/* Clzip - LZMA lossless data compressor
Copyright (C) 2010-2019 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include "lzip.h"
#include "encoder_base.h"
#include "encoder.h"
CRC32 crc32;
int LZe_get_match_pairs( struct LZ_encoder * const e, struct Pair * pairs )
{
int32_t * ptr0 = e->eb.mb.pos_array + ( e->eb.mb.cyclic_pos << 1 );
int32_t * ptr1 = ptr0 + 1;
int32_t * newptr;
int len = 0, len0 = 0, len1 = 0;
int maxlen = 0;
int num_pairs = 0;
const int pos1 = e->eb.mb.pos + 1;
const int min_pos = ( e->eb.mb.pos > e->eb.mb.dictionary_size ) ?
e->eb.mb.pos - e->eb.mb.dictionary_size : 0;
const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb );
int count, key2, key3, key4, newpos1;
unsigned tmp;
int len_limit = e->match_len_limit;
if( len_limit > Mb_available_bytes( &e->eb.mb ) )
{
len_limit = Mb_available_bytes( &e->eb.mb );
if( len_limit < 4 ) return 0;
}
tmp = crc32[data[0]] ^ data[1];
key2 = tmp & ( num_prev_positions2 - 1 );
tmp ^= (unsigned)data[2] << 8;
key3 = num_prev_positions2 + ( tmp & ( num_prev_positions3 - 1 ) );
key4 = num_prev_positions2 + num_prev_positions3 +
( ( tmp ^ ( crc32[data[3]] << 5 ) ) & e->eb.mb.key4_mask );
if( pairs )
{
int np2 = e->eb.mb.prev_positions[key2];
int np3 = e->eb.mb.prev_positions[key3];
if( np2 > min_pos && e->eb.mb.buffer[np2-1] == data[0] )
{
pairs[0].dis = e->eb.mb.pos - np2;
pairs[0].len = maxlen = 2;
num_pairs = 1;
}
if( np2 != np3 && np3 > min_pos && e->eb.mb.buffer[np3-1] == data[0] )
{
maxlen = 3;
np2 = np3;
pairs[num_pairs].dis = e->eb.mb.pos - np2;
++num_pairs;
}
if( num_pairs > 0 )
{
const int delta = pos1 - np2;
while( maxlen < len_limit && data[maxlen-delta] == data[maxlen] )
++maxlen;
pairs[num_pairs-1].len = maxlen;
if( maxlen >= len_limit ) pairs = 0; /* done. now just skip */
}
if( maxlen < 3 ) maxlen = 3;
}
e->eb.mb.prev_positions[key2] = pos1;
e->eb.mb.prev_positions[key3] = pos1;
newpos1 = e->eb.mb.prev_positions[key4];
e->eb.mb.prev_positions[key4] = pos1;
for( count = e->cycles; ; )
{
int delta;
if( newpos1 <= min_pos || --count < 0 ) { *ptr0 = *ptr1 = 0; break; }
delta = pos1 - newpos1;
newptr = e->eb.mb.pos_array +
( ( e->eb.mb.cyclic_pos - delta +
( (e->eb.mb.cyclic_pos >= delta) ? 0 : e->eb.mb.dictionary_size + 1 ) ) << 1 );
if( data[len-delta] == data[len] )
{
while( ++len < len_limit && data[len-delta] == data[len] ) {}
if( pairs && maxlen < len )
{
pairs[num_pairs].dis = delta - 1;
pairs[num_pairs].len = maxlen = len;
++num_pairs;
}
if( len >= len_limit )
{
*ptr0 = newptr[0];
*ptr1 = newptr[1];
break;
}
}
if( data[len-delta] < data[len] )
{
*ptr0 = newpos1;
ptr0 = newptr + 1;
newpos1 = *ptr0;
len0 = len; if( len1 < len ) len = len1;
}
else
{
*ptr1 = newpos1;
ptr1 = newptr;
newpos1 = *ptr1;
len1 = len; if( len0 < len ) len = len0;
}
}
return num_pairs;
}
static void LZe_update_distance_prices( struct LZ_encoder * const e )
{
int dis, len_state;
for( dis = start_dis_model; dis < modeled_distances; ++dis )
{
const int dis_slot = dis_slots[dis];
const int direct_bits = ( dis_slot >> 1 ) - 1;
const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const int price = price_symbol_reversed( e->eb.bm_dis + ( base - dis_slot ),
dis - base, direct_bits );
for( len_state = 0; len_state < len_states; ++len_state )
e->dis_prices[len_state][dis] = price;
}
for( len_state = 0; len_state < len_states; ++len_state )
{
int * const dsp = e->dis_slot_prices[len_state];
int * const dp = e->dis_prices[len_state];
const Bit_model * const bmds = e->eb.bm_dis_slot[len_state];
int slot = 0;
for( ; slot < end_dis_model; ++slot )
dsp[slot] = price_symbol6( bmds, slot );
for( ; slot < e->num_dis_slots; ++slot )
dsp[slot] = price_symbol6( bmds, slot ) +
(((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift_bits );
for( dis = 0; dis < start_dis_model; ++dis )
dp[dis] = dsp[dis];
for( ; dis < modeled_distances; ++dis )
dp[dis] += dsp[dis_slots[dis]];
}
}
/* Returns the number of bytes advanced (ahead).
trials[0]..trials[ahead-1] contain the steps to encode.
( trials[0].dis4 == -1 ) means literal.
A match/rep longer or equal than match_len_limit finishes the sequence.
*/
static int LZe_sequence_optimizer( struct LZ_encoder * const e,
const int reps[num_rep_distances],
const State state )
{
int main_len, num_pairs, i, rep, num_trials, len;
int rep_index = 0, cur = 0;
int replens[num_rep_distances];
if( e->pending_num_pairs > 0 ) /* from previous call */
{
num_pairs = e->pending_num_pairs;
e->pending_num_pairs = 0;
}
else
num_pairs = LZe_read_match_distances( e );
main_len = ( num_pairs > 0 ) ? e->pairs[num_pairs-1].len : 0;
for( i = 0; i < num_rep_distances; ++i )
{
replens[i] = Mb_true_match_len( &e->eb.mb, 0, reps[i] + 1 );
if( replens[i] > replens[rep_index] ) rep_index = i;
}
if( replens[rep_index] >= e->match_len_limit )
{
e->trials[0].price = replens[rep_index];
e->trials[0].dis4 = rep_index;
LZe_move_and_update( e, replens[rep_index] );
return replens[rep_index];
}
if( main_len >= e->match_len_limit )
{
e->trials[0].price = main_len;
e->trials[0].dis4 = e->pairs[num_pairs-1].dis + num_rep_distances;
LZe_move_and_update( e, main_len );
return main_len;
}
{
const int pos_state = Mb_data_position( &e->eb.mb ) & pos_state_mask;
const int match_price = price1( e->eb.bm_match[state][pos_state] );
const int rep_match_price = match_price + price1( e->eb.bm_rep[state] );
const uint8_t prev_byte = Mb_peek( &e->eb.mb, 1 );
const uint8_t cur_byte = Mb_peek( &e->eb.mb, 0 );
const uint8_t match_byte = Mb_peek( &e->eb.mb, reps[0] + 1 );
e->trials[1].price = price0( e->eb.bm_match[state][pos_state] );
if( St_is_char( state ) )
e->trials[1].price += LZeb_price_literal( &e->eb, prev_byte, cur_byte );
else
e->trials[1].price += LZeb_price_matched( &e->eb, prev_byte, cur_byte, match_byte );
e->trials[1].dis4 = -1; /* literal */
if( match_byte == cur_byte )
Tr_update( &e->trials[1], rep_match_price +
LZeb_price_shortrep( &e->eb, state, pos_state ), 0, 0 );
num_trials = max( main_len, replens[rep_index] );
if( num_trials < min_match_len )
{
e->trials[0].price = 1;
e->trials[0].dis4 = e->trials[1].dis4;
Mb_move_pos( &e->eb.mb );
return 1;
}
e->trials[0].state = state;
for( i = 0; i < num_rep_distances; ++i )
e->trials[0].reps[i] = reps[i];
for( len = min_match_len; len <= num_trials; ++len )
e->trials[len].price = infinite_price;
for( rep = 0; rep < num_rep_distances; ++rep )
{
int price;
if( replens[rep] < min_match_len ) continue;
price = rep_match_price + LZeb_price_rep( &e->eb, rep, state, pos_state );
for( len = min_match_len; len <= replens[rep]; ++len )
Tr_update( &e->trials[len], price +
Lp_price( &e->rep_len_prices, len, pos_state ), rep, 0 );
}
if( main_len > replens[0] )
{
const int normal_match_price = match_price + price0( e->eb.bm_rep[state] );
int i = 0, len = max( replens[0] + 1, min_match_len );
while( len > e->pairs[i].len ) ++i;
while( true )
{
const int dis = e->pairs[i].dis;
Tr_update( &e->trials[len], normal_match_price +
LZe_price_pair( e, dis, len, pos_state ),
dis + num_rep_distances, 0 );
if( ++len > e->pairs[i].len && ++i >= num_pairs ) break;
}
}
}
while( true ) /* price optimization loop */
{
struct Trial *cur_trial, *next_trial;
int newlen, pos_state, triable_bytes, len_limit;
int start_len = min_match_len;
int next_price, match_price, rep_match_price;
State cur_state;
uint8_t prev_byte, cur_byte, match_byte;
Mb_move_pos( &e->eb.mb );
if( ++cur >= num_trials ) /* no more initialized trials */
{
LZe_backward( e, cur );
return cur;
}
num_pairs = LZe_read_match_distances( e );
newlen = ( num_pairs > 0 ) ? e->pairs[num_pairs-1].len : 0;
if( newlen >= e->match_len_limit )
{
e->pending_num_pairs = num_pairs;
LZe_backward( e, cur );
return cur;
}
/* give final values to current trial */
cur_trial = &e->trials[cur];
{
const int dis4 = cur_trial->dis4;
int prev_index = cur_trial->prev_index;
const int prev_index2 = cur_trial->prev_index2;
if( prev_index2 == single_step_trial )
{
cur_state = e->trials[prev_index].state;
if( prev_index + 1 == cur ) /* len == 1 */
{
if( dis4 == 0 ) cur_state = St_set_short_rep( cur_state );
else cur_state = St_set_char( cur_state ); /* literal */
}
else if( dis4 < num_rep_distances ) cur_state = St_set_rep( cur_state );
else cur_state = St_set_match( cur_state );
}
else
{
if( prev_index2 == dual_step_trial ) /* dis4 == 0 (rep0) */
--prev_index;
else /* prev_index2 >= 0 */
prev_index = prev_index2;
cur_state = St_set_char_rep();
}
cur_trial->state = cur_state;
for( i = 0; i < num_rep_distances; ++i )
cur_trial->reps[i] = e->trials[prev_index].reps[i];
mtf_reps( dis4, cur_trial->reps ); /* literal is ignored */
}
pos_state = Mb_data_position( &e->eb.mb ) & pos_state_mask;
prev_byte = Mb_peek( &e->eb.mb, 1 );
cur_byte = Mb_peek( &e->eb.mb, 0 );
match_byte = Mb_peek( &e->eb.mb, cur_trial->reps[0] + 1 );
next_price = cur_trial->price +
price0( e->eb.bm_match[cur_state][pos_state] );
if( St_is_char( cur_state ) )
next_price += LZeb_price_literal( &e->eb, prev_byte, cur_byte );
else
next_price += LZeb_price_matched( &e->eb, prev_byte, cur_byte, match_byte );
/* try last updates to next trial */
next_trial = &e->trials[cur+1];
Tr_update( next_trial, next_price, -1, cur ); /* literal */
match_price = cur_trial->price + price1( e->eb.bm_match[cur_state][pos_state] );
rep_match_price = match_price + price1( e->eb.bm_rep[cur_state] );
if( match_byte == cur_byte && next_trial->dis4 != 0 &&
next_trial->prev_index2 == single_step_trial )
{
const int price = rep_match_price +
LZeb_price_shortrep( &e->eb, cur_state, pos_state );
if( price <= next_trial->price )
{
next_trial->price = price;
next_trial->dis4 = 0; /* rep0 */
next_trial->prev_index = cur;
}
}
triable_bytes =
min( Mb_available_bytes( &e->eb.mb ), max_num_trials - 1 - cur );
if( triable_bytes < min_match_len ) continue;
len_limit = min( e->match_len_limit, triable_bytes );
/* try literal + rep0 */
if( match_byte != cur_byte && next_trial->prev_index != cur )
{
const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb );
const int dis = cur_trial->reps[0] + 1;
const int limit = min( e->match_len_limit + 1, triable_bytes );
int len = 1;
while( len < limit && data[len-dis] == data[len] ) ++len;
if( --len >= min_match_len )
{
const int pos_state2 = ( pos_state + 1 ) & pos_state_mask;
const State state2 = St_set_char( cur_state );
const int price = next_price +
price1( e->eb.bm_match[state2][pos_state2] ) +
price1( e->eb.bm_rep[state2] ) +
LZe_price_rep0_len( e, len, state2, pos_state2 );
while( num_trials < cur + 1 + len )
e->trials[++num_trials].price = infinite_price;
Tr_update2( &e->trials[cur+1+len], price, cur + 1 );
}
}
/* try rep distances */
for( rep = 0; rep < num_rep_distances; ++rep )
{
const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb );
const int dis = cur_trial->reps[rep] + 1;
int price;
if( data[0-dis] != data[0] || data[1-dis] != data[1] ) continue;
for( len = min_match_len; len < len_limit; ++len )
if( data[len-dis] != data[len] ) break;
while( num_trials < cur + len )
e->trials[++num_trials].price = infinite_price;
price = rep_match_price + LZeb_price_rep( &e->eb, rep, cur_state, pos_state );
for( i = min_match_len; i <= len; ++i )
Tr_update( &e->trials[cur+i], price +
Lp_price( &e->rep_len_prices, i, pos_state ), rep, cur );
if( rep == 0 ) start_len = len + 1; /* discard shorter matches */
/* try rep + literal + rep0 */
{
int len2 = len + 1;
const int limit = min( e->match_len_limit + len2, triable_bytes );
int pos_state2;
State state2;
while( len2 < limit && data[len2-dis] == data[len2] ) ++len2;
len2 -= len + 1;
if( len2 < min_match_len ) continue;
pos_state2 = ( pos_state + len ) & pos_state_mask;
state2 = St_set_rep( cur_state );
price += Lp_price( &e->rep_len_prices, len, pos_state ) +
price0( e->eb.bm_match[state2][pos_state2] ) +
LZeb_price_matched( &e->eb, data[len-1], data[len], data[len-dis] );
pos_state2 = ( pos_state2 + 1 ) & pos_state_mask;
state2 = St_set_char( state2 );
price += price1( e->eb.bm_match[state2][pos_state2] ) +
price1( e->eb.bm_rep[state2] ) +
LZe_price_rep0_len( e, len2, state2, pos_state2 );
while( num_trials < cur + len + 1 + len2 )
e->trials[++num_trials].price = infinite_price;
Tr_update3( &e->trials[cur+len+1+len2], price, rep, cur + len + 1, cur );
}
}
/* try matches */
if( newlen >= start_len && newlen <= len_limit )
{
int dis;
const int normal_match_price = match_price +
price0( e->eb.bm_rep[cur_state] );
while( num_trials < cur + newlen )
e->trials[++num_trials].price = infinite_price;
i = 0;
while( e->pairs[i].len < start_len ) ++i;
dis = e->pairs[i].dis;
for( len = start_len; ; ++len )
{
int price = normal_match_price + LZe_price_pair( e, dis, len, pos_state );
Tr_update( &e->trials[cur+len], price, dis + num_rep_distances, cur );
/* try match + literal + rep0 */
if( len == e->pairs[i].len )
{
const uint8_t * const data = Mb_ptr_to_current_pos( &e->eb.mb );
const int dis2 = dis + 1;
int len2 = len + 1;
const int limit = min( e->match_len_limit + len2, triable_bytes );
while( len2 < limit && data[len2-dis2] == data[len2] ) ++len2;
len2 -= len + 1;
if( len2 >= min_match_len )
{
int pos_state2 = ( pos_state + len ) & pos_state_mask;
State state2 = St_set_match( cur_state );
price += price0( e->eb.bm_match[state2][pos_state2] ) +
LZeb_price_matched( &e->eb, data[len-1], data[len], data[len-dis2] );
pos_state2 = ( pos_state2 + 1 ) & pos_state_mask;
state2 = St_set_char( state2 );
price += price1( e->eb.bm_match[state2][pos_state2] ) +
price1( e->eb.bm_rep[state2] ) +
LZe_price_rep0_len( e, len2, state2, pos_state2 );
while( num_trials < cur + len + 1 + len2 )
e->trials[++num_trials].price = infinite_price;
Tr_update3( &e->trials[cur+len+1+len2], price,
dis + num_rep_distances, cur + len + 1, cur );
}
if( ++i >= num_pairs ) break;
dis = e->pairs[i].dis;
}
}
}
}
}
bool LZe_encode_member( struct LZ_encoder * const e,
const unsigned long long member_size )
{
const unsigned long long member_size_limit =
member_size - Lt_size - max_marker_size;
const bool best = ( e->match_len_limit > 12 );
const int dis_price_count = best ? 1 : 512;
const int align_price_count = best ? 1 : dis_align_size;
const int price_count = ( e->match_len_limit > 36 ) ? 1013 : 4093;
int price_counter = 0; /* counters may decrement below 0 */
int dis_price_counter = 0;
int align_price_counter = 0;
int ahead, i;
int reps[num_rep_distances];
State state = 0;
for( i = 0; i < num_rep_distances; ++i ) reps[i] = 0;
if( Mb_data_position( &e->eb.mb ) != 0 ||
Re_member_position( &e->eb.renc ) != Lh_size )
return false; /* can be called only once */
if( !Mb_data_finished( &e->eb.mb ) ) /* encode first byte */
{
const uint8_t prev_byte = 0;
const uint8_t cur_byte = Mb_peek( &e->eb.mb, 0 );
Re_encode_bit( &e->eb.renc, &e->eb.bm_match[state][0], 0 );
LZeb_encode_literal( &e->eb, prev_byte, cur_byte );
CRC32_update_byte( &e->eb.crc, cur_byte );
LZe_get_match_pairs( e, 0 );
Mb_move_pos( &e->eb.mb );
}
while( !Mb_data_finished( &e->eb.mb ) )
{
if( price_counter <= 0 && e->pending_num_pairs == 0 )
{
price_counter = price_count; /* recalculate prices every these bytes */
if( dis_price_counter <= 0 )
{ dis_price_counter = dis_price_count; LZe_update_distance_prices( e ); }
if( align_price_counter <= 0 )
{
align_price_counter = align_price_count;
for( i = 0; i < dis_align_size; ++i )
e->align_prices[i] = price_symbol_reversed( e->eb.bm_align, i, dis_align_bits );
}
Lp_update_prices( &e->match_len_prices );
Lp_update_prices( &e->rep_len_prices );
}
ahead = LZe_sequence_optimizer( e, reps, state );
price_counter -= ahead;
for( i = 0; ahead > 0; )
{
const int pos_state =
( Mb_data_position( &e->eb.mb ) - ahead ) & pos_state_mask;
const int len = e->trials[i].price;
int dis = e->trials[i].dis4;
bool bit = ( dis < 0 );
Re_encode_bit( &e->eb.renc, &e->eb.bm_match[state][pos_state], !bit );
if( bit ) /* literal byte */
{
const uint8_t prev_byte = Mb_peek( &e->eb.mb, ahead + 1 );
const uint8_t cur_byte = Mb_peek( &e->eb.mb, ahead );
CRC32_update_byte( &e->eb.crc, cur_byte );
if( St_is_char( state ) )
LZeb_encode_literal( &e->eb, prev_byte, cur_byte );
else
{
const uint8_t match_byte = Mb_peek( &e->eb.mb, ahead + reps[0] + 1 );
LZeb_encode_matched( &e->eb, prev_byte, cur_byte, match_byte );
}
state = St_set_char( state );
}
else /* match or repeated match */
{
CRC32_update_buf( &e->eb.crc, Mb_ptr_to_current_pos( &e->eb.mb ) - ahead, len );
mtf_reps( dis, reps );
bit = ( dis < num_rep_distances );
Re_encode_bit( &e->eb.renc, &e->eb.bm_rep[state], bit );
if( bit ) /* repeated match */
{
bit = ( dis == 0 );
Re_encode_bit( &e->eb.renc, &e->eb.bm_rep0[state], !bit );
if( bit )
Re_encode_bit( &e->eb.renc, &e->eb.bm_len[state][pos_state], len > 1 );
else
{
Re_encode_bit( &e->eb.renc, &e->eb.bm_rep1[state], dis > 1 );
if( dis > 1 )
Re_encode_bit( &e->eb.renc, &e->eb.bm_rep2[state], dis > 2 );
}
if( len == 1 ) state = St_set_short_rep( state );
else
{
Re_encode_len( &e->eb.renc, &e->eb.rep_len_model, len, pos_state );
Lp_decrement_counter( &e->rep_len_prices, pos_state );
state = St_set_rep( state );
}
}
else /* match */
{
dis -= num_rep_distances;
LZeb_encode_pair( &e->eb, dis, len, pos_state );
if( dis >= modeled_distances ) --align_price_counter;
--dis_price_counter;
Lp_decrement_counter( &e->match_len_prices, pos_state );
state = St_set_match( state );
}
}
ahead -= len; i += len;
if( Re_member_position( &e->eb.renc ) >= member_size_limit )
{
if( !Mb_dec_pos( &e->eb.mb, ahead ) ) return false;
LZeb_full_flush( &e->eb, state );
return true;
}
}
}
LZeb_full_flush( &e->eb, state );
return true;
}