1; uint32_t const cLeaves = (uint32_t)(uintptr_t)pvUser2; RT_NOREF(idCpu); for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++) { PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafInt(paLeaves, cLeaves, g_aCpuidUnifyBits[i].uLeaf, 0); if (pLeaf) { uint32_t uEax, uEbx, uEcx, uEdx; ASMCpuIdExSlow(g_aCpuidUnifyBits[i].uLeaf, 0, 0, 0, &uEax, &uEbx, &uEcx, &uEdx); ASMAtomicAndU32(&pLeaf->uEcx, uEcx | ~g_aCpuidUnifyBits[i].uEcx); ASMAtomicAndU32(&pLeaf->uEdx, uEdx | ~g_aCpuidUnifyBits[i].uEdx); } } } /** * Does the Ring-0 CPU initialization once during module load. * XXX Host-CPU hot-plugging? */ VMMR0_INT_DECL(int) CPUMR0ModuleInit(void) { /* * Query the hardware virtualization capabilities of the host CPU first. */ uint32_t fHwCaps = 0; int rc = SUPR0GetVTSupport(&fHwCaps); AssertLogRelMsg(RT_SUCCESS(rc) || rc == VERR_UNSUPPORTED_CPU || rc == VERR_SVM_NO_SVM || rc == VERR_VMX_NO_VMX, ("SUPR0GetHwvirtMsrs -> %Rrc\n", rc)); if (RT_SUCCESS(rc)) { SUPHWVIRTMSRS HwvirtMsrs; rc = SUPR0GetHwvirtMsrs(&HwvirtMsrs, fHwCaps, false /*fIgnored*/); AssertLogRelRC(rc); if (RT_SUCCESS(rc)) { if (fHwCaps & SUPVTCAPS_VT_X) HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &g_CpumHostMsrs.hwvirt.vmx); else HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &g_CpumHostMsrs.hwvirt.svm); } } /* * Collect CPUID leaves. */ PCPUMCPUIDLEAF paLeaves; uint32_t cLeaves; rc = CPUMCpuIdCollectLeavesX86(&paLeaves, &cLeaves); AssertLogRelRCReturn(rc, rc); /* * Unify/cross check some CPUID feature bits on all available CPU cores * and threads. We've seen CPUs where the monitor support differed. */ RTMpOnAll(cpumR0CheckCpuid, paLeaves, (void *)(uintptr_t)cLeaves); /* * Populate the host CPU feature global variable. */ rc = cpumCpuIdExplodeFeaturesX86(paLeaves, cLeaves, &g_CpumHostMsrs, &g_CpumHostFeatures.s); RTMemFree(paLeaves); AssertLogRelRCReturn(rc, rc); /* * Get MSR_IA32_ARCH_CAPABILITIES and expand it into the host feature structure. */ if (ASMHasCpuId()) { /** @todo Should add this MSR to CPUMMSRS and expose it via SUPDrv... */ g_CpumHostFeatures.s.fArchRdclNo = 0; g_CpumHostFeatures.s.fArchIbrsAll = 0; g_CpumHostFeatures.s.fArchRsbOverride = 0; g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = 0; g_CpumHostFeatures.s.fArchMdsNo = 0; uint32_t const cStdRange = ASMCpuId_EAX(0); if ( RTX86IsValidStdRange(cStdRange) && cStdRange >= 7) { uint32_t const fStdFeaturesEdx = ASMCpuId_EDX(1); uint32_t fStdExtFeaturesEdx; ASMCpuIdExSlow(7, 0, 0, 0, NULL, NULL, NULL, &fStdExtFeaturesEdx); if ( (fStdExtFeaturesEdx & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP) && (fStdFeaturesEdx & X86_CPUID_FEATURE_EDX_MSR)) { uint64_t fArchVal = ASMRdMsr(MSR_IA32_ARCH_CAPABILITIES); g_CpumHostFeatures.s.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO); g_CpumHostFeatures.s.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL); g_CpumHostFeatures.s.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO); g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D); g_CpumHostFeatures.s.fArchMdsNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO); } else g_CpumHostFeatures.s.fArchCap = 0; } } return VINF_SUCCESS; } /** * Terminate the module. */ VMMR0_INT_DECL(int) CPUMR0ModuleTerm(void) { return VINF_SUCCESS; } /** * Initializes the CPUM data in the VM structure. * * @param pGVM The global VM structure. */ VMMR0_INT_DECL(void) CPUMR0InitPerVMData(PGVM pGVM) { /* Copy the ring-0 host feature set to the shared part so ring-3 can pick it up. */ pGVM->cpum.s.HostFeatures = g_CpumHostFeatures.s; } /** * Check the CPUID features of this particular CPU and disable relevant features * for the guest which do not exist on this CPU. We have seen systems where the * X86_CPUID_FEATURE_ECX_MONITOR feature flag is only set on some host CPUs, see * @bugref{5436}. * * @note This function might be called simultaneously on more than one CPU! * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Pointer to the VM structure. * @param pvUser2 Ignored. */ static DECLCALLBACK(void) cpumR0CheckCpuidLegacy(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PVMCC pVM = (PVMCC)pvUser1; NOREF(idCpu); NOREF(pvUser2); for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++) { /* Note! Cannot use cpumCpuIdGetLeaf from here because we're not necessarily in the VM process context. So, we using the legacy arrays as temporary storage. */ uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf; PCPUMCPUID pLegacyLeaf; if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd)) pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf]; else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt)) pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)]; else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur)) pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)]; else continue; uint32_t eax, ebx, ecx, edx; ASMCpuIdExSlow(uLeaf, 0, 0, 0, &eax, &ebx, &ecx, &edx); ASMAtomicAndU32(&pLegacyLeaf->uEcx, ecx | ~g_aCpuidUnifyBits[i].uEcx); ASMAtomicAndU32(&pLegacyLeaf->uEdx, edx | ~g_aCpuidUnifyBits[i].uEdx); } } /** * Does Ring-0 CPUM initialization. * * This is mainly to check that the Host CPU mode is compatible * with VBox. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR0_INT_DECL(int) CPUMR0InitVM(PVMCC pVM) { LogFlow(("CPUMR0Init: %p\n", pVM)); AssertCompile(sizeof(pVM->aCpus[0].cpum.s.Host.abXState) >= sizeof(pVM->aCpus[0].cpum.s.Guest.abXState)); /* * Check CR0 & CR4 flags. */ uint32_t u32CR0 = ASMGetCR0(); if ((u32CR0 & (X86_CR0_PE | X86_CR0_PG)) != (X86_CR0_PE | X86_CR0_PG)) /* a bit paranoid perhaps.. */ { Log(("CPUMR0Init: PE or PG not set. cr0=%#x\n", u32CR0)); return VERR_UNSUPPORTED_CPU_MODE; } /* * Check for sysenter and syscall usage. */ if (ASMHasCpuId()) { /* * SYSENTER/SYSEXIT * * Intel docs claim you should test both the flag and family, model & * stepping because some Pentium Pro CPUs have the SEP cpuid flag set, * but don't support it. AMD CPUs may support this feature in legacy * mode, they've banned it from long mode. Since we switch to 32-bit * mode when entering raw-mode context the feature would become * accessible again on AMD CPUs, so we have to check regardless of * host bitness. */ uint32_t u32CpuVersion; uint32_t u32Dummy; uint32_t fFeatures; /* (Used further down to check for MSRs, so don't clobber.) */ ASMCpuId(1, &u32CpuVersion, &u32Dummy, &u32Dummy, &fFeatures); uint32_t const u32Family = u32CpuVersion >> 8; uint32_t const u32Model = (u32CpuVersion >> 4) & 0xF; uint32_t const u32Stepping = u32CpuVersion & 0xF; if ( (fFeatures & X86_CPUID_FEATURE_EDX_SEP) && ( u32Family != 6 /* (> pentium pro) */ || u32Model >= 3 || u32Stepping >= 3 || !ASMIsIntelCpu()) ) { /* * Read the MSR and see if it's in use or not. */ uint32_t u32 = ASMRdMsr_Low(MSR_IA32_SYSENTER_CS); if (u32) { pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSENTER; Log(("CPUMR0Init: host uses sysenter cs=%08x%08x\n", ASMRdMsr_High(MSR_IA32_SYSENTER_CS), u32)); } } /* * SYSCALL/SYSRET * * This feature is indicated by the SEP bit returned in EDX by CPUID * function 0x80000001. Intel CPUs only supports this feature in * long mode. Since we're not running 64-bit guests in raw-mode there * are no issues with 32-bit intel hosts. */ uint32_t cExt = 0; ASMCpuId(0x80000000, &cExt, &u32Dummy, &u32Dummy, &u32Dummy); if (RTX86IsValidExtRange(cExt)) { uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001); if (fExtFeaturesEDX & X86_CPUID_EXT_FEATURE_EDX_SYSCALL) { #ifdef RT_ARCH_X86 if (!ASMIsIntelCpu()) #endif { uint64_t fEfer = ASMRdMsr(MSR_K6_EFER); if (fEfer & MSR_K6_EFER_SCE) { pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSCALL; Log(("CPUMR0Init: host uses syscall\n")); } } } } /* * Copy MSR_IA32_ARCH_CAPABILITIES bits over into the host and guest feature * structure and as well as the guest MSR. * Note! we assume this happens after the CPUMR3Init is done, so CPUID bits are settled. */ pVM->cpum.s.HostFeatures.fArchRdclNo = 0; pVM->cpum.s.HostFeatures.fArchIbrsAll = 0; pVM->cpum.s.HostFeatures.fArchRsbOverride = 0; pVM->cpum.s.HostFeatures.fArchVmmNeedNotFlushL1d = 0; pVM->cpum.s.HostFeatures.fArchMdsNo = 0; uint32_t const cStdRange = ASMCpuId_EAX(0); if ( RTX86IsValidStdRange(cStdRange) && cStdRange >= 7) { uint32_t fEdxFeatures = ASMCpuId_EDX(7); if ( (fEdxFeatures & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP) && (fFeatures & X86_CPUID_FEATURE_EDX_MSR)) { /* Host: */ uint64_t fArchVal = ASMRdMsr(MSR_IA32_ARCH_CAPABILITIES); pVM->cpum.s.HostFeatures.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO); pVM->cpum.s.HostFeatures.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL); pVM->cpum.s.HostFeatures.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO); pVM->cpum.s.HostFeatures.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D); pVM->cpum.s.HostFeatures.fArchMdsNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO); /* guest: */ if (!pVM->cpum.s.GuestFeatures.fArchCap) fArchVal = 0; else if (!pVM->cpum.s.GuestFeatures.fIbrs) fArchVal &= ~MSR_IA32_ARCH_CAP_F_IBRS_ALL; VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->cpum.s.GuestMsrs.msr.ArchCaps = fArchVal); pVM->cpum.s.GuestFeatures.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO); pVM->cpum.s.GuestFeatures.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL); pVM->cpum.s.GuestFeatures.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO); pVM->cpum.s.GuestFeatures.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D); pVM->cpum.s.GuestFeatures.fArchMdsNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO); } else pVM->cpum.s.HostFeatures.fArchCap = 0; } /* * Unify/cross check some CPUID feature bits on all available CPU cores * and threads. We've seen CPUs where the monitor support differed. * * Because the hyper heap isn't always mapped into ring-0, we cannot * access it from a RTMpOnAll callback. We use the legacy CPUID arrays * as temp ring-0 accessible memory instead, ASSUMING that they're all * up to date when we get here. */ RTMpOnAll(cpumR0CheckCpuidLegacy, pVM, NULL); for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++) { bool fIgnored; uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf; PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, 0, &fIgnored); if (pLeaf) { PCPUMCPUID pLegacyLeaf; if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd)) pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf]; else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt)) pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)]; else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur)) pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)]; else continue; pLeaf->uEcx = pLegacyLeaf->uEcx; pLeaf->uEdx = pLegacyLeaf->uEdx; } } } /* * Check if debug registers are armed. * This ASSUMES that DR7.GD is not set, or that it's handled transparently! */ uint32_t u32DR7 = ASMGetDR7(); if (u32DR7 & X86_DR7_ENABLED_MASK) { VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST); Log(("CPUMR0Init: host uses debug registers (dr7=%x)\n", u32DR7)); } return VINF_SUCCESS; } /** * Trap handler for device-not-available fault (\#NM). * Device not available, FP or (F)WAIT instruction. * * @returns VBox status code. * @retval VINF_SUCCESS if the guest FPU state is loaded. * @retval VINF_EM_RAW_GUEST_TRAP if it is a guest trap. * @retval VINF_CPUM_HOST_CR0_MODIFIED if we modified the host CR0. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ VMMR0_INT_DECL(int) CPUMR0Trap07Handler(PVMCC pVM, PVMCPUCC pVCpu) { Assert(pVM->cpum.s.HostFeatures.fFxSaveRstor); Assert(ASMGetCR4() & X86_CR4_OSFXSR); /* If the FPU state has already been loaded, then it's a guest trap. */ if (CPUMIsGuestFPUStateActive(pVCpu)) { Assert( ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS)) || ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS | X86_CR0_EM))); return VINF_EM_RAW_GUEST_TRAP; } /* * There are two basic actions: * 1. Save host fpu and restore guest fpu. * 2. Generate guest trap. * * When entering the hypervisor we'll always enable MP (for proper wait * trapping) and TS (for intercepting all fpu/mmx/sse stuff). The EM flag * is taken from the guest OS in order to get proper SSE handling. * * * Actions taken depending on the guest CR0 flags: * * 3 2 1 * TS | EM | MP | FPUInstr | WAIT :: VMM Action * ------------------------------------------------------------------------ * 0 | 0 | 0 | Exec | Exec :: Clear TS & MP, Save HC, Load GC. * 0 | 0 | 1 | Exec | Exec :: Clear TS, Save HC, Load GC. * 0 | 1 | 0 | #NM | Exec :: Clear TS & MP, Save HC, Load GC. * 0 | 1 | 1 | #NM | Exec :: Clear TS, Save HC, Load GC. * 1 | 0 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already cleared.) * 1 | 0 | 1 | #NM | #NM :: Go to guest taking trap there. * 1 | 1 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already set.) * 1 | 1 | 1 | #NM | #NM :: Go to guest taking trap there. */ switch (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) { case X86_CR0_MP | X86_CR0_TS: case X86_CR0_MP | X86_CR0_TS | X86_CR0_EM: return VINF_EM_RAW_GUEST_TRAP; default: break; } return CPUMR0LoadGuestFPU(pVM, pVCpu); } /** * Saves the host-FPU/XMM state (if necessary) and (always) loads the guest-FPU * state into the CPU. * * @returns VINF_SUCCESS on success, host CR0 unmodified. * @returns VINF_CPUM_HOST_CR0_MODIFIED on success when the host CR0 was * modified and VT-x needs to update the value in the VMCS. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ VMMR0_INT_DECL(int) CPUMR0LoadGuestFPU(PVMCC pVM, PVMCPUCC pVCpu) { int rc; Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)); /* Notify the support driver prior to loading the guest-FPU register state. */ SUPR0FpuBegin(VMMR0ThreadCtxHookIsEnabled(pVCpu)); /** @todo use return value? Currently skipping that to be on the safe side * wrt. extended state (linux). */ if (!pVM->cpum.s.HostFeatures.fLeakyFxSR) { Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE)); rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s); } else { Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE) || (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST)); /** @todo r=ramshankar: Can't we used a cached value here * instead of reading the MSR? host EFER doesn't usually * change. */ uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER); if (!(uHostEfer & MSR_K6_EFER_FFXSR)) rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s); else { RTCCUINTREG const uSavedFlags = ASMIntDisableFlags(); pVCpu->cpum.s.fUseFlags |= CPUM_USED_MANUAL_XMM_RESTORE; ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR); rc = cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s); ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR); ASMSetFlags(uSavedFlags); } } Assert( (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM)) == (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM)); Assert(pVCpu->cpum.s.Guest.fUsedFpuGuest); return rc; } /** * Saves the guest FPU/XMM state if needed, restores the host FPU/XMM state as * needed. * * @returns true if we saved the guest state. * @param pVCpu The cross context virtual CPU structure. */ VMMR0_INT_DECL(bool) CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(PVMCPUCC pVCpu) { bool fSavedGuest; Assert(pVCpu->CTX_SUFF(pVM)->cpum.s.HostFeatures.fFxSaveRstor); Assert(ASMGetCR4() & X86_CR4_OSFXSR); if (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST)) { fSavedGuest = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST); Assert(fSavedGuest == pVCpu->cpum.s.Guest.fUsedFpuGuest); if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE)) cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s); else { /* Temporarily clear MSR_K6_EFER_FFXSR or else we'll be unable to save/restore the XMM state with fxsave/fxrstor. */ uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER); if (uHostEfer & MSR_K6_EFER_FFXSR) { RTCCUINTREG const uSavedFlags = ASMIntDisableFlags(); ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR); cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s); ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR); ASMSetFlags(uSavedFlags); } else cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s); pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_MANUAL_XMM_RESTORE; } /* Notify the support driver after loading the host-FPU register state. */ SUPR0FpuEnd(VMMR0ThreadCtxHookIsEnabled(pVCpu)); } else fSavedGuest = false; Assert(!( pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_MANUAL_XMM_RESTORE))); Assert(!pVCpu->cpum.s.Guest.fUsedFpuGuest); return fSavedGuest; } /** * Saves the host debug state, setting CPUM_USED_HOST_DEBUG_STATE and loading * DR7 with safe values. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ static int cpumR0SaveHostDebugState(PVMCPUCC pVCpu) { /* * Save the host state. */ pVCpu->cpum.s.Host.dr0 = ASMGetDR0(); pVCpu->cpum.s.Host.dr1 = ASMGetDR1(); pVCpu->cpum.s.Host.dr2 = ASMGetDR2(); pVCpu->cpum.s.Host.dr3 = ASMGetDR3(); pVCpu->cpum.s.Host.dr6 = ASMGetDR6(); /** @todo dr7 might already have been changed to 0x400; don't care right now as it's harmless. */ pVCpu->cpum.s.Host.dr7 = ASMGetDR7(); /* Preemption paranoia. */ ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HOST); /* * Make sure DR7 is harmless or else we could trigger breakpoints when * load guest or hypervisor DRx values later. */ if (pVCpu->cpum.s.Host.dr7 != X86_DR7_INIT_VAL) ASMSetDR7(X86_DR7_INIT_VAL); return VINF_SUCCESS; } /** * Saves the guest DRx state residing in host registers and restore the host * register values. * * The guest DRx state is only saved if CPUMR0LoadGuestDebugState was called, * since it's assumed that we're shadowing the guest DRx register values * accurately when using the combined hypervisor debug register values * (CPUMR0LoadHyperDebugState). * * @returns true if either guest or hypervisor debug registers were loaded. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fDr6 Whether to include DR6 or not. * @thread EMT(pVCpu) */ VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(PVMCPUCC pVCpu, bool fDr6) { Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); bool const fDrXLoaded = RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER)); /* * Do we need to save the guest DRx registered loaded into host registers? * (DR7 and DR6 (if fDr6 is true) are left to the caller.) */ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST) { pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0(); pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1(); pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2(); pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3(); if (fDr6) pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6() | X86_DR6_RA1_MASK; /* ASSUMES no guest supprot for TSX-NI / RTM. */ } ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~(CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER)); /* * Restore the host's debug state. DR0-3, DR6 and only then DR7! */ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST) { /* A bit of paranoia first... */ uint64_t uCurDR7 = ASMGetDR7(); if (uCurDR7 != X86_DR7_INIT_VAL) ASMSetDR7(X86_DR7_INIT_VAL); ASMSetDR0(pVCpu->cpum.s.Host.dr0); ASMSetDR1(pVCpu->cpum.s.Host.dr1); ASMSetDR2(pVCpu->cpum.s.Host.dr2); ASMSetDR3(pVCpu->cpum.s.Host.dr3); /** @todo consider only updating if they differ, esp. DR6. Need to figure how * expensive DRx reads are over DRx writes. */ ASMSetDR6(pVCpu->cpum.s.Host.dr6); ASMSetDR7(pVCpu->cpum.s.Host.dr7); ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HOST); } return fDrXLoaded; } /** * Saves the guest DRx state if it resides host registers. * * This does NOT clear any use flags, so the host registers remains loaded with * the guest DRx state upon return. The purpose is only to make sure the values * in the CPU context structure is up to date. * * @returns true if the host registers contains guest values, false if not. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fDr6 Whether to include DR6 or not. * @thread EMT(pVCpu) */ VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuest(PVMCPUCC pVCpu, bool fDr6) { /* * Do we need to save the guest DRx registered loaded into host registers? * (DR7 and DR6 (if fDr6 is true) are left to the caller.) */ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST) { pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0(); pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1(); pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2(); pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3(); if (fDr6) pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6(); return true; } return false; } /** * Lazily sync in the debug state. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fDr6 Whether to include DR6 or not. * @thread EMT(pVCpu) */ VMMR0_INT_DECL(void) CPUMR0LoadGuestDebugState(PVMCPUCC pVCpu, bool fDr6) { /* * Save the host state and disarm all host BPs. */ cpumR0SaveHostDebugState(pVCpu); Assert(ASMGetDR7() == X86_DR7_INIT_VAL); /* * Activate the guest state DR0-3. * DR7 and DR6 (if fDr6 is true) are left to the caller. */ ASMSetDR0(pVCpu->cpum.s.Guest.dr[0]); ASMSetDR1(pVCpu->cpum.s.Guest.dr[1]); ASMSetDR2(pVCpu->cpum.s.Guest.dr[2]); ASMSetDR3(pVCpu->cpum.s.Guest.dr[3]); if (fDr6) ASMSetDR6(pVCpu->cpum.s.Guest.dr[6]); ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST); } /** * Lazily sync in the hypervisor debug state * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fDr6 Whether to include DR6 or not. * @thread EMT(pVCpu) */ VMMR0_INT_DECL(void) CPUMR0LoadHyperDebugState(PVMCPUCC pVCpu, bool fDr6) { /* * Save the host state and disarm all host BPs. */ cpumR0SaveHostDebugState(pVCpu); Assert(ASMGetDR7() == X86_DR7_INIT_VAL); /* * Make sure the hypervisor values are up to date. */ CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */); /* * Activate the guest state DR0-3. * DR7 and DR6 (if fDr6 is true) are left to the caller. */ ASMSetDR0(pVCpu->cpum.s.Hyper.dr[0]); ASMSetDR1(pVCpu->cpum.s.Hyper.dr[1]); ASMSetDR2(pVCpu->cpum.s.Hyper.dr[2]); ASMSetDR3(pVCpu->cpum.s.Hyper.dr[3]); if (fDr6) ASMSetDR6(X86_DR6_INIT_VAL); ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER); }