/* Clzip - Data compressor based on the LZMA algorithm
Copyright (C) 2010, 2011, 2012, 2013 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include "clzip.h"
#include "encoder.h"
Dis_slots dis_slots;
Prob_prices prob_prices;
bool Mf_read_block( struct Matchfinder * const mf )
{
if( !mf->at_stream_end && mf->stream_pos < mf->buffer_size )
{
const int size = mf->buffer_size - mf->stream_pos;
const int rd = readblock( mf->infd, mf->buffer + mf->stream_pos, size );
mf->stream_pos += rd;
if( rd != size && errno )
{ show_error( "Read error", errno, false ); cleanup_and_fail( 1 ); }
if( rd < size )
{ mf->at_stream_end = true; mf->pos_limit = mf->buffer_size; }
}
return mf->pos < mf->stream_pos;
}
void Mf_normalize_pos( struct Matchfinder * const mf )
{
if( mf->pos > mf->stream_pos )
internal_error( "pos > stream_pos in Mf_normalize_pos" );
if( !mf->at_stream_end )
{
int i;
const int offset = mf->pos - mf->dictionary_size - before_size;
const int size = mf->stream_pos - offset;
memmove( mf->buffer, mf->buffer + offset, size );
mf->partial_data_pos += offset;
mf->pos -= offset;
mf->stream_pos -= offset;
for( i = 0; i < mf->num_prev_positions; ++i )
if( mf->prev_positions[i] >= 0 ) mf->prev_positions[i] -= offset;
for( i = 0; i < 2 * ( mf->dictionary_size + 1 ); ++i )
if( mf->prev_pos_tree[i] >= 0 ) mf->prev_pos_tree[i] -= offset;
Mf_read_block( mf );
}
}
bool Mf_init( struct Matchfinder * const mf,
const int dict_size, const int match_len_limit, const int ifd )
{
const int buffer_size_limit = ( 2 * dict_size ) + before_size + after_size;
int i, size;
mf->partial_data_pos = 0;
mf->match_len_limit = match_len_limit;
mf->pos = 0;
mf->cyclic_pos = 0;
mf->stream_pos = 0;
mf->cycles = ( match_len_limit < max_match_len ) ?
16 + ( match_len_limit / 2 ) : 256;
mf->infd = ifd;
mf->at_stream_end = false;
mf->buffer_size = max( 65536, dict_size );
mf->buffer = (uint8_t *)malloc( mf->buffer_size );
if( !mf->buffer ) return false;
if( Mf_read_block( mf ) && !mf->at_stream_end &&
mf->buffer_size < buffer_size_limit )
{
uint8_t * tmp;
mf->buffer_size = buffer_size_limit;
tmp = (uint8_t *)realloc( mf->buffer, mf->buffer_size );
if( !tmp ) { free( mf->buffer ); return false; }
mf->buffer = tmp;
Mf_read_block( mf );
}
if( mf->at_stream_end && mf->stream_pos < dict_size )
mf->dictionary_size = max( min_dictionary_size, mf->stream_pos );
else
mf->dictionary_size = dict_size;
mf->pos_limit = mf->buffer_size;
if( !mf->at_stream_end ) mf->pos_limit -= after_size;
size = 1 << max( 16, real_bits( mf->dictionary_size - 1 ) - 2 );
if( mf->dictionary_size > 1 << 26 )
size >>= 1;
mf->key4_mask = size - 1;
size += num_prev_positions2;
size += num_prev_positions3;
mf->num_prev_positions = size;
size += ( 2 * ( mf->dictionary_size + 1 ) );
mf->prev_positions = (int32_t *)malloc( size * sizeof (int32_t) );
if( !mf->prev_positions ) { free( mf->buffer ); return false; }
mf->prev_pos_tree = mf->prev_positions + mf->num_prev_positions;
for( i = 0; i < mf->num_prev_positions; ++i ) mf->prev_positions[i] = -1;
return true;
}
void Mf_reset( struct Matchfinder * const mf )
{
int i;
const int size = mf->stream_pos - mf->pos;
if( size > 0 ) memmove( mf->buffer, mf->buffer + mf->pos, size );
mf->partial_data_pos = 0;
mf->stream_pos -= mf->pos;
mf->pos = 0;
mf->cyclic_pos = 0;
for( i = 0; i < mf->num_prev_positions; ++i ) mf->prev_positions[i] = -1;
Mf_read_block( mf );
}
int Mf_get_match_pairs( struct Matchfinder * const mf, struct Pair * pairs )
{
int32_t * ptr0 = mf->prev_pos_tree + ( mf->cyclic_pos << 1 );
int32_t * ptr1 = ptr0 + 1;
int32_t * newptr;
int len = 0, len0 = 0, len1 = 0;
int maxlen = min_match_len - 1;
int num_pairs = 0;
const int min_pos = (mf->pos > mf->dictionary_size) ?
mf->pos - mf->dictionary_size : 0;
const uint8_t * const data = mf->buffer + mf->pos;
int count, delta, key2, key3, key4, newpos;
unsigned tmp;
int len_limit = mf->match_len_limit;
if( len_limit > Mf_available_bytes( mf ) )
{
len_limit = Mf_available_bytes( mf );
if( len_limit < 4 ) return 0;
}
tmp = crc32[data[0]] ^ data[1];
key2 = tmp & ( num_prev_positions2 - 1 );
tmp ^= (uint32_t)data[2] << 8;
key3 = num_prev_positions2 + ( tmp & ( num_prev_positions3 - 1 ) );
key4 = num_prev_positions2 + num_prev_positions3 +
( ( tmp ^ ( crc32[data[3]] << 5 ) ) & mf->key4_mask );
if( pairs )
{
int np2 = mf->prev_positions[key2];
int np3 = mf->prev_positions[key3];
if( np2 >= min_pos && mf->buffer[np2] == data[0] )
{
pairs[0].dis = mf->pos - np2 - 1;
pairs[0].len = maxlen = 2;
num_pairs = 1;
}
if( np2 != np3 && np3 >= min_pos && mf->buffer[np3] == data[0] )
{
maxlen = 3;
pairs[num_pairs].dis = mf->pos - np3 - 1;
++num_pairs;
np2 = np3;
}
if( num_pairs > 0 )
{
delta = mf->pos - np2;
while( maxlen < len_limit && data[maxlen-delta] == data[maxlen] )
++maxlen;
pairs[num_pairs-1].len = maxlen;
if( maxlen >= len_limit ) pairs = 0;
}
if( maxlen < 3 ) maxlen = 3;
}
mf->prev_positions[key2] = mf->pos;
mf->prev_positions[key3] = mf->pos;
newpos = mf->prev_positions[key4];
mf->prev_positions[key4] = mf->pos;
for( count = mf->cycles; ; )
{
if( newpos < min_pos || --count < 0 ) { *ptr0 = *ptr1 = -1; break; }
delta = mf->pos - newpos;
newptr = mf->prev_pos_tree +
( ( mf->cyclic_pos - delta +
( (mf->cyclic_pos >= delta) ? 0 : mf->dictionary_size + 1 ) ) << 1 );
if( data[len-delta] == data[len] )
{
while( ++len < len_limit && data[len-delta] == data[len] ) {}
if( pairs && maxlen < len )
{
pairs[num_pairs].dis = delta - 1;
pairs[num_pairs].len = maxlen = len;
++num_pairs;
}
if( len >= len_limit )
{
*ptr0 = newptr[0];
*ptr1 = newptr[1];
break;
}
}
if( data[len-delta] < data[len] )
{
*ptr0 = newpos;
ptr0 = newptr + 1;
newpos = *ptr0;
len0 = len; if( len1 < len ) len = len1;
}
else
{
*ptr1 = newpos;
ptr1 = newptr;
newpos = *ptr1;
len1 = len; if( len0 < len ) len = len0;
}
}
return num_pairs;
}
void Re_flush_data( struct Range_encoder * const renc )
{
if( renc->pos > 0 )
{
if( renc->outfd >= 0 &&
writeblock( renc->outfd, renc->buffer, renc->pos ) != renc->pos )
{ show_error( "Write error", errno, false ); cleanup_and_fail( 1 ); }
renc->partial_member_pos += renc->pos;
renc->pos = 0;
}
}
void Lee_encode( struct Len_encoder * const len_encoder,
struct Range_encoder * const renc,
int symbol, const int pos_state )
{
symbol -= min_match_len;
if( symbol < len_low_symbols )
{
Re_encode_bit( renc, &len_encoder->choice1, 0 );
Re_encode_tree( renc, len_encoder->bm_low[pos_state], symbol, len_low_bits );
}
else
{
Re_encode_bit( renc, &len_encoder->choice1, 1 );
if( symbol < len_low_symbols + len_mid_symbols )
{
Re_encode_bit( renc, &len_encoder->choice2, 0 );
Re_encode_tree( renc, len_encoder->bm_mid[pos_state],
symbol - len_low_symbols, len_mid_bits );
}
else
{
Re_encode_bit( renc, &len_encoder->choice2, 1 );
Re_encode_tree( renc, len_encoder->bm_high,
symbol - len_low_symbols - len_mid_symbols, len_high_bits );
}
}
if( --len_encoder->counters[pos_state] <= 0 )
Lee_update_prices( len_encoder, pos_state );
}
/* End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len) */
static void LZe_full_flush( struct LZ_encoder * const encoder, const State state )
{
int i;
const int pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask;
File_trailer trailer;
Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][pos_state], 1 );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep[state], 0 );
LZe_encode_pair( encoder, 0xFFFFFFFFU, min_match_len, pos_state );
Re_flush( &encoder->range_encoder );
Ft_set_data_crc( trailer, LZe_crc( encoder ) );
Ft_set_data_size( trailer, Mf_data_position( encoder->matchfinder ) );
Ft_set_member_size( trailer, Re_member_position( &encoder->range_encoder ) +
Ft_size );
for( i = 0; i < Ft_size; ++i )
Re_put_byte( &encoder->range_encoder, trailer[i] );
Re_flush_data( &encoder->range_encoder );
}
static void LZe_fill_align_prices( struct LZ_encoder * const encoder )
{
int i;
for( i = 0; i < dis_align_size; ++i )
encoder->align_prices[i] =
price_symbol_reversed( encoder->bm_align, i, dis_align_bits );
encoder->align_price_count = dis_align_size;
}
static void LZe_fill_distance_prices( struct LZ_encoder * const encoder )
{
int dis, dis_state;
for( dis = start_dis_model; dis < modeled_distances; ++dis )
{
const int dis_slot = dis_slots[dis];
const int direct_bits = ( dis_slot >> 1 ) - 1;
const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const int price =
price_symbol_reversed( encoder->bm_dis + base - dis_slot - 1,
dis - base, direct_bits );
for( dis_state = 0; dis_state < max_dis_states; ++dis_state )
encoder->dis_prices[dis_state][dis] = price;
}
for( dis_state = 0; dis_state < max_dis_states; ++dis_state )
{
int * const dsp = encoder->dis_slot_prices[dis_state];
int * const dp = encoder->dis_prices[dis_state];
const Bit_model * const bmds = encoder->bm_dis_slot[dis_state];
int slot = 0;
for( ; slot < end_dis_model && slot < encoder->num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits );
for( ; slot < encoder->num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ) +
(((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift_bits );
for( dis = 0; dis < start_dis_model; ++dis )
dp[dis] = dsp[dis];
for( ; dis < modeled_distances; ++dis )
dp[dis] += dsp[dis_slots[dis]];
}
}
bool LZe_init( struct LZ_encoder * const encoder,
struct Matchfinder * const mf,
const File_header header, const int outfd )
{
int i;
encoder->pending_num_pairs = 0;
encoder->crc = 0xFFFFFFFFU;
Bm_array_init( encoder->bm_literal[0], (1 << literal_context_bits) * 0x300 );
Bm_array_init( encoder->bm_match[0], states * pos_states );
Bm_array_init( encoder->bm_rep, states );
Bm_array_init( encoder->bm_rep0, states );
Bm_array_init( encoder->bm_rep1, states );
Bm_array_init( encoder->bm_rep2, states );
Bm_array_init( encoder->bm_len[0], states * pos_states );
Bm_array_init( encoder->bm_dis_slot[0], max_dis_states * (1 << dis_slot_bits) );
Bm_array_init( encoder->bm_dis, modeled_distances - end_dis_model );
Bm_array_init( encoder->bm_align, dis_align_size );
encoder->matchfinder = mf;
if( !Re_init( &encoder->range_encoder, outfd ) ) return false;
Lee_init( &encoder->len_encoder, encoder->matchfinder->match_len_limit );
Lee_init( &encoder->rep_match_len_encoder, encoder->matchfinder->match_len_limit );
encoder->num_dis_slots =
2 * real_bits( encoder->matchfinder->dictionary_size - 1 );
encoder->align_price_count = 0;
for( i = 0; i < Fh_size; ++i )
Re_put_byte( &encoder->range_encoder, header[i] );
return true;
}
/* Return value == number of bytes advanced (ahead).
trials[0]..trials[retval-1] contain the steps to encode.
( trials[0].dis == -1 && trials[0].price == 1 ) means literal.
*/
static int LZe_sequence_optimizer( struct LZ_encoder * const encoder,
const int reps[num_rep_distances],
const State state )
{
int main_len, num_pairs, i, rep, cur = 0, num_trials, len;
int replens[num_rep_distances];
int rep_index = 0;
if( encoder->pending_num_pairs > 0 ) /* from previous call */
{
num_pairs = encoder->pending_num_pairs;
encoder->pending_num_pairs = 0;
}
else
num_pairs = LZe_read_match_distances( encoder );
main_len = ( num_pairs > 0 ) ? encoder->pairs[num_pairs-1].len : 0;
for( i = 0; i < num_rep_distances; ++i )
{
replens[i] =
Mf_true_match_len( encoder->matchfinder, 0, reps[i] + 1, max_match_len );
if( replens[i] > replens[rep_index] ) rep_index = i;
}
if( replens[rep_index] >= encoder->matchfinder->match_len_limit )
{
encoder->trials[0].dis = rep_index;
encoder->trials[0].price = replens[rep_index];
LZe_move_pos( encoder, replens[rep_index] );
return replens[rep_index];
}
if( main_len >= encoder->matchfinder->match_len_limit )
{
encoder->trials[0].dis = encoder->pairs[num_pairs-1].dis + num_rep_distances;
encoder->trials[0].price = main_len;
LZe_move_pos( encoder, main_len );
return main_len;
}
{
const int pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask;
const int match_price = price1( encoder->bm_match[state][pos_state] );
const int rep_match_price = match_price + price1( encoder->bm_rep[state] );
const uint8_t prev_byte = Mf_peek( encoder->matchfinder, -1 );
const uint8_t cur_byte = Mf_peek( encoder->matchfinder, 0 );
const uint8_t match_byte = Mf_peek( encoder->matchfinder, -reps[0]-1 );
encoder->trials[0].state = state;
encoder->trials[1].dis = -1;
encoder->trials[1].price = price0( encoder->bm_match[state][pos_state] );
if( St_is_char( state ) )
encoder->trials[1].price +=
LZe_price_literal( encoder, prev_byte, cur_byte );
else
encoder->trials[1].price +=
LZe_price_matched( encoder, prev_byte, cur_byte, match_byte );
if( match_byte == cur_byte )
Tr_update( &encoder->trials[1], rep_match_price +
LZe_price_rep_len1( encoder, state, pos_state ), 0, 0 );
num_trials = max( main_len, replens[rep_index] );
if( num_trials < min_match_len )
{
encoder->trials[0].dis = encoder->trials[1].dis;
encoder->trials[0].price = 1;
Mf_move_pos( encoder->matchfinder );
return 1;
}
for( i = 0; i < num_rep_distances; ++i )
encoder->trials[0].reps[i] = reps[i];
encoder->trials[1].prev_index = 0;
encoder->trials[1].prev_index2 = single_step_trial;
for( len = min_match_len; len <= num_trials; ++len )
encoder->trials[len].price = infinite_price;
for( rep = 0; rep < num_rep_distances; ++rep )
{
int price;
if( replens[rep] < min_match_len ) continue;
price = rep_match_price + LZe_price_rep( encoder, rep, state, pos_state );
for( len = min_match_len; len <= replens[rep]; ++len )
Tr_update( &encoder->trials[len], price +
Lee_price( &encoder->rep_match_len_encoder, len, pos_state ),
rep, 0 );
}
if( main_len > replens[0] )
{
const int normal_match_price = match_price + price0( encoder->bm_rep[state] );
i = 0, len = max( replens[0] + 1, min_match_len );
while( len > encoder->pairs[i].len ) ++i;
while( true )
{
const int dis = encoder->pairs[i].dis;
Tr_update( &encoder->trials[len], normal_match_price +
LZe_price_pair( encoder, dis, len, pos_state ),
dis + num_rep_distances, 0 );
if( ++len > encoder->pairs[i].len && ++i >= num_pairs ) break;
}
}
}
Mf_move_pos( encoder->matchfinder );
while( true ) /* price optimization loop */
{
struct Trial *cur_trial, *next_trial;
int newlen, pos_state, prev_index, prev_index2, available_bytes, len_limit;
int start_len = min_match_len;
int next_price, match_price, rep_match_price;
State cur_state;
uint8_t prev_byte, cur_byte, match_byte;
if( ++cur >= num_trials ) /* no more initialized trials */
{
LZe_backward( encoder, cur );
return cur;
}
num_pairs = LZe_read_match_distances( encoder );
newlen = ( num_pairs > 0 ) ? encoder->pairs[num_pairs-1].len : 0;
if( newlen >= encoder->matchfinder->match_len_limit )
{
encoder->pending_num_pairs = num_pairs;
LZe_backward( encoder, cur );
return cur;
}
/* give final values to current trial */
cur_trial = &encoder->trials[cur];
prev_index = cur_trial->prev_index;
prev_index2 = cur_trial->prev_index2;
if( prev_index2 != single_step_trial )
{
--prev_index;
if( prev_index2 >= 0 )
{
cur_state = encoder->trials[prev_index2].state;
if( cur_trial->dis2 < num_rep_distances )
cur_state = St_set_rep( cur_state );
else
cur_state = St_set_match( cur_state );
}
else
cur_state = encoder->trials[prev_index].state;
cur_state = St_set_char( cur_state );
}
else
cur_state = encoder->trials[prev_index].state;
if( prev_index == cur - 1 )
{
if( cur_trial->dis == 0 )
cur_state = St_set_short_rep( cur_state );
else
cur_state = St_set_char( cur_state );
for( i = 0; i < num_rep_distances; ++i )
cur_trial->reps[i] = encoder->trials[prev_index].reps[i];
}
else
{
int dis;
if( prev_index2 >= 0 )
{
dis = cur_trial->dis2;
prev_index = prev_index2;
cur_state = St_set_rep( cur_state );
}
else
{
dis = cur_trial->dis;
if( dis < num_rep_distances )
cur_state = St_set_rep( cur_state );
else
cur_state = St_set_match( cur_state );
}
for( i = 0; i < num_rep_distances; ++i )
cur_trial->reps[i] = encoder->trials[prev_index].reps[i];
LZe_mtf_reps( dis, cur_trial->reps );
}
cur_trial->state = cur_state;
pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask;
prev_byte = Mf_peek( encoder->matchfinder, -1 );
cur_byte = Mf_peek( encoder->matchfinder, 0 );
match_byte = Mf_peek( encoder->matchfinder, -cur_trial->reps[0]-1 );
next_price = cur_trial->price +
price0( encoder->bm_match[cur_state][pos_state] );
if( St_is_char( cur_state ) )
next_price += LZe_price_literal( encoder, prev_byte, cur_byte );
else
next_price += LZe_price_matched( encoder,
prev_byte, cur_byte, match_byte );
Mf_move_pos( encoder->matchfinder );
/* try last updates to next trial */
next_trial = &encoder->trials[cur+1];
Tr_update( next_trial, next_price, -1, cur );
match_price = cur_trial->price + price1( encoder->bm_match[cur_state][pos_state] );
rep_match_price = match_price + price1( encoder->bm_rep[cur_state] );
if( match_byte == cur_byte && next_trial->dis != 0 )
{
const int price = rep_match_price +
LZe_price_rep_len1( encoder, cur_state, pos_state );
if( price <= next_trial->price )
{
next_trial->price = price;
next_trial->dis = 0;
next_trial->prev_index = cur;
next_trial->prev_index2 = single_step_trial;
}
}
available_bytes = min( Mf_available_bytes( encoder->matchfinder ) + 1,
max_num_trials - 1 - cur );
if( available_bytes < min_match_len ) continue;
len_limit = min( encoder->matchfinder->match_len_limit, available_bytes );
/* try literal + rep0 */
if( match_byte != cur_byte && next_trial->prev_index != cur )
{
const uint8_t * const data = Mf_ptr_to_current_pos( encoder->matchfinder ) - 1;
const int dis = cur_trial->reps[0] + 1;
const int limit = min( encoder->matchfinder->match_len_limit + 1,
available_bytes );
len = 1;
while( len < limit && data[len-dis] == data[len] ) ++len;
if( --len >= min_match_len )
{
const int pos_state2 = ( pos_state + 1 ) & pos_state_mask;
const State state2 = St_set_char( cur_state );
const int price = next_price +
price1( encoder->bm_match[state2][pos_state2] ) +
price1( encoder->bm_rep[state2] ) +
LZe_price_rep0_len( encoder, len, state2, pos_state2 );
while( num_trials < cur + 1 + len )
encoder->trials[++num_trials].price = infinite_price;
Tr_update2( &encoder->trials[cur+1+len], price, 0, cur + 1 );
}
}
/* try rep distances */
for( rep = 0; rep < num_rep_distances; ++rep )
{
const uint8_t * const data = Mf_ptr_to_current_pos( encoder->matchfinder ) - 1;
int price;
const int dis = cur_trial->reps[rep] + 1;
if( data[-dis] != data[0] || data[1-dis] != data[1] ) continue;
for( len = min_match_len; len < len_limit; ++len )
if( data[len-dis] != data[len] ) break;
while( num_trials < cur + len )
encoder->trials[++num_trials].price = infinite_price;
price = rep_match_price +
LZe_price_rep( encoder, rep, cur_state, pos_state );
for( i = min_match_len; i <= len; ++i )
Tr_update( &encoder->trials[cur+i], price +
Lee_price( &encoder->rep_match_len_encoder, i, pos_state ),
rep, cur );
if( rep == 0 ) start_len = len + 1; /* discard shorter matches */
/* try rep + literal + rep0 */
{
int len2 = len + 1, pos_state2;
const int limit = min( encoder->matchfinder->match_len_limit + len2,
available_bytes );
State state2;
while( len2 < limit && data[len2-dis] == data[len2] ) ++len2;
len2 -= len + 1;
if( len2 < min_match_len ) continue;
pos_state2 = ( pos_state + len ) & pos_state_mask;
state2 = St_set_rep( cur_state );
price += Lee_price( &encoder->rep_match_len_encoder, len, pos_state ) +
price0( encoder->bm_match[state2][pos_state2] ) +
LZe_price_matched( encoder, data[len-1], data[len], data[len-dis] );
pos_state2 = ( pos_state2 + 1 ) & pos_state_mask;
state2 = St_set_char( state2 );
price += price1( encoder->bm_match[state2][pos_state2] ) +
price1( encoder->bm_rep[state2] ) +
LZe_price_rep0_len( encoder, len2, state2, pos_state2 );
while( num_trials < cur + len + 1 + len2 )
encoder->trials[++num_trials].price = infinite_price;
Tr_update3( &encoder->trials[cur+len+1+len2], price, 0, cur + len + 1,
rep, cur );
}
}
/* try matches */
if( newlen >= start_len && newlen <= len_limit )
{
int dis;
const int normal_match_price = match_price +
price0( encoder->bm_rep[cur_state] );
while( num_trials < cur + newlen )
encoder->trials[++num_trials].price = infinite_price;
i = 0;
while( start_len > encoder->pairs[i].len ) ++i;
dis = encoder->pairs[i].dis;
for( len = start_len; ; ++len )
{
int price = normal_match_price +
LZe_price_pair( encoder, dis, len, pos_state );
Tr_update( &encoder->trials[cur+len], price, dis + num_rep_distances, cur );
/* try match + literal + rep0 */
if( len == encoder->pairs[i].len )
{
const uint8_t * const data = Mf_ptr_to_current_pos( encoder->matchfinder ) - 1;
const int dis2 = dis + 1;
int len2 = len + 1;
const int limit = min( encoder->matchfinder->match_len_limit + len2,
available_bytes );
while( len2 < limit && data[len2-dis2] == data[len2] ) ++len2;
len2 -= len + 1;
if( len2 >= min_match_len )
{
int pos_state2 = ( pos_state + len ) & pos_state_mask;
State state2 = St_set_match( cur_state );
price += price0( encoder->bm_match[state2][pos_state2] ) +
LZe_price_matched( encoder, data[len-1], data[len], data[len-dis2] );
pos_state2 = ( pos_state2 + 1 ) & pos_state_mask;
state2 = St_set_char( state2 );
price += price1( encoder->bm_match[state2][pos_state2] ) +
price1( encoder->bm_rep[state2] ) +
LZe_price_rep0_len( encoder, len2, state2, pos_state2 );
while( num_trials < cur + len + 1 + len2 )
encoder->trials[++num_trials].price = infinite_price;
Tr_update3( &encoder->trials[cur+len+1+len2], price, 0,
cur + len + 1, dis + num_rep_distances, cur );
}
if( ++i >= num_pairs ) break;
dis = encoder->pairs[i].dis;
}
}
}
}
}
bool LZe_encode_member( struct LZ_encoder * const encoder,
const unsigned long long member_size )
{
const unsigned long long member_size_limit =
member_size - Ft_size - max_marker_size;
const int fill_count =
( encoder->matchfinder->match_len_limit > 12 ) ? 128 : 512;
int fill_counter = 0;
int ahead, i;
int rep_distances[num_rep_distances];
State state = 0;
for( i = 0; i < num_rep_distances; ++i ) rep_distances[i] = 0;
if( Mf_data_position( encoder->matchfinder ) != 0 ||
Re_member_position( &encoder->range_encoder ) != Fh_size )
return false; /* can be called only once */
if( !Mf_finished( encoder->matchfinder ) ) /* encode first byte */
{
const uint8_t prev_byte = 0;
const uint8_t cur_byte = Mf_peek( encoder->matchfinder, 0 );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][0], 0 );
LZe_encode_literal( encoder, prev_byte, cur_byte );
CRC32_update_byte( &encoder->crc, cur_byte );
Mf_get_match_pairs( encoder->matchfinder, 0 );
Mf_move_pos( encoder->matchfinder );
}
while( !Mf_finished( encoder->matchfinder ) )
{
if( encoder->pending_num_pairs == 0 )
{
if( fill_counter <= 0 )
{ LZe_fill_distance_prices( encoder ); fill_counter = fill_count; }
if( encoder->align_price_count <= 0 )
LZe_fill_align_prices( encoder );
}
ahead = LZe_sequence_optimizer( encoder, rep_distances, state );
if( ahead <= 0 ) return false; /* can't happen */
for( i = 0; ; )
{
const int pos_state =
( Mf_data_position( encoder->matchfinder ) - ahead ) & pos_state_mask;
const int dis = encoder->trials[i].dis;
const int len = encoder->trials[i].price;
bool bit = ( dis < 0 && len == 1 );
Re_encode_bit( &encoder->range_encoder,
&encoder->bm_match[state][pos_state], !bit );
if( bit ) /* literal byte */
{
const uint8_t prev_byte = Mf_peek( encoder->matchfinder, -ahead-1 );
const uint8_t cur_byte = Mf_peek( encoder->matchfinder, -ahead );
CRC32_update_byte( &encoder->crc, cur_byte );
if( St_is_char( state ) )
LZe_encode_literal( encoder, prev_byte, cur_byte );
else
{
const uint8_t match_byte =
Mf_peek( encoder->matchfinder, -ahead-rep_distances[0]-1 );
LZe_encode_matched( encoder, prev_byte, cur_byte, match_byte );
}
state = St_set_char( state );
}
else /* match or repeated match */
{
CRC32_update_buf( &encoder->crc, Mf_ptr_to_current_pos( encoder->matchfinder ) - ahead, len );
LZe_mtf_reps( dis, rep_distances );
bit = ( dis < num_rep_distances );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep[state], bit );
if( bit )
{
bit = ( dis == 0 );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep0[state], !bit );
if( bit )
Re_encode_bit( &encoder->range_encoder, &encoder->bm_len[state][pos_state], len > 1 );
else
{
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep1[state], dis > 1 );
if( dis > 1 )
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep2[state], dis > 2 );
}
if( len == 1 ) state = St_set_short_rep( state );
else
{
Lee_encode( &encoder->rep_match_len_encoder, &encoder->range_encoder, len, pos_state );
state = St_set_rep( state );
}
}
else
{
LZe_encode_pair( encoder, dis - num_rep_distances, len, pos_state );
--fill_counter;
state = St_set_match( state );
}
}
ahead -= len; i += len;
if( Re_member_position( &encoder->range_encoder ) >= member_size_limit )
{
if( !Mf_dec_pos( encoder->matchfinder, ahead ) ) return false;
LZe_full_flush( encoder, state );
return true;
}
if( ahead <= 0 ) break;
}
}
LZe_full_flush( encoder, state );
return true;
}