/* * Copyright 2014 Jaidev Sridhar. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../../common.h" #ifndef ITERATE #define ITERATE 1000000 #endif static struct affinity a; static unsigned int locked; static int nthr; static ck_swlock_t lock = CK_SWLOCK_INITIALIZER; static ck_swlock_t copy; #ifdef CK_F_PR_RTM static void * thread_rtm_adaptive(void *arg) { unsigned int i = ITERATE; unsigned int l; int tid = ck_pr_load_int(arg); struct ck_elide_config config = CK_ELIDE_CONFIG_DEFAULT_INITIALIZER; struct ck_elide_stat st = CK_ELIDE_STAT_INITIALIZER; if (aff_iterate(&a)) { perror("ERROR: Could not affine thread"); exit(EXIT_FAILURE); } while (i--) { if (tid == 0) { CK_ELIDE_LOCK_ADAPTIVE(ck_swlock_write, &st, &config, &lock); { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 8) { ck_error("ERROR [WR:%d]: %u != 2\n", __LINE__, l); } ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } } CK_ELIDE_UNLOCK_ADAPTIVE(ck_swlock_write, &st, &lock); } CK_ELIDE_LOCK(ck_swlock_read, &lock); { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [RD:%d]: %u != 0\n", __LINE__, l); } } CK_ELIDE_UNLOCK(ck_swlock_read, &lock); } return NULL; } static void * thread_rtm_mix(void *arg) { unsigned int i = ITERATE; unsigned int l; int tid = ck_pr_load_int(arg); if (aff_iterate(&a)) { perror("ERROR: Could not affine thread"); exit(EXIT_FAILURE); } while (i--) { if (tid == 0) { if (i & 1) { CK_ELIDE_LOCK(ck_swlock_write, &lock); } else { ck_swlock_write_lock(&lock); } { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 8) { ck_error("ERROR [WR:%d]: %u != 2\n", __LINE__, l); } ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } } if (i & 1) { CK_ELIDE_UNLOCK(ck_swlock_write, &lock); } else { ck_swlock_write_unlock(&lock); } } if (i & 1) { CK_ELIDE_LOCK(ck_swlock_read, &lock); } else { ck_swlock_read_lock(&lock); } { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [RD:%d]: %u != 0\n", __LINE__, l); } } if (i & 1) { CK_ELIDE_UNLOCK(ck_swlock_read, &lock); } else { ck_swlock_read_unlock(&lock); } } return (NULL); } static void * thread_rtm(void *arg) { unsigned int i = ITERATE; unsigned int l; int tid = ck_pr_load_int(arg); if (aff_iterate(&a)) { perror("ERROR: Could not affine thread"); exit(EXIT_FAILURE); } while (i--) { if (tid == 0) { CK_ELIDE_LOCK(ck_swlock_write, &lock); { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 8) { ck_error("ERROR [WR:%d]: %u != 2\n", __LINE__, l); } ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } } CK_ELIDE_UNLOCK(ck_swlock_write, &lock); } CK_ELIDE_LOCK(ck_swlock_read, &lock); { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [RD:%d]: %u != 0\n", __LINE__, l); } } CK_ELIDE_UNLOCK(ck_swlock_read, &lock); } return (NULL); } #endif /* CK_F_PR_RTM */ static void * thread_latch(void *arg) { unsigned int i = ITERATE; unsigned int l; int tid = ck_pr_load_int(arg); if (aff_iterate(&a)) { perror("ERROR: Could not affine thread"); exit(EXIT_FAILURE); } while (i--) { if (tid == 0) { /* Writer */ ck_swlock_write_latch(&lock); { memcpy(©, &lock, sizeof(ck_swlock_t)); l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 8) { ck_error("ERROR [WR:%d]: %u != 2\n", __LINE__, l); } ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } memcpy(&lock, ©, sizeof(ck_swlock_t)); } ck_swlock_write_unlatch(&lock); } ck_swlock_read_lock(&lock); { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [RD:%d]: %u != 0\n", __LINE__, l); } } ck_swlock_read_unlock(&lock); } return (NULL); } static void * thread(void *arg) { unsigned int i = ITERATE; unsigned int l; int tid = ck_pr_load_int(arg); if (aff_iterate(&a)) { perror("ERROR: Could not affine thread"); exit(EXIT_FAILURE); } while (i--) { if (tid == 0) { /* Writer */ ck_swlock_write_lock(&lock); { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); ck_pr_inc_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 8) { ck_error("ERROR [WR:%d]: %u != 2\n", __LINE__, l); } ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); ck_pr_dec_uint(&locked); l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [WR:%d]: %u != 0\n", __LINE__, l); } } ck_swlock_write_unlock(&lock); } ck_swlock_read_lock(&lock); { l = ck_pr_load_uint(&locked); if (l != 0) { ck_error("ERROR [RD:%d]: %u != 0\n", __LINE__, l); } } ck_swlock_read_unlock(&lock); } return (NULL); } static void swlock_test(pthread_t *threads, void *(*f)(void *), const char *test) { int i, tid[nthr]; fprintf(stderr, "Creating threads (%s)...", test); for (i = 0; i < nthr; i++) { ck_pr_store_int(&tid[i], i); if (pthread_create(&threads[i], NULL, f, &tid[i])) { ck_error("ERROR: Could not create thread %d\n", i); } } fprintf(stderr, "."); for (i = 0; i < nthr; i++) pthread_join(threads[i], NULL); fprintf(stderr, "done (passed)\n"); return; } int main(int argc, char *argv[]) { pthread_t *threads; if (argc != 3) { ck_error("Usage: validate \n"); } nthr = atoi(argv[1]); if (nthr <= 0) { ck_error("ERROR: Number of threads must be greater than 0\n"); } threads = malloc(sizeof(pthread_t) * nthr); if (threads == NULL) { ck_error("ERROR: Could not allocate thread structures\n"); } a.delta = atoi(argv[2]); swlock_test(threads, thread, "regular"); swlock_test(threads, thread_latch, "latch"); #ifdef CK_F_PR_RTM swlock_test(threads, thread_rtm, "rtm"); swlock_test(threads, thread_rtm_mix, "rtm-mix"); swlock_test(threads, thread_rtm_adaptive, "rtm-adaptive"); #endif return 0; }