/* Clzip - LZMA lossless data compressor Copyright (C) 2010-2024 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include "lzip.h" #include "encoder_base.h" #include "encoder.h" CRC32 crc32; int LZe_get_match_pairs( struct LZ_encoder * const e, struct Pair * pairs ) { int len_limit = e->match_len_limit; if( len_limit > Mb_available_bytes( &e->eb.mb ) ) { len_limit = Mb_available_bytes( &e->eb.mb ); if( len_limit < 4 ) return 0; } int maxlen = 3; /* only used if pairs != 0 */ int num_pairs = 0; const int min_pos = ( e->eb.mb.pos > e->eb.mb.dictionary_size ) ? e->eb.mb.pos - e->eb.mb.dictionary_size : 0; const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb ); unsigned tmp = crc32[data[0]] ^ data[1]; const int key2 = tmp & ( num_prev_positions2 - 1 ); tmp ^= (unsigned)data[2] << 8; const int key3 = num_prev_positions2 + ( tmp & ( num_prev_positions3 - 1 ) ); const int key4 = num_prev_positions2 + num_prev_positions3 + ( ( tmp ^ ( crc32[data[3]] << 5 ) ) & e->eb.mb.key4_mask ); if( pairs ) { const int np2 = e->eb.mb.prev_positions[key2]; const int np3 = e->eb.mb.prev_positions[key3]; if( np2 > min_pos && e->eb.mb.buffer[np2-1] == data[0] ) { pairs[0].dis = e->eb.mb.pos - np2; pairs[0].len = maxlen = 2 + ( np2 == np3 ); num_pairs = 1; } if( np2 != np3 && np3 > min_pos && e->eb.mb.buffer[np3-1] == data[0] ) { maxlen = 3; pairs[num_pairs++].dis = e->eb.mb.pos - np3; } if( num_pairs > 0 ) { const int delta = pairs[num_pairs-1].dis + 1; while( maxlen < len_limit && data[maxlen-delta] == data[maxlen] ) ++maxlen; pairs[num_pairs-1].len = maxlen; if( maxlen < 3 ) maxlen = 3; if( maxlen >= len_limit ) pairs = 0; /* done. now just skip */ } } const int pos1 = e->eb.mb.pos + 1; e->eb.mb.prev_positions[key2] = pos1; e->eb.mb.prev_positions[key3] = pos1; int newpos1 = e->eb.mb.prev_positions[key4]; e->eb.mb.prev_positions[key4] = pos1; int32_t * ptr0 = e->eb.mb.pos_array + ( e->eb.mb.cyclic_pos << 1 ); int32_t * ptr1 = ptr0 + 1; int len = 0, len0 = 0, len1 = 0; int count; for( count = e->cycles; ; ) { if( newpos1 <= min_pos || --count < 0 ) { *ptr0 = *ptr1 = 0; break; } const int delta = pos1 - newpos1; int32_t * const newptr = e->eb.mb.pos_array + ( ( e->eb.mb.cyclic_pos - delta + ( (e->eb.mb.cyclic_pos >= delta) ? 0 : e->eb.mb.dictionary_size + 1 ) ) << 1 ); if( data[len-delta] == data[len] ) { while( ++len < len_limit && data[len-delta] == data[len] ) {} if( pairs && maxlen < len ) { pairs[num_pairs].dis = delta - 1; pairs[num_pairs].len = maxlen = len; ++num_pairs; } if( len >= len_limit ) { *ptr0 = newptr[0]; *ptr1 = newptr[1]; break; } } if( data[len-delta] < data[len] ) { *ptr0 = newpos1; ptr0 = newptr + 1; newpos1 = *ptr0; len0 = len; if( len1 < len ) len = len1; } else { *ptr1 = newpos1; ptr1 = newptr; newpos1 = *ptr1; len1 = len; if( len0 < len ) len = len0; } } return num_pairs; } static void LZe_update_distance_prices( struct LZ_encoder * const e ) { int dis, len_state; for( dis = start_dis_model; dis < modeled_distances; ++dis ) { const int dis_slot = dis_slots[dis]; const int direct_bits = ( dis_slot >> 1 ) - 1; const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const int price = price_symbol_reversed( e->eb.bm_dis + ( base - dis_slot ), dis - base, direct_bits ); for( len_state = 0; len_state < len_states; ++len_state ) e->dis_prices[len_state][dis] = price; } for( len_state = 0; len_state < len_states; ++len_state ) { int * const dsp = e->dis_slot_prices[len_state]; const Bit_model * const bmds = e->eb.bm_dis_slot[len_state]; int slot = 0; for( ; slot < end_dis_model; ++slot ) dsp[slot] = price_symbol6( bmds, slot ); for( ; slot < e->num_dis_slots; ++slot ) dsp[slot] = price_symbol6( bmds, slot ) + (((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift_bits ); int * const dp = e->dis_prices[len_state]; for( dis = 0; dis < start_dis_model; ++dis ) dp[dis] = dsp[dis]; for( ; dis < modeled_distances; ++dis ) dp[dis] += dsp[dis_slots[dis]]; } } /* Return the number of bytes advanced (ahead). trials[0]..trials[ahead-1] contain the steps to encode. ( trials[0].dis4 == -1 ) means literal. A match/rep longer or equal than match_len_limit finishes the sequence. */ static int LZe_sequence_optimizer( struct LZ_encoder * const e, const int reps[num_rep_distances], const State state ) { int num_pairs, num_trials; int i, rep, len; if( e->pending_num_pairs > 0 ) /* from previous call */ { num_pairs = e->pending_num_pairs; e->pending_num_pairs = 0; } else num_pairs = LZe_read_match_distances( e ); const int main_len = ( num_pairs > 0 ) ? e->pairs[num_pairs-1].len : 0; int replens[num_rep_distances]; int rep_index = 0; for( i = 0; i < num_rep_distances; ++i ) { replens[i] = Mb_true_match_len( &e->eb.mb, 0, reps[i] + 1 ); if( replens[i] > replens[rep_index] ) rep_index = i; } if( replens[rep_index] >= e->match_len_limit ) { e->trials[0].price = replens[rep_index]; e->trials[0].dis4 = rep_index; LZe_move_and_update( e, replens[rep_index] ); return replens[rep_index]; } if( main_len >= e->match_len_limit ) { e->trials[0].price = main_len; e->trials[0].dis4 = e->pairs[num_pairs-1].dis + num_rep_distances; LZe_move_and_update( e, main_len ); return main_len; } const int pos_state = Mb_data_position( &e->eb.mb ) & pos_state_mask; const uint8_t prev_byte = Mb_peek( &e->eb.mb, 1 ); const uint8_t cur_byte = Mb_peek( &e->eb.mb, 0 ); const uint8_t match_byte = Mb_peek( &e->eb.mb, reps[0] + 1 ); e->trials[1].price = price0( e->eb.bm_match[state][pos_state] ); if( St_is_char( state ) ) e->trials[1].price += LZeb_price_literal( &e->eb, prev_byte, cur_byte ); else e->trials[1].price += LZeb_price_matched( &e->eb, prev_byte, cur_byte, match_byte ); e->trials[1].dis4 = -1; /* literal */ const int match_price = price1( e->eb.bm_match[state][pos_state] ); const int rep_match_price = match_price + price1( e->eb.bm_rep[state] ); if( match_byte == cur_byte ) Tr_update( &e->trials[1], rep_match_price + LZeb_price_shortrep( &e->eb, state, pos_state ), 0, 0 ); num_trials = max( main_len, replens[rep_index] ); if( num_trials < min_match_len ) { e->trials[0].price = 1; e->trials[0].dis4 = e->trials[1].dis4; Mb_move_pos( &e->eb.mb ); return 1; } e->trials[0].state = state; for( i = 0; i < num_rep_distances; ++i ) e->trials[0].reps[i] = reps[i]; for( len = min_match_len; len <= num_trials; ++len ) e->trials[len].price = infinite_price; for( rep = 0; rep < num_rep_distances; ++rep ) { if( replens[rep] < min_match_len ) continue; const int price = rep_match_price + LZeb_price_rep( &e->eb, rep, state, pos_state ); for( len = min_match_len; len <= replens[rep]; ++len ) Tr_update( &e->trials[len], price + Lp_price( &e->rep_len_prices, len, pos_state ), rep, 0 ); } if( main_len > replens[0] ) { const int normal_match_price = match_price + price0( e->eb.bm_rep[state] ); int i = 0, len = max( replens[0] + 1, min_match_len ); while( len > e->pairs[i].len ) ++i; while( true ) { const int dis = e->pairs[i].dis; Tr_update( &e->trials[len], normal_match_price + LZe_price_pair( e, dis, len, pos_state ), dis + num_rep_distances, 0 ); if( ++len > e->pairs[i].len && ++i >= num_pairs ) break; } } int cur = 0; while( true ) /* price optimization loop */ { Mb_move_pos( &e->eb.mb ); if( ++cur >= num_trials ) /* no more initialized trials */ { LZe_backward( e, cur ); return cur; } const int num_pairs = LZe_read_match_distances( e ); const int newlen = ( num_pairs > 0 ) ? e->pairs[num_pairs-1].len : 0; if( newlen >= e->match_len_limit ) { e->pending_num_pairs = num_pairs; LZe_backward( e, cur ); return cur; } /* give final values to current trial */ struct Trial * cur_trial = &e->trials[cur]; State cur_state; { const int dis4 = cur_trial->dis4; int prev_index = cur_trial->prev_index; const int prev_index2 = cur_trial->prev_index2; if( prev_index2 == single_step_trial ) { cur_state = e->trials[prev_index].state; if( prev_index + 1 == cur ) /* len == 1 */ { if( dis4 == 0 ) cur_state = St_set_short_rep( cur_state ); else cur_state = St_set_char( cur_state ); /* literal */ } else if( dis4 < num_rep_distances ) cur_state = St_set_rep( cur_state ); else cur_state = St_set_match( cur_state ); } else { if( prev_index2 == dual_step_trial ) /* dis4 == 0 (rep0) */ --prev_index; else /* prev_index2 >= 0 */ prev_index = prev_index2; cur_state = St_set_char_rep(); } cur_trial->state = cur_state; for( i = 0; i < num_rep_distances; ++i ) cur_trial->reps[i] = e->trials[prev_index].reps[i]; mtf_reps( dis4, cur_trial->reps ); /* literal is ignored */ } const int pos_state = Mb_data_position( &e->eb.mb ) & pos_state_mask; const uint8_t prev_byte = Mb_peek( &e->eb.mb, 1 ); const uint8_t cur_byte = Mb_peek( &e->eb.mb, 0 ); const uint8_t match_byte = Mb_peek( &e->eb.mb, cur_trial->reps[0] + 1 ); int next_price = cur_trial->price + price0( e->eb.bm_match[cur_state][pos_state] ); if( St_is_char( cur_state ) ) next_price += LZeb_price_literal( &e->eb, prev_byte, cur_byte ); else next_price += LZeb_price_matched( &e->eb, prev_byte, cur_byte, match_byte ); /* try last updates to next trial */ struct Trial * next_trial = &e->trials[cur+1]; Tr_update( next_trial, next_price, -1, cur ); /* literal */ const int match_price = cur_trial->price + price1( e->eb.bm_match[cur_state][pos_state] ); const int rep_match_price = match_price + price1( e->eb.bm_rep[cur_state] ); if( match_byte == cur_byte && next_trial->dis4 != 0 && next_trial->prev_index2 == single_step_trial ) { const int price = rep_match_price + LZeb_price_shortrep( &e->eb, cur_state, pos_state ); if( price <= next_trial->price ) { next_trial->price = price; next_trial->dis4 = 0; /* rep0 */ next_trial->prev_index = cur; } } const int triable_bytes = min( Mb_available_bytes( &e->eb.mb ), max_num_trials - 1 - cur ); if( triable_bytes < min_match_len ) continue; const int len_limit = min( e->match_len_limit, triable_bytes ); /* try literal + rep0 */ if( match_byte != cur_byte && next_trial->prev_index != cur ) { const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb ); const int dis = cur_trial->reps[0] + 1; const int limit = min( e->match_len_limit + 1, triable_bytes ); int len = 1; while( len < limit && data[len-dis] == data[len] ) ++len; if( --len >= min_match_len ) { const int pos_state2 = ( pos_state + 1 ) & pos_state_mask; const State state2 = St_set_char( cur_state ); const int price = next_price + price1( e->eb.bm_match[state2][pos_state2] ) + price1( e->eb.bm_rep[state2] ) + LZe_price_rep0_len( e, len, state2, pos_state2 ); while( num_trials < cur + 1 + len ) e->trials[++num_trials].price = infinite_price; Tr_update2( &e->trials[cur+1+len], price, cur + 1 ); } } int start_len = min_match_len; /* try rep distances */ for( rep = 0; rep < num_rep_distances; ++rep ) { const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb ); const int dis = cur_trial->reps[rep] + 1; if( data[0-dis] != data[0] || data[1-dis] != data[1] ) continue; for( len = min_match_len; len < len_limit; ++len ) if( data[len-dis] != data[len] ) break; while( num_trials < cur + len ) e->trials[++num_trials].price = infinite_price; int price = rep_match_price + LZeb_price_rep( &e->eb, rep, cur_state, pos_state ); for( i = min_match_len; i <= len; ++i ) Tr_update( &e->trials[cur+i], price + Lp_price( &e->rep_len_prices, i, pos_state ), rep, cur ); if( rep == 0 ) start_len = len + 1; /* discard shorter matches */ /* try rep + literal + rep0 */ int len2 = len + 1; const int limit = min( e->match_len_limit + len2, triable_bytes ); while( len2 < limit && data[len2-dis] == data[len2] ) ++len2; len2 -= len + 1; if( len2 < min_match_len ) continue; int pos_state2 = ( pos_state + len ) & pos_state_mask; State state2 = St_set_rep( cur_state ); price += Lp_price( &e->rep_len_prices, len, pos_state ) + price0( e->eb.bm_match[state2][pos_state2] ) + LZeb_price_matched( &e->eb, data[len-1], data[len], data[len-dis] ); pos_state2 = ( pos_state2 + 1 ) & pos_state_mask; state2 = St_set_char( state2 ); price += price1( e->eb.bm_match[state2][pos_state2] ) + price1( e->eb.bm_rep[state2] ) + LZe_price_rep0_len( e, len2, state2, pos_state2 ); while( num_trials < cur + len + 1 + len2 ) e->trials[++num_trials].price = infinite_price; Tr_update3( &e->trials[cur+len+1+len2], price, rep, cur + len + 1, cur ); } /* try matches */ if( newlen >= start_len && newlen <= len_limit ) { const int normal_match_price = match_price + price0( e->eb.bm_rep[cur_state] ); while( num_trials < cur + newlen ) e->trials[++num_trials].price = infinite_price; int i = 0; while( e->pairs[i].len < start_len ) ++i; int dis = e->pairs[i].dis; for( len = start_len; ; ++len ) { int price = normal_match_price + LZe_price_pair( e, dis, len, pos_state ); Tr_update( &e->trials[cur+len], price, dis + num_rep_distances, cur ); /* try match + literal + rep0 */ if( len == e->pairs[i].len ) { const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb ); const int dis2 = dis + 1; int len2 = len + 1; const int limit = min( e->match_len_limit + len2, triable_bytes ); while( len2 < limit && data[len2-dis2] == data[len2] ) ++len2; len2 -= len + 1; if( len2 >= min_match_len ) { int pos_state2 = ( pos_state + len ) & pos_state_mask; State state2 = St_set_match( cur_state ); price += price0( e->eb.bm_match[state2][pos_state2] ) + LZeb_price_matched( &e->eb, data[len-1], data[len], data[len-dis2] ); pos_state2 = ( pos_state2 + 1 ) & pos_state_mask; state2 = St_set_char( state2 ); price += price1( e->eb.bm_match[state2][pos_state2] ) + price1( e->eb.bm_rep[state2] ) + LZe_price_rep0_len( e, len2, state2, pos_state2 ); while( num_trials < cur + len + 1 + len2 ) e->trials[++num_trials].price = infinite_price; Tr_update3( &e->trials[cur+len+1+len2], price, dis + num_rep_distances, cur + len + 1, cur ); } if( ++i >= num_pairs ) break; dis = e->pairs[i].dis; } } } } } bool LZe_encode_member( struct LZ_encoder * const e, const unsigned long long member_size ) { const unsigned long long member_size_limit = member_size - Lt_size - max_marker_size; const bool best = ( e->match_len_limit > 12 ); const int dis_price_count = best ? 1 : 512; const int align_price_count = best ? 1 : dis_align_size; const int price_count = ( e->match_len_limit > 36 ) ? 1013 : 4093; int price_counter = 0; /* counters may decrement below 0 */ int dis_price_counter = 0; int align_price_counter = 0; int i; int reps[num_rep_distances]; State state = 0; for( i = 0; i < num_rep_distances; ++i ) reps[i] = 0; if( Mb_data_position( &e->eb.mb ) != 0 || Re_member_position( &e->eb.renc ) != Lh_size ) return false; /* can be called only once */ if( !Mb_data_finished( &e->eb.mb ) ) /* encode first byte */ { const uint8_t prev_byte = 0; const uint8_t cur_byte = Mb_peek( &e->eb.mb, 0 ); Re_encode_bit( &e->eb.renc, &e->eb.bm_match[state][0], 0 ); LZeb_encode_literal( &e->eb, prev_byte, cur_byte ); CRC32_update_byte( &e->eb.crc, cur_byte ); LZe_get_match_pairs( e, 0 ); Mb_move_pos( &e->eb.mb ); } while( !Mb_data_finished( &e->eb.mb ) ) { if( price_counter <= 0 && e->pending_num_pairs == 0 ) { price_counter = price_count; /* recalculate prices every these bytes */ if( dis_price_counter <= 0 ) { dis_price_counter = dis_price_count; LZe_update_distance_prices( e ); } if( align_price_counter <= 0 ) { align_price_counter = align_price_count; for( i = 0; i < dis_align_size; ++i ) e->align_prices[i] = price_symbol_reversed( e->eb.bm_align, i, dis_align_bits ); } Lp_update_prices( &e->match_len_prices ); Lp_update_prices( &e->rep_len_prices ); } int ahead = LZe_sequence_optimizer( e, reps, state ); price_counter -= ahead; for( i = 0; ahead > 0; ) { const int pos_state = ( Mb_data_position( &e->eb.mb ) - ahead ) & pos_state_mask; const int len = e->trials[i].price; int dis = e->trials[i].dis4; bool bit = ( dis < 0 ); Re_encode_bit( &e->eb.renc, &e->eb.bm_match[state][pos_state], !bit ); if( bit ) /* literal byte */ { const uint8_t prev_byte = Mb_peek( &e->eb.mb, ahead + 1 ); const uint8_t cur_byte = Mb_peek( &e->eb.mb, ahead ); CRC32_update_byte( &e->eb.crc, cur_byte ); if( ( state = St_set_char( state ) ) < 4 ) LZeb_encode_literal( &e->eb, prev_byte, cur_byte ); else { const uint8_t match_byte = Mb_peek( &e->eb.mb, ahead + reps[0] + 1 ); LZeb_encode_matched( &e->eb, prev_byte, cur_byte, match_byte ); } } else /* match or repeated match */ { CRC32_update_buf( &e->eb.crc, Mb_ptr_to_current_pos( &e->eb.mb ) - ahead, len ); mtf_reps( dis, reps ); bit = ( dis < num_rep_distances ); Re_encode_bit( &e->eb.renc, &e->eb.bm_rep[state], bit ); if( bit ) /* repeated match */ { bit = ( dis == 0 ); Re_encode_bit( &e->eb.renc, &e->eb.bm_rep0[state], !bit ); if( bit ) Re_encode_bit( &e->eb.renc, &e->eb.bm_len[state][pos_state], len > 1 ); else { Re_encode_bit( &e->eb.renc, &e->eb.bm_rep1[state], dis > 1 ); if( dis > 1 ) Re_encode_bit( &e->eb.renc, &e->eb.bm_rep2[state], dis > 2 ); } if( len == 1 ) state = St_set_short_rep( state ); else { Re_encode_len( &e->eb.renc, &e->eb.rep_len_model, len, pos_state ); Lp_decrement_counter( &e->rep_len_prices, pos_state ); state = St_set_rep( state ); } } else /* match */ { dis -= num_rep_distances; LZeb_encode_pair( &e->eb, dis, len, pos_state ); if( dis >= modeled_distances ) --align_price_counter; --dis_price_counter; Lp_decrement_counter( &e->match_len_prices, pos_state ); state = St_set_match( state ); } } ahead -= len; i += len; if( Re_member_position( &e->eb.renc ) >= member_size_limit ) { if( !Mb_dec_pos( &e->eb.mb, ahead ) ) return false; LZeb_full_flush( &e->eb, state ); return true; } } } LZeb_full_flush( &e->eb, state ); return true; }