Description Clzip is a lossless data compressor with a user interface similar to the one of gzip or bzip2. Clzip decompresses almost as fast as gzip, compresses most files more than bzip2, and is better than both from a data recovery perspective. Clzip is a clean implementation of the LZMA algorithm. Clzip uses the lzip file format; the files produced by clzip are fully compatible with lzip-1.4 or newer, and can be rescued with lziprecover. Clzip is in fact a C language version of lzip, intended for embedded devices or systems lacking a C++ compiler. The lzip file format is designed for long-term data archiving, taking into account both data integrity and decoder availability: * The lzip format provides very safe integrity checking and some data recovery means. The lziprecover program can repair bit-flip errors (one of the most common forms of data corruption) in lzip files, and provides data recovery capabilities, including error-checked merging of damaged copies of a file. * The lzip format is as simple as possible (but not simpler). The lzip manual provides the code of a simple decompressor along with a detailed explanation of how it works, so that with the only help of the lzip manual it would be possible for a digital archaeologist to extract the data from a lzip file long after quantum computers eventually render LZMA obsolete. * Additionally lzip is copylefted, which guarantees that it will remain free forever. Clzip uses the same well-defined exit status values used by lzip and bzip2, which makes it safer than compressors returning ambiguous warning values (like gzip) when it is used as a back end for tar or zutils. Clzip will automatically use the smallest possible dictionary size for each file without exceeding the given limit. Keep in mind that the decompression memory requirement is affected at compression time by the choice of dictionary size limit. When compressing, clzip replaces every file given in the command line with a compressed version of itself, with the name "original_name.lz". When decompressing, clzip attempts to guess the name for the decompressed file from that of the compressed file as follows: filename.lz becomes filename filename.tlz becomes filename.tar anyothername becomes anyothername.out (De)compressing a file is much like copying or moving it; therefore clzip preserves the access and modification dates, permissions, and, when possible, ownership of the file just as "cp -p" does. (If the user ID or the group ID can't be duplicated, the file permission bits S_ISUID and S_ISGID are cleared). Clzip is able to read from some types of non regular files if the "--stdout" option is specified. If no file names are specified, clzip compresses (or decompresses) from standard input to standard output. In this case, clzip will decline to write compressed output to a terminal, as this would be entirely incomprehensible and therefore pointless. Clzip will correctly decompress a file which is the concatenation of two or more compressed files. The result is the concatenation of the corresponding uncompressed files. Integrity testing of concatenated compressed files is also supported. Clzip can produce multi-member files and safely recover, with lziprecover, the undamaged members in case of file damage. Clzip can also split the compressed output in volumes of a given size, even when reading from standard input. This allows the direct creation of multivolume compressed tar archives. Clzip is able to compress and decompress streams of unlimited size by automatically creating multi-member output. The members so created are large, about 64 PiB each. There is no such thing as a "LZMA algorithm"; it is more like a "LZMA coding scheme". For example, the option '-0' of lzip uses the scheme in almost the simplest way possible; issuing the longest match it can find, or a literal byte if it can't find a match. Inversely, a much more elaborated way of finding coding sequences of minimum price than the one currently used by lzip could be developed, and the resulting sequence could also be coded using the LZMA coding scheme. Lzip currently implements two variants of the LZMA algorithm; fast (used by option -0) and normal (used by all other compression levels). Clzip just implements the "normal" variant. The high compression of LZMA comes from combining two basic, well-proven compression ideas: sliding dictionaries (LZ77/78) and markov models (the thing used by every compression algorithm that uses a range encoder or similar order-0 entropy coder as its last stage) with segregation of contexts according to what the bits are used for. The ideas embodied in clzip are due to (at least) the following people: Abraham Lempel and Jacob Ziv (for the LZ algorithm), Andrey Markov (for the definition of Markov chains), G.N.N. Martin (for the definition of range encoding), Igor Pavlov (for putting all the above together in LZMA), and Julian Seward (for bzip2's CLI). Copyright (C) 2010, 2011, 2012, 2013, 2014 Antonio Diaz Diaz. This file is free documentation: you have unlimited permission to copy, distribute and modify it. The file Makefile.in is a data file used by configure to produce the Makefile. It has the same copyright owner and permissions that configure itself.