summaryrefslogtreecommitdiffstats
path: root/include/iprt/uint256.h
blob: 351f7f4e4e9794835555f87d041292f504ab174f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
/** @file
 * IPRT - RTUINT256U methods.
 */

/*
 * Copyright (C) 2011-2022 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
 * in the VirtualBox distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 *
 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
 */

#ifndef IPRT_INCLUDED_uint256_h
#define IPRT_INCLUDED_uint256_h
#ifndef RT_WITHOUT_PRAGMA_ONCE
# pragma once
#endif

#include <iprt/cdefs.h>
#include <iprt/types.h>
#include <iprt/asm.h>
#include <iprt/asm-math.h>

RT_C_DECLS_BEGIN

/** @defgroup grp_rt_uint256 RTUInt256 - 256-bit Unsigned Integer Methods
 * @ingroup grp_rt
 * @{
 */


/**
 * Test if a 256-bit unsigned integer value is zero.
 *
 * @returns true if they are, false if they aren't.
 * @param   pValue          The input and output value.
 */
DECLINLINE(bool) RTUInt256IsZero(PCRTUINT256U pValue)
{
#if ARCH_BITS >= 64
    return pValue->QWords.qw0 == 0
        && pValue->QWords.qw1 == 0
        && pValue->QWords.qw2 == 0
        && pValue->QWords.qw3 == 0;
#else
    return pValue->DWords.dw0 == 0
        && pValue->DWords.dw1 == 0
        && pValue->DWords.dw2 == 0
        && pValue->DWords.dw3 == 0
        && pValue->DWords.dw4 == 0
        && pValue->DWords.dw5 == 0
        && pValue->DWords.dw6 == 0
        && pValue->DWords.dw7 == 0;
#endif
}


/**
 * Set a 256-bit unsigned integer value to zero.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 */
DECLINLINE(PRTUINT256U) RTUInt256SetZero(PRTUINT256U pResult)
{
#if ARCH_BITS >= 64
    pResult->QWords.qw0 = 0;
    pResult->QWords.qw1 = 0;
    pResult->QWords.qw2 = 0;
    pResult->QWords.qw3 = 0;
#else
    pResult->DWords.dw0 = 0;
    pResult->DWords.dw1 = 0;
    pResult->DWords.dw2 = 0;
    pResult->DWords.dw3 = 0;
    pResult->DWords.dw4 = 0;
    pResult->DWords.dw5 = 0;
    pResult->DWords.dw6 = 0;
    pResult->DWords.dw7 = 0;
#endif
    return pResult;
}


/**
 * Set a 256-bit unsigned integer value to the maximum value.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 */
DECLINLINE(PRTUINT256U) RTUInt256SetMax(PRTUINT256U pResult)
{
#if ARCH_BITS >= 64
    pResult->QWords.qw0 = UINT64_MAX;
    pResult->QWords.qw1 = UINT64_MAX;
    pResult->QWords.qw2 = UINT64_MAX;
    pResult->QWords.qw3 = UINT64_MAX;
#else
    pResult->DWords.dw0 = UINT32_MAX;
    pResult->DWords.dw1 = UINT32_MAX;
    pResult->DWords.dw2 = UINT32_MAX;
    pResult->DWords.dw3 = UINT32_MAX;
    pResult->DWords.dw4 = UINT32_MAX;
    pResult->DWords.dw5 = UINT32_MAX;
    pResult->DWords.dw6 = UINT32_MAX;
    pResult->DWords.dw7 = UINT32_MAX;
#endif
    return pResult;
}




/**
 * Adds two 256-bit unsigned integer values.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256Add(PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    unsigned uCarry;
    pResult->QWords.qw0 = pValue1->QWords.qw0 + pValue2->QWords.qw0;
    uCarry = pResult->QWords.qw0 < pValue1->QWords.qw0;

    pResult->QWords.qw1 = pValue1->QWords.qw1 + pValue2->QWords.qw1 + uCarry;
    uCarry = uCarry ? pResult->QWords.qw1 <= pValue1->QWords.qw1 : pResult->QWords.qw1 < pValue1->QWords.qw1;

    pResult->QWords.qw2 = pValue1->QWords.qw2 + pValue2->QWords.qw2 + uCarry;
    uCarry = uCarry ? pResult->QWords.qw2 <= pValue1->QWords.qw2 : pResult->QWords.qw2 < pValue1->QWords.qw2;

    pResult->QWords.qw3 = pValue1->QWords.qw3 + pValue2->QWords.qw3 + uCarry;
    return pResult;
}


/**
 * Adds a 256-bit and a 64-bit unsigned integer values.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The first value.
 * @param   uValue2             The second value, 64-bit.
 */
DECLINLINE(PRTUINT256U) RTUInt256AddU64(PRTUINT256U pResult, PCRTUINT256U pValue1, uint64_t uValue2)
{
    pResult->QWords.qw3 = pValue1->QWords.qw3;
    pResult->QWords.qw2 = pValue1->QWords.qw2;
    pResult->QWords.qw1 = pValue1->QWords.qw1;
    pResult->QWords.qw0 = pValue1->QWords.qw0 + uValue2;
    if (pResult->QWords.qw0 < uValue2)
        if (pResult->QWords.qw1++ == UINT64_MAX)
            if (pResult->QWords.qw2++ == UINT64_MAX)
                pResult->QWords.qw3++;
    return pResult;
}


/**
 * Subtracts a 256-bit unsigned integer value from another.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The minuend value.
 * @param   pValue2             The subtrahend value.
 */
DECLINLINE(PRTUINT256U) RTUInt256Sub(PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    unsigned uBorrow;
    pResult->QWords.qw0 = pValue1->QWords.qw0 - pValue2->QWords.qw0;
    uBorrow = pResult->QWords.qw0 > pValue1->QWords.qw0;

    pResult->QWords.qw1 = pValue1->QWords.qw1 - pValue2->QWords.qw1 - uBorrow;
    uBorrow = uBorrow ? pResult->QWords.qw1 >= pValue1->QWords.qw1 : pResult->QWords.qw1 > pValue1->QWords.qw1;

    pResult->QWords.qw2 = pValue1->QWords.qw2 - pValue2->QWords.qw2 - uBorrow;
    uBorrow = uBorrow ? pResult->QWords.qw2 >= pValue1->QWords.qw2 : pResult->QWords.qw2 > pValue1->QWords.qw2;

    pResult->QWords.qw3 = pValue1->QWords.qw3 - pValue2->QWords.qw3 - uBorrow;
    return pResult;
}


/**
 * Multiplies two 256-bit unsigned integer values.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
RTDECL(PRTUINT256U) RTUInt256Mul(PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2);

/**
 * Multiplies an 256-bit unsigned integer by a 64-bit unsigned integer value.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The first value.
 * @param   uValue2             The second value, 64-bit.
 */
RTDECL(PRTUINT256U) RTUInt256MulByU64(PRTUINT256U pResult, PCRTUINT256U pValue1, uint64_t uValue2);

/**
 * Divides a 256-bit unsigned integer value by another, returning both quotient
 * and remainder.
 *
 * @returns pQuotient, NULL if pValue2 is 0.
 * @param   pQuotient           Where to return the quotient.
 * @param   pRemainder          Where to return the remainder.
 * @param   pValue1             The dividend value.
 * @param   pValue2             The divisor value.
 */
RTDECL(PRTUINT256U) RTUInt256DivRem(PRTUINT256U pQuotient, PRTUINT256U pRemainder, PCRTUINT256U pValue1, PCRTUINT256U pValue2);

/**
 * Divides a 256-bit unsigned integer value by another.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The dividend value.
 * @param   pValue2             The divisor value.
 */
DECLINLINE(PRTUINT256U) RTUInt256Div(PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    RTUINT256U Ignored;
    return RTUInt256DivRem(pResult, &Ignored, pValue1, pValue2);
}


/**
 * Divides a 256-bit unsigned integer value by another, returning the remainder.
 *
 * @returns pResult
 * @param   pResult             The result variable (remainder).
 * @param   pValue1             The dividend value.
 * @param   pValue2             The divisor value.
 */
DECLINLINE(PRTUINT256U) RTUInt256Mod(PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    RTUINT256U Ignored;
    RTUInt256DivRem(&Ignored, pResult, pValue1, pValue2);
    return pResult;
}


/**
 * Bitwise AND of two 256-bit unsigned integer values.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256And(PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    pResult->QWords.qw0 = pValue1->QWords.qw0 & pValue2->QWords.qw0;
    pResult->QWords.qw1 = pValue1->QWords.qw1 & pValue2->QWords.qw1;
    pResult->QWords.qw2 = pValue1->QWords.qw2 & pValue2->QWords.qw2;
    pResult->QWords.qw3 = pValue1->QWords.qw3 & pValue2->QWords.qw3;
    return pResult;
}


/**
 * Bitwise OR of two 256-bit unsigned integer values.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256Or( PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    pResult->QWords.qw0 = pValue1->QWords.qw0 | pValue2->QWords.qw0;
    pResult->QWords.qw1 = pValue1->QWords.qw1 | pValue2->QWords.qw1;
    pResult->QWords.qw2 = pValue1->QWords.qw2 | pValue2->QWords.qw2;
    pResult->QWords.qw3 = pValue1->QWords.qw3 | pValue2->QWords.qw3;
    return pResult;
}


/**
 * Bitwise XOR of two 256-bit unsigned integer values.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256Xor(PRTUINT256U pResult, PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    pResult->QWords.qw0 = pValue1->QWords.qw0 ^ pValue2->QWords.qw0;
    pResult->QWords.qw1 = pValue1->QWords.qw1 ^ pValue2->QWords.qw1;
    pResult->QWords.qw2 = pValue1->QWords.qw2 ^ pValue2->QWords.qw2;
    pResult->QWords.qw3 = pValue1->QWords.qw3 ^ pValue2->QWords.qw3;
    return pResult;
}


/**
 * Shifts a 256-bit unsigned integer value @a cBits to the left.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue              The value to shift.
 * @param   cBits               The number of bits to shift it.  This is masked
 *                              by 255 before shifting.
 */
DECLINLINE(PRTUINT256U) RTUInt256ShiftLeft(PRTUINT256U pResult, PCRTUINT256U pValue, unsigned cBits)
{
    /* This is a bit bulky & impractical since we cannot access the data using
       an array because it is organized according to host endianness. Sigh. */
    cBits &= 255;
    if (!(cBits & 0x3f))
    {
        if (cBits == 0)
            *pResult = *pValue;
        else
        {
            pResult->QWords.qw0 = 0;
            if (cBits == 64)
            {
                pResult->QWords.qw1 = pValue->QWords.qw0;
                pResult->QWords.qw2 = pValue->QWords.qw1;
                pResult->QWords.qw3 = pValue->QWords.qw2;
            }
            else
            {
                pResult->QWords.qw1 = 0;
                if (cBits == 128)
                {
                    pResult->QWords.qw2 = pValue->QWords.qw0;
                    pResult->QWords.qw3 = pValue->QWords.qw1;
                }
                else
                {
                    pResult->QWords.qw2 = 0;
                    pResult->QWords.qw3 = pValue->QWords.qw0;
                }
            }
        }
    }
    else if (cBits < 128)
    {
        if (cBits < 64)
        {
            pResult->QWords.qw0  = pValue->QWords.qw0 << cBits;
            pResult->QWords.qw1  = pValue->QWords.qw0 >> (64 - cBits);
            pResult->QWords.qw1 |= pValue->QWords.qw1 << cBits;
            pResult->QWords.qw2  = pValue->QWords.qw1 >> (64 - cBits);
            pResult->QWords.qw2 |= pValue->QWords.qw2 << cBits;
            pResult->QWords.qw3  = pValue->QWords.qw2 >> (64 - cBits);
            pResult->QWords.qw3 |= pValue->QWords.qw3 << cBits;
        }
        else
        {
            cBits -= 64;
            pResult->QWords.qw0  = 0;
            pResult->QWords.qw1  = pValue->QWords.qw0 << cBits;
            pResult->QWords.qw2  = pValue->QWords.qw0 >> (64 - cBits);
            pResult->QWords.qw2 |= pValue->QWords.qw1 << cBits;
            pResult->QWords.qw3  = pValue->QWords.qw1 >> (64 - cBits);
            pResult->QWords.qw3 |= pValue->QWords.qw2 << cBits;
        }
    }
    else
    {
        if (cBits < 192)
        {
            cBits -= 128;
            pResult->QWords.qw0  = 0;
            pResult->QWords.qw1  = 0;
            pResult->QWords.qw2  = pValue->QWords.qw0 << cBits;
            pResult->QWords.qw3  = pValue->QWords.qw0 >> (64 - cBits);
            pResult->QWords.qw3 |= pValue->QWords.qw1 << cBits;
        }
        else
        {
            cBits -= 192;
            pResult->QWords.qw0  = 0;
            pResult->QWords.qw1  = 0;
            pResult->QWords.qw2  = 0;
            pResult->QWords.qw3  = pValue->QWords.qw0 << cBits;
        }
    }
    return pResult;
}


/**
 * Shifts a 256-bit unsigned integer value @a cBits to the right.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue              The value to shift.
 * @param   cBits               The number of bits to shift it.  This is masked
 *                              by 255 before shifting.
 */
DECLINLINE(PRTUINT256U) RTUInt256ShiftRight(PRTUINT256U pResult, PCRTUINT256U pValue, unsigned cBits)
{
    /* This is a bit bulky & impractical since we cannot access the data using
       an array because it is organized according to host endianness. Sigh. */
    cBits &= 255;
    if (!(cBits & 0x3f))
    {
        if (cBits == 0)
            *pResult = *pValue;
        else
        {
            if (cBits == 64)
            {
                pResult->QWords.qw0 = pValue->QWords.qw1;
                pResult->QWords.qw1 = pValue->QWords.qw2;
                pResult->QWords.qw2 = pValue->QWords.qw3;
            }
            else
            {
                if (cBits == 128)
                {
                    pResult->QWords.qw0 = pValue->QWords.qw2;
                    pResult->QWords.qw1 = pValue->QWords.qw3;
                }
                else
                {
                    pResult->QWords.qw0 = pValue->QWords.qw3;
                    pResult->QWords.qw1 = 0;
                }
                pResult->QWords.qw2 = 0;
            }
            pResult->QWords.qw3 = 0;
        }
    }
    else if (cBits < 128)
    {
        if (cBits < 64)
        {
            pResult->QWords.qw0  = pValue->QWords.qw0 >> cBits;
            pResult->QWords.qw0 |= pValue->QWords.qw1 << (64 - cBits);
            pResult->QWords.qw1  = pValue->QWords.qw1 >> cBits;
            pResult->QWords.qw1 |= pValue->QWords.qw2 << (64 - cBits);
            pResult->QWords.qw2  = pValue->QWords.qw2 >> cBits;
            pResult->QWords.qw2 |= pValue->QWords.qw3 << (64 - cBits);
            pResult->QWords.qw3  = pValue->QWords.qw3 >> cBits;
        }
        else
        {
            cBits -= 64;
            pResult->QWords.qw0  = pValue->QWords.qw1 >> cBits;
            pResult->QWords.qw0 |= pValue->QWords.qw2 << (64 - cBits);
            pResult->QWords.qw1  = pValue->QWords.qw2 >> cBits;
            pResult->QWords.qw1 |= pValue->QWords.qw3 << (64 - cBits);
            pResult->QWords.qw2  = pValue->QWords.qw3 >> cBits;
            pResult->QWords.qw3  = 0;
        }
    }
    else
    {
        if (cBits < 192)
        {
            cBits -= 128;
            pResult->QWords.qw0  = pValue->QWords.qw2 >> cBits;
            pResult->QWords.qw0 |= pValue->QWords.qw3 << (64 - cBits);
            pResult->QWords.qw1  = pValue->QWords.qw3 >> cBits;
            pResult->QWords.qw2  = 0;
            pResult->QWords.qw3  = 0;
        }
        else
        {
            cBits -= 192;
            pResult->QWords.qw0  = pValue->QWords.qw3 >> cBits;
            pResult->QWords.qw1  = 0;
            pResult->QWords.qw2  = 0;
            pResult->QWords.qw3  = 0;
        }
    }
    return pResult;
}


/**
 * Boolean not (result 0 or 1).
 *
 * @returns pResult.
 * @param   pResult             The result variable.
 * @param   pValue              The value.
 */
DECLINLINE(PRTUINT256U) RTUInt256BooleanNot(PRTUINT256U pResult, PCRTUINT256U pValue)
{
    pResult->QWords.qw0 = RTUInt256IsZero(pValue);
    pResult->QWords.qw1 = 0;
    pResult->QWords.qw2 = 0;
    pResult->QWords.qw3 = 0;
    return pResult;
}


/**
 * Bitwise not (flips each bit of the 256 bits).
 *
 * @returns pResult.
 * @param   pResult             The result variable.
 * @param   pValue              The value.
 */
DECLINLINE(PRTUINT256U) RTUInt256BitwiseNot(PRTUINT256U pResult, PCRTUINT256U pValue)
{
    pResult->QWords.qw0 = ~pValue->QWords.qw0;
    pResult->QWords.qw1 = ~pValue->QWords.qw1;
    pResult->QWords.qw2 = ~pValue->QWords.qw2;
    pResult->QWords.qw3 = ~pValue->QWords.qw3;
    return pResult;
}


/**
 * Assigns one 256-bit unsigned integer value to another.
 *
 * @returns pResult
 * @param   pResult             The result variable.
 * @param   pValue              The value to assign.
 */
DECLINLINE(PRTUINT256U) RTUInt256Assign(PRTUINT256U pResult, PCRTUINT256U pValue)
{
    pResult->QWords.qw0 = pValue->QWords.qw0;
    pResult->QWords.qw1 = pValue->QWords.qw1;
    pResult->QWords.qw2 = pValue->QWords.qw2;
    pResult->QWords.qw3 = pValue->QWords.qw3;
    return pResult;
}


/**
 * Assigns a boolean value to 256-bit unsigned integer.
 *
 * @returns pValueResult
 * @param   pValueResult        The result variable.
 * @param   fValue              The boolean value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignBoolean(PRTUINT256U pValueResult, bool fValue)
{
    pValueResult->QWords.qw0 = fValue;
    pValueResult->QWords.qw1 = 0;
    pValueResult->QWords.qw2 = 0;
    pValueResult->QWords.qw3 = 0;
    return pValueResult;
}


/**
 * Assigns a 8-bit unsigned integer value to 256-bit unsigned integer.
 *
 * @returns pValueResult
 * @param   pValueResult        The result variable.
 * @param   u8Value             The 8-bit unsigned integer value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignU8(PRTUINT256U pValueResult, uint8_t u8Value)
{
    pValueResult->QWords.qw0 = u8Value;
    pValueResult->QWords.qw1 = 0;
    pValueResult->QWords.qw2 = 0;
    pValueResult->QWords.qw3 = 0;
    return pValueResult;
}


/**
 * Assigns a 16-bit unsigned integer value to 256-bit unsigned integer.
 *
 * @returns pValueResult
 * @param   pValueResult        The result variable.
 * @param   u16Value            The 16-bit unsigned integer value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignU16(PRTUINT256U pValueResult, uint16_t u16Value)
{
    pValueResult->QWords.qw0 = u16Value;
    pValueResult->QWords.qw1 = 0;
    pValueResult->QWords.qw2 = 0;
    pValueResult->QWords.qw3 = 0;
    return pValueResult;
}


/**
 * Assigns a 32-bit unsigned integer value to 256-bit unsigned integer.
 *
 * @returns pValueResult
 * @param   pValueResult        The result variable.
 * @param   u32Value            The 32-bit unsigned integer value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignU32(PRTUINT256U pValueResult, uint32_t u32Value)
{
    pValueResult->QWords.qw0 = u32Value;
    pValueResult->QWords.qw1 = 0;
    pValueResult->QWords.qw2 = 0;
    pValueResult->QWords.qw3 = 0;
    return pValueResult;
}


/**
 * Assigns a 64-bit unsigned integer value to 256-bit unsigned integer.
 *
 * @returns pValueResult
 * @param   pValueResult        The result variable.
 * @param   u64Value            The 64-bit unsigned integer value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignU64(PRTUINT256U pValueResult, uint64_t u64Value)
{
    pValueResult->QWords.qw0 = u64Value;
    pValueResult->QWords.qw1 = 0;
    pValueResult->QWords.qw2 = 0;
    pValueResult->QWords.qw3 = 0;
    return pValueResult;
}


/**
 * Adds two 256-bit unsigned integer values, storing the result in the first.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The first value and result.
 * @param   pValue2         The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignAdd(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    RTUINT256U const uTmpValue1 = *pValue1Result; /* lazy bird */
    return RTUInt256Add(pValue1Result, &uTmpValue1, pValue2);
}


/**
 * Adds a 64-bit unsigned integer value to a 256-bit unsigned integer values,
 * storing the result in the 256-bit one.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The first value and result.
 * @param   uValue2         The second value, 64-bit.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignAddU64(PRTUINT256U pValue1Result, uint64_t uValue2)
{
    RTUINT256U const uTmpValue1 = *pValue1Result; /* lazy bird */
    return RTUInt256AddU64(pValue1Result, &uTmpValue1, uValue2);
}


/**
 * Subtracts two 256-bit unsigned integer values, storing the result in the
 * first.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The minuend value and result.
 * @param   pValue2         The subtrahend value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignSub(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    RTUINT256U const uTmpValue1 = *pValue1Result; /* lazy bird */
    return RTUInt256Sub(pValue1Result, &uTmpValue1, pValue2);
}


#if 0
/**
 * Negates a 256 number, storing the result in the input.
 *
 * @returns pValueResult.
 * @param   pValueResult    The value to negate.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignNeg(PRTUINT256U pValueResult)
{
    /* result = 0 - value */
    if (pValueResult->s.Lo != 0)
    {
        pValueResult->s.Lo = UINT64_C(0) - pValueResult->s.Lo;
        pValueResult->s.Hi = UINT64_MAX  - pValueResult->s.Hi;
    }
    else
        pValueResult->s.Hi = UINT64_C(0) - pValueResult->s.Hi;
    return pValueResult;
}
#endif


/**
 * Multiplies two 256-bit unsigned integer values, storing the result in the
 * first.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The first value and result.
 * @param   pValue2         The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignMul(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    RTUINT256U Result;
    RTUInt256Mul(&Result, pValue1Result, pValue2);
    *pValue1Result = Result;
    return pValue1Result;
}


/**
 * Divides a 256-bit unsigned integer value by another, storing the result in
 * the first.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The dividend value and result.
 * @param   pValue2         The divisor value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignDiv(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    RTUINT256U Result;
    RTUINT256U Ignored;
    RTUInt256DivRem(&Result, &Ignored, pValue1Result, pValue2);
    *pValue1Result = Result;
    return pValue1Result;
}


/**
 * Divides a 256-bit unsigned integer value by another, storing the remainder in
 * the first.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The dividend value and result (remainder).
 * @param   pValue2         The divisor value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignMod(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    RTUINT256U Ignored;
    RTUINT256U Result;
    RTUInt256DivRem(&Ignored, &Result, pValue1Result, pValue2);
    *pValue1Result = Result;
    return pValue1Result;
}


/**
 * Performs a bitwise AND of two 256-bit unsigned integer values and assigned
 * the result to the first one.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The first value and result.
 * @param   pValue2         The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignAnd(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    pValue1Result->QWords.qw0 &= pValue2->QWords.qw0;
    pValue1Result->QWords.qw1 &= pValue2->QWords.qw1;
    pValue1Result->QWords.qw2 &= pValue2->QWords.qw2;
    pValue1Result->QWords.qw3 &= pValue2->QWords.qw3;
    return pValue1Result;
}


#if 0
/**
 * Performs a bitwise AND of a 256-bit unsigned integer value and a mask made
 * up of the first N bits, assigning the result to the the 256-bit value.
 *
 * @returns pValueResult.
 * @param   pValueResult    The value and result.
 * @param   cBits           The number of bits to AND (counting from the first
 *                          bit).
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignAndNFirstBits(PRTUINT256U pValueResult, unsigned cBits)
{
    if (cBits <= 64)
    {
        if (cBits != 64)
            pValueResult->s.Lo &= (RT_BIT_64(cBits) - 1);
        pValueResult->s.Hi = 0;
    }
    else if (cBits < 256)
        pValueResult->s.Hi &= (RT_BIT_64(cBits - 64) - 1);
/** @todo \#if ARCH_BITS >= 64 */
    return pValueResult;
}
#endif


/**
 * Performs a bitwise OR of two 256-bit unsigned integer values and assigned
 * the result to the first one.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The first value and result.
 * @param   pValue2         The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignOr(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    pValue1Result->QWords.qw0 |= pValue2->QWords.qw0;
    pValue1Result->QWords.qw1 |= pValue2->QWords.qw1;
    pValue1Result->QWords.qw2 |= pValue2->QWords.qw2;
    pValue1Result->QWords.qw3 |= pValue2->QWords.qw3;
    return pValue1Result;
}


DECLINLINE(PRTUINT256U) RTUInt256BitSet(PRTUINT256U pValueResult, unsigned iBit);

/**
 * ORs in a bit and assign the result to the input value.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The first value and result.
 * @param   iBit            The bit to set (0 based).
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignOrBit(PRTUINT256U pValue1Result, uint32_t iBit)
{
    return RTUInt256BitSet(pValue1Result, (unsigned)iBit);
}


/**
 * Performs a bitwise XOR of two 256-bit unsigned integer values and assigned
 * the result to the first one.
 *
 * @returns pValue1Result.
 * @param   pValue1Result   The first value and result.
 * @param   pValue2         The second value.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignXor(PRTUINT256U pValue1Result, PCRTUINT256U pValue2)
{
    pValue1Result->QWords.qw0 ^= pValue2->QWords.qw0;
    pValue1Result->QWords.qw1 ^= pValue2->QWords.qw1;
    pValue1Result->QWords.qw2 ^= pValue2->QWords.qw2;
    pValue1Result->QWords.qw3 ^= pValue2->QWords.qw3;
    return pValue1Result;
}


/**
 * Performs a bitwise left shift on a 256-bit unsigned integer value, assigning
 * the result to it.
 *
 * @returns pValueResult.
 * @param   pValueResult    The first value and result.
 * @param   cBits           The number of bits to shift - signed.  Negative
 *                          values are translated to right shifts.  If the
 *                          absolute value is 256 or higher, the value is set to
 *                          zero.
 *
 * @note    This works differently from RTUInt256ShiftLeft and
 *          RTUInt256ShiftRight in that the shift count is signed and not masked
 *          by 255.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignShiftLeft(PRTUINT256U pValueResult, int cBits)
{
    if (cBits == 0)
        return pValueResult;
    if (cBits > 0)
    {
        /* (left shift) */
        if (cBits < 256)
        {
            RTUINT256U const InVal = *pValueResult;
            return RTUInt256ShiftLeft(pValueResult, &InVal, cBits);
        }
    }
    else if (cBits > -256)
    {
        /* (right shift) */
        cBits = -cBits;
        RTUINT256U const InVal = *pValueResult;
        return RTUInt256ShiftRight(pValueResult, &InVal, cBits);
    }
    return RTUInt256SetZero(pValueResult);
}


/**
 * Performs a bitwise left shift on a 256-bit unsigned integer value, assigning
 * the result to it.
 *
 * @returns pValueResult.
 * @param   pValueResult    The first value and result.
 * @param   cBits           The number of bits to shift - signed.  Negative
 *                          values are translated to left shifts.  If the
 *                          absolute value is 256 or higher, the value is set to
 *                          zero.
 *
 * @note    This works differently from RTUInt256ShiftRight and
 *          RTUInt256ShiftLeft in that the shift count is signed and not masked
 *          by 255.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignShiftRight(PRTUINT256U pValueResult, int cBits)
{
    if (cBits == 0)
        return pValueResult;
    if (cBits > 0)
    {
        /* (right shift) */
        if (cBits < 256)
        {
            RTUINT256U const InVal = *pValueResult;
            return RTUInt256ShiftRight(pValueResult, &InVal, cBits);
        }
    }
    else if (cBits > -256)
    {
        /* (left shift) */
        cBits = -cBits;
        RTUINT256U const InVal = *pValueResult;
        return RTUInt256ShiftLeft(pValueResult, &InVal, cBits);
    }
    return RTUInt256SetZero(pValueResult);
}


/**
 * Performs a bitwise NOT on a 256-bit unsigned integer value, assigning the
 * result to it.
 *
 * @returns pValueResult
 * @param   pValueResult    The value and result.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignBitwiseNot(PRTUINT256U pValueResult)
{
    pValueResult->QWords.qw0 = ~pValueResult->QWords.qw0;
    pValueResult->QWords.qw1 = ~pValueResult->QWords.qw1;
    pValueResult->QWords.qw2 = ~pValueResult->QWords.qw2;
    pValueResult->QWords.qw3 = ~pValueResult->QWords.qw3;
    return pValueResult;
}


/**
 * Performs a boolean NOT on a 256-bit unsigned integer value, assigning the
 * result to it.
 *
 * @returns pValueResult
 * @param   pValueResult    The value and result.
 */
DECLINLINE(PRTUINT256U) RTUInt256AssignBooleanNot(PRTUINT256U pValueResult)
{
    return RTUInt256AssignBoolean(pValueResult, RTUInt256IsZero(pValueResult));
}


/**
 * Compares two 256-bit unsigned integer values.
 *
 * @retval  0 if equal.
 * @retval  -1 if the first value is smaller than the second.
 * @retval  1  if the first value is larger than the second.
 *
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(int) RTUInt256Compare(PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    if (pValue1->QWords.qw3 != pValue2->QWords.qw3)
        return pValue1->QWords.qw3 > pValue2->QWords.qw3 ? 1 : -1;
    if (pValue1->QWords.qw2 != pValue2->QWords.qw2)
        return pValue1->QWords.qw2 > pValue2->QWords.qw2 ? 1 : -1;
    if (pValue1->QWords.qw1 != pValue2->QWords.qw1)
        return pValue1->QWords.qw1 > pValue2->QWords.qw1 ? 1 : -1;
    if (pValue1->QWords.qw0 != pValue2->QWords.qw0)
        return pValue1->QWords.qw3 > pValue2->QWords.qw3 ? 1 : -1;
    return 0;
}


/**
 * Tests if a 256-bit unsigned integer value is smaller than another.
 *
 * @returns true if the first value is smaller, false if not.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(bool) RTUInt256IsSmaller(PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    return pValue1->QWords.qw3 < pValue2->QWords.qw3
        || (   pValue1->QWords.qw3 == pValue2->QWords.qw3
            && (   pValue1->QWords.qw2  < pValue2->QWords.qw2
                || (   pValue1->QWords.qw2 == pValue2->QWords.qw2
                    && (   pValue1->QWords.qw1  < pValue2->QWords.qw1
                        || (   pValue1->QWords.qw1 == pValue2->QWords.qw1
                            && pValue1->QWords.qw0  < pValue2->QWords.qw0)))));
}


/**
 * Tests if a 256-bit unsigned integer value is larger than another.
 *
 * @returns true if the first value is larger, false if not.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(bool) RTUInt256IsLarger(PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    return pValue1->QWords.qw3 > pValue2->QWords.qw3
        || (   pValue1->QWords.qw3 == pValue2->QWords.qw3
            && (   pValue1->QWords.qw2  > pValue2->QWords.qw2
                || (   pValue1->QWords.qw2 == pValue2->QWords.qw2
                    && (   pValue1->QWords.qw1  > pValue2->QWords.qw1
                        || (   pValue1->QWords.qw1 == pValue2->QWords.qw1
                            && pValue1->QWords.qw0  > pValue2->QWords.qw0)))));
}


/**
 * Tests if a 256-bit unsigned integer value is larger or equal than another.
 *
 * @returns true if the first value is larger or equal, false if not.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(bool) RTUInt256IsLargerOrEqual(PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    return pValue1->QWords.qw3 > pValue2->QWords.qw3
        || (   pValue1->QWords.qw3 == pValue2->QWords.qw3
            && (   pValue1->QWords.qw2  > pValue2->QWords.qw2
                || (   pValue1->QWords.qw2 == pValue2->QWords.qw2
                    && (   pValue1->QWords.qw1  > pValue2->QWords.qw1
                        || (   pValue1->QWords.qw1 == pValue2->QWords.qw1
                            && pValue1->QWords.qw0 >= pValue2->DWords.dw0)))));
}


/**
 * Tests if two 256-bit unsigned integer values not equal.
 *
 * @returns true if equal, false if not equal.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(bool) RTUInt256IsEqual(PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    return pValue1->QWords.qw0 == pValue2->QWords.qw0
        && pValue1->QWords.qw1 == pValue2->QWords.qw1
        && pValue1->QWords.qw2 == pValue2->QWords.qw2
        && pValue1->QWords.qw3 == pValue2->QWords.qw3;
}


/**
 * Tests if two 256-bit unsigned integer values are not equal.
 *
 * @returns true if not equal, false if equal.
 * @param   pValue1             The first value.
 * @param   pValue2             The second value.
 */
DECLINLINE(bool) RTUInt256IsNotEqual(PCRTUINT256U pValue1, PCRTUINT256U pValue2)
{
    return !RTUInt256IsEqual(pValue1, pValue2);
}


/**
 * Sets a bit in a 256-bit unsigned integer type.
 *
 * @returns pValueResult.
 * @param   pValueResult    The input and output value.
 * @param   iBit            The bit to set.
 */
DECLINLINE(PRTUINT256U) RTUInt256BitSet(PRTUINT256U pValueResult, unsigned iBit)
{
    if (iBit < 256)
    {
        unsigned idxQWord = iBit >> 6;
#ifdef RT_BIG_ENDIAN
        idxQWord = RT_ELEMENTS(pValueResult->au64) - idxQWord;
#endif
        iBit &= 0x3f;
        pValueResult->au64[idxQWord] |= RT_BIT_64(iBit);
    }
    return pValueResult;
}


/**
 * Sets a bit in a 256-bit unsigned integer type.
 *
 * @returns pValueResult.
 * @param   pValueResult    The input and output value.
 * @param   iBit            The bit to set.
 */
DECLINLINE(PRTUINT256U) RTUInt256BitClear(PRTUINT256U pValueResult, unsigned iBit)
{
    if (iBit < 256)
    {
        unsigned idxQWord = iBit >> 6;
#ifdef RT_BIG_ENDIAN
        idxQWord = RT_ELEMENTS(pValueResult->au64) - idxQWord;
#endif
        iBit &= 0x3f;
        pValueResult->au64[idxQWord] &= ~RT_BIT_64(iBit);
    }
    return pValueResult;
}


/**
 * Tests if a bit in a 256-bit unsigned integer value is set.
 *
 * @returns pValueResult.
 * @param   pValueResult    The input and output value.
 * @param   iBit            The bit to test.
 */
DECLINLINE(bool) RTUInt256BitTest(PRTUINT256U pValueResult, unsigned iBit)
{
    bool fRc;
    if (iBit < 256)
    {
        unsigned idxQWord = iBit >> 6;
#ifdef RT_BIG_ENDIAN
        idxQWord = RT_ELEMENTS(pValueResult->au64) - idxQWord;
#endif
        iBit &= 0x3f;
        fRc = RT_BOOL(pValueResult->au64[idxQWord] & RT_BIT_64(iBit));
    }
    else
        fRc = false;
    return fRc;
}


/**
 * Set a range of bits a 256-bit unsigned integer value.
 *
 * @returns pValueResult.
 * @param   pValueResult    The input and output value.
 * @param   iFirstBit       The first bit to test.
 * @param   cBits           The number of bits to set.
 */
DECLINLINE(PRTUINT256U) RTUInt256BitSetRange(PRTUINT256U pValueResult, unsigned iFirstBit, unsigned cBits)
{
    /* bounds check & fix. */
    if (iFirstBit < 256)
    {
        if (iFirstBit + cBits > 256)
            cBits = 256 - iFirstBit;

        /* Work the au64 array: */
#ifdef RT_BIG_ENDIAN
        int       idxQWord = RT_ELEMENTS(pValueResult->au64) - (iFirstBit >> 6);
        int const idxInc   = -1;
#else
        int       idxQWord = iFirstBit >> 6;
        int const idxInc   = 1;
#endif
        while (cBits > 0)
        {
            unsigned iQWordFirstBit = iFirstBit & 0x3f;
            unsigned cQWordBits     = cBits + iQWordFirstBit >= 64 ? 64 - iQWordFirstBit : cBits;
            pValueResult->au64[idxQWord] |= cQWordBits < 64 ? (RT_BIT_64(cQWordBits) - 1) << iQWordFirstBit : UINT64_MAX;

            idxQWord  += idxInc;
            iFirstBit += cQWordBits;
            cBits     -= cQWordBits;
        }
    }
    return pValueResult;
}


/**
 * Test if all the bits of a 256-bit unsigned integer value are set.
 *
 * @returns true if they are, false if they aren't.
 * @param   pValue          The input and output value.
 */
DECLINLINE(bool) RTUInt256BitAreAllSet(PRTUINT256U pValue)
{
    return pValue->QWords.qw0 == UINT64_MAX
        && pValue->QWords.qw1 == UINT64_MAX
        && pValue->QWords.qw2 == UINT64_MAX
        && pValue->QWords.qw3 == UINT64_MAX;
}


/**
 * Test if all the bits of a 256-bit unsigned integer value are clear.
 *
 * @returns true if they are, false if they aren't.
 * @param   pValue          The input and output value.
 */
DECLINLINE(bool) RTUInt256BitAreAllClear(PRTUINT256U pValue)
{
    return RTUInt256IsZero(pValue);
}


/**
 * Number of significant bits in the value.
 *
 * This is the same a ASMBitLastSetU64 and ASMBitLastSetU32.
 *
 * @returns 0 if zero, 1-base index of the last bit set.
 * @param   pValue              The value to examine.
 */
DECLINLINE(uint32_t) RTUInt256BitCount(PCRTUINT256U pValue)
{
    uint64_t u64;
    uint32_t cBits;
    if ((u64 = pValue->QWords.qw3) != 0)
        cBits = 192;
    else if ((u64 = pValue->QWords.qw2) != 0)
        cBits = 128;
    else if ((u64 = pValue->QWords.qw1) != 0)
        cBits = 64;
    else
    {
        u64 = pValue->QWords.qw0;
        cBits = 0;
    }
    return cBits + ASMBitLastSetU64(u64);
}


/** @} */

RT_C_DECLS_END

#endif /* !IPRT_INCLUDED_uint256_h */