/* Clzip - Data compressor based on the LZMA algorithm
Copyright (C) 2010, 2011 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include "clzip.h"
#include "encoder.h"
Dis_slots dis_slots;
Prob_prices prob_prices;
bool Mf_read_block( struct Matchfinder * const mf )
{
if( !mf->at_stream_end && mf->stream_pos < mf->buffer_size )
{
const int size = mf->buffer_size - mf->stream_pos;
const int rd = readblock( mf->infd, mf->buffer + mf->stream_pos, size );
mf->stream_pos += rd;
if( rd != size && errno )
{ show_error( "Read error", errno, false ); cleanup_and_fail( 1 ); }
mf->at_stream_end = ( rd < size );
}
return mf->pos < mf->stream_pos;
}
void Mf_init( struct Matchfinder * const mf,
const int dict_size, const int len_limit, const int ifd )
{
const int buffer_size_limit = ( 2 * dict_size ) + before_size + after_size;
int i;
mf->partial_data_pos = 0;
mf->prev_positions =
(int32_t *)malloc( num_prev_positions * sizeof (int32_t) );
if( !mf->prev_positions )
{
show_error( "Not enough memory. Try a smaller dictionary size.", 0, false );
cleanup_and_fail( 1 );
}
mf->pos = 0;
mf->cyclic_pos = 0;
mf->stream_pos = 0;
mf->match_len_limit_ = len_limit;
mf->cycles = ( len_limit < max_match_len ) ? 16 + ( len_limit / 2 ) : 256;
mf->infd = ifd;
mf->at_stream_end = false;
mf->buffer_size = max( 65536, dict_size );
mf->buffer = (uint8_t *)malloc( mf->buffer_size );
if( !mf->buffer )
{
show_error( "Not enough memory. Try a smaller dictionary size.", 0, false );
cleanup_and_fail( 1 );
}
if( Mf_read_block( mf ) && !mf->at_stream_end &&
mf->buffer_size < buffer_size_limit )
{
mf->buffer_size = buffer_size_limit;
mf->buffer = (uint8_t *)realloc( mf->buffer, mf->buffer_size );
if( !mf->buffer )
{
show_error( "Not enough memory. Try a smaller dictionary size.", 0, false );
cleanup_and_fail( 1 );
}
Mf_read_block( mf );
}
if( mf->at_stream_end && mf->stream_pos < dict_size )
mf->dictionary_size_ = max( min_dictionary_size, mf->stream_pos );
else mf->dictionary_size_ = dict_size;
mf->pos_limit = mf->buffer_size;
if( !mf->at_stream_end ) mf->pos_limit -= after_size;
mf->prev_pos_tree =
(int32_t *)malloc( 2 * mf->dictionary_size_ * sizeof (int32_t) );
if( !mf->prev_pos_tree )
{
show_error( "Not enough memory. Try a smaller dictionary size.", 0, false );
cleanup_and_fail( 1 );
}
for( i = 0; i < num_prev_positions; ++i ) mf->prev_positions[i] = -1;
}
void Mf_reset( struct Matchfinder * const mf )
{
int i;
const int size = mf->stream_pos - mf->pos;
if( size > 0 ) memmove( mf->buffer, mf->buffer + mf->pos, size );
mf->partial_data_pos = 0;
mf->stream_pos -= mf->pos;
mf->pos = 0;
mf->cyclic_pos = 0;
for( i = 0; i < num_prev_positions; ++i ) mf->prev_positions[i] = -1;
Mf_read_block( mf );
}
void Mf_move_pos( struct Matchfinder * const mf )
{
if( ++mf->cyclic_pos >= mf->dictionary_size_ ) mf->cyclic_pos = 0;
if( ++mf->pos >= mf->pos_limit )
{
if( mf->pos > mf->stream_pos )
internal_error( "pos > stream_pos in Mf_move_pos" );
if( !mf->at_stream_end )
{
int i;
const int offset = mf->pos - mf->dictionary_size_ - before_size;
const int size = mf->stream_pos - offset;
memmove( mf->buffer, mf->buffer + offset, size );
mf->partial_data_pos += offset;
mf->pos -= offset;
mf->stream_pos -= offset;
for( i = 0; i < num_prev_positions; ++i )
if( mf->prev_positions[i] >= 0 ) mf->prev_positions[i] -= offset;
for( i = 0; i < 2 * mf->dictionary_size_; ++i )
if( mf->prev_pos_tree[i] >= 0 ) mf->prev_pos_tree[i] -= offset;
Mf_read_block( mf );
}
}
}
int Mf_longest_match_len( struct Matchfinder * const mf, int * const distances )
{
int32_t * ptr0 = mf->prev_pos_tree + ( mf->cyclic_pos << 1 );
int32_t * ptr1 = ptr0 + 1;
int32_t * newptr;
const uint8_t * newdata;
int len = 0, len0 = 0, len1 = 0;
int maxlen = min_match_len - 1;
const int min_pos = (mf->pos >= mf->dictionary_size_) ?
(mf->pos - mf->dictionary_size_ + 1) : 0;
const uint8_t * const data = mf->buffer + mf->pos;
int count, delta, key2, key3, key4, newpos, tmp;
int len_limit = mf->match_len_limit_;
if( len_limit > Mf_available_bytes( mf ) )
{
len_limit = Mf_available_bytes( mf );
if( len_limit < 4 ) return 0;
}
key2 = num_prev_positions4 + num_prev_positions3 +
( ( (int)data[0] << 8 ) | data[1] );
tmp = crc32[data[0]] ^ data[1] ^ ( (uint32_t)data[2] << 8 );
key3 = num_prev_positions4 + (int)( tmp & ( num_prev_positions3 - 1 ) );
key4 = (int)( ( tmp ^ ( crc32[data[3]] << 5 ) ) &
( num_prev_positions4 - 1 ) );
if( distances )
{
int np = mf->prev_positions[key2];
if( np >= min_pos )
{ distances[2] = mf->pos - np - 1; maxlen = 2; }
else distances[2] = 0x7FFFFFFF;
np = mf->prev_positions[key3];
if( np >= min_pos && mf->buffer[np] == data[0] )
{ distances[3] = mf->pos - np - 1; maxlen = 3; }
else distances[3] = 0x7FFFFFFF;
distances[4] = 0x7FFFFFFF;
}
mf->prev_positions[key2] = mf->pos;
mf->prev_positions[key3] = mf->pos;
newpos = mf->prev_positions[key4];
mf->prev_positions[key4] = mf->pos;
for( count = mf->cycles; ; )
{
if( newpos < min_pos || --count < 0 ) { *ptr0 = *ptr1 = -1; break; }
newdata = mf->buffer + newpos;
while( len < len_limit && newdata[len] == data[len] ) ++len;
delta = mf->pos - newpos;
if( distances ) while( maxlen < len ) distances[++maxlen] = delta - 1;
newptr = mf->prev_pos_tree +
( ( mf->cyclic_pos - delta +
( ( mf->cyclic_pos >= delta ) ? 0 : mf->dictionary_size_ ) ) << 1 );
if( len < len_limit )
{
if( newdata[len] < data[len] )
{
*ptr0 = newpos;
ptr0 = newptr + 1;
newpos = *ptr0;
len0 = len; if( len1 < len ) len = len1;
}
else
{
*ptr1 = newpos;
ptr1 = newptr;
newpos = *ptr1;
len1 = len; if( len0 < len ) len = len0;
}
}
else
{
*ptr0 = newptr[0];
*ptr1 = newptr[1];
break;
}
}
if( distances )
{
if( distances[3] > distances[4] ) distances[3] = distances[4];
if( distances[2] > distances[3] ) distances[2] = distances[3];
}
return maxlen;
}
void Re_flush_data( struct Range_encoder * const range_encoder )
{
if( range_encoder->pos > 0 )
{
if( range_encoder->outfd >= 0 &&
writeblock( range_encoder->outfd, range_encoder->buffer,
range_encoder->pos ) != range_encoder->pos )
{ show_error( "Write error", errno, false ); cleanup_and_fail( 1 ); }
range_encoder->partial_member_pos += range_encoder->pos;
range_encoder->pos = 0;
}
}
void Lee_encode( struct Len_encoder * const len_encoder,
struct Range_encoder * const range_encoder,
int symbol, const int pos_state )
{
symbol -= min_match_len;
if( symbol < len_low_symbols )
{
Re_encode_bit( range_encoder, &len_encoder->choice1, 0 );
Re_encode_tree( range_encoder, len_encoder->bm_low[pos_state], symbol, len_low_bits );
}
else
{
Re_encode_bit( range_encoder, &len_encoder->choice1, 1 );
if( symbol < len_low_symbols + len_mid_symbols )
{
Re_encode_bit( range_encoder, &len_encoder->choice2, 0 );
Re_encode_tree( range_encoder, len_encoder->bm_mid[pos_state], symbol - len_low_symbols, len_mid_bits );
}
else
{
Re_encode_bit( range_encoder, &len_encoder->choice2, 1 );
Re_encode_tree( range_encoder, len_encoder->bm_high, symbol - len_low_symbols - len_mid_symbols, len_high_bits );
}
}
if( --len_encoder->counters[pos_state] <= 0 )
Lee_update_prices( len_encoder, pos_state );
}
void LZe_fill_align_prices( struct LZ_encoder * const encoder )
{
int i;
for( i = 0; i < dis_align_size; ++i )
encoder->align_prices[i] = price_symbol_reversed( encoder->bm_align, i, dis_align_bits );
encoder->align_price_count = dis_align_size;
}
void LZe_fill_distance_prices( struct LZ_encoder * const encoder )
{
int dis, dis_state;
for( dis = start_dis_model; dis < modeled_distances; ++dis )
{
const int dis_slot = dis_slots[dis];
const int direct_bits = ( dis_slot >> 1 ) - 1;
const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const int price =
price_symbol_reversed( encoder->bm_dis + base - dis_slot, dis - base, direct_bits );
for( dis_state = 0; dis_state < max_dis_states; ++dis_state )
encoder->dis_prices[dis_state][dis] = price;
}
for( dis_state = 0; dis_state < max_dis_states; ++dis_state )
{
int * const dsp = encoder->dis_slot_prices[dis_state];
int * const dp = encoder->dis_prices[dis_state];
const Bit_model * const bmds = encoder->bm_dis_slot[dis_state];
int slot = 0;
for( ; slot < end_dis_model && slot < encoder->num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits );
for( ; slot < encoder->num_dis_slots; ++slot )
dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ) +
(((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift );
for( dis = 0; dis < start_dis_model; ++dis )
dp[dis] = dsp[dis];
for( ; dis < modeled_distances; ++dis )
dp[dis] += dsp[dis_slots[dis]];
}
}
/* Return value == number of bytes advanced (ahead).
trials[0]..trials[retval-1] contain the steps to encode.
( trials[0].dis == -1 && trials[0].price == 1 ) means literal. */
int LZe_sequence_optimizer( struct LZ_encoder * const encoder,
const int reps[num_rep_distances], const State state )
{
int main_len, i, rep, cur = 0, num_trials;
int replens[num_rep_distances];
int rep_index = 0;
if( encoder->longest_match_found > 0 ) /* from previous call */
{
main_len = encoder->longest_match_found;
encoder->longest_match_found = 0;
}
else main_len = LZe_read_match_distances( encoder );
for( i = 0; i < num_rep_distances; ++i )
{
replens[i] = Mf_true_match_len( encoder->matchfinder, 0, reps[i] + 1, max_match_len );
if( replens[i] > replens[rep_index] ) rep_index = i;
}
if( replens[rep_index] >= Mf_match_len_limit( encoder->matchfinder ) )
{
encoder->trials[0].dis = rep_index;
encoder->trials[0].price = replens[rep_index];
LZe_move_pos( encoder, replens[rep_index], true );
return replens[rep_index];
}
if( main_len >= Mf_match_len_limit( encoder->matchfinder ) )
{
encoder->trials[0].dis = encoder->match_distances[Mf_match_len_limit( encoder->matchfinder )] +
num_rep_distances;
encoder->trials[0].price = main_len;
LZe_move_pos( encoder, main_len, true );
return main_len;
}
{
const int pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask;
const int match_price = price1( encoder->bm_match[state][pos_state] );
const int rep_match_price = match_price + price1( encoder->bm_rep[state] );
const uint8_t prev_byte = Mf_peek( encoder->matchfinder, -1 );
const uint8_t cur_byte = Mf_peek( encoder->matchfinder, 0 );
const uint8_t match_byte = Mf_peek( encoder->matchfinder, -reps[0]-1 );
encoder->trials[0].state = state;
for( i = 0; i < num_rep_distances; ++i ) encoder->trials[0].reps[i] = reps[i];
encoder->trials[1].dis = -1;
encoder->trials[1].prev_index = 0;
encoder->trials[1].price = price0( encoder->bm_match[state][pos_state] );
if( St_is_char( state ) )
encoder->trials[1].price += Lie_price_symbol( &encoder->literal_encoder, prev_byte, cur_byte );
else
encoder->trials[1].price += Lie_price_matched( &encoder->literal_encoder, prev_byte, cur_byte, match_byte );
if( match_byte == cur_byte )
Tr_update( &encoder->trials[1], 0, 0, rep_match_price + LZe_price_rep_len1( encoder, state, pos_state ) );
if( main_len < min_match_len )
{
encoder->trials[0].dis = encoder->trials[1].dis;
encoder->trials[0].price = 1;
Mf_move_pos( encoder->matchfinder );
return 1;
}
if( main_len <= replens[rep_index] )
{
int len;
main_len = replens[rep_index];
for( len = min_match_len; len <= main_len; ++len )
encoder->trials[len].price = infinite_price;
}
else
{
int len;
const int normal_match_price = match_price + price0( encoder->bm_rep[state] );
for( len = min_match_len; len <= main_len; ++len )
{
encoder->trials[len].dis = encoder->match_distances[len] + num_rep_distances;
encoder->trials[len].prev_index = 0;
encoder->trials[len].price = normal_match_price +
LZe_price_pair( encoder, encoder->match_distances[len], len, pos_state );
}
}
for( rep = 0; rep < num_rep_distances; ++rep )
{
const int price = rep_match_price +
LZe_price_rep( encoder, rep, state, pos_state );
int len;
for( len = min_match_len; len <= replens[rep]; ++len )
Tr_update( &encoder->trials[len], rep, 0, price +
Lee_price( &encoder->rep_match_len_encoder, len, pos_state ) );
}
}
num_trials = main_len;
Mf_move_pos( encoder->matchfinder );
while( true )
{
struct Trial *cur_trial, *next_trial;
int newlen, pos_state, prev_index, len_limit;
int next_price, match_price, rep_match_price;
uint8_t prev_byte, cur_byte, match_byte;
if( ++cur >= num_trials ) /* no more initialized trials */
{
LZe_backward( encoder, cur );
return cur;
}
newlen = LZe_read_match_distances( encoder );
if( newlen >= Mf_match_len_limit( encoder->matchfinder ) )
{
encoder->longest_match_found = newlen;
LZe_backward( encoder, cur );
return cur;
}
cur_trial = &encoder->trials[cur];
prev_index = cur_trial->prev_index;
cur_trial->state = encoder->trials[prev_index].state;
for( i = 0; i < num_rep_distances; ++i )
cur_trial->reps[i] = encoder->trials[prev_index].reps[i];
if( prev_index == cur - 1 )
{
if( cur_trial->dis == 0 ) St_set_short_rep( &cur_trial->state );
else St_set_char( &cur_trial->state );
}
else
{
if( cur_trial->dis < num_rep_distances ) St_set_rep( &cur_trial->state );
else St_set_match( &cur_trial->state );
LZe_mtf_reps( cur_trial->dis, cur_trial->reps );
}
pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask;
prev_byte = Mf_peek( encoder->matchfinder, -1 );
cur_byte = Mf_peek( encoder->matchfinder, 0 );
match_byte = Mf_peek( encoder->matchfinder, -cur_trial->reps[0]-1 );
next_price = cur_trial->price + price0( encoder->bm_match[cur_trial->state][pos_state] );
if( St_is_char( cur_trial->state ) )
next_price += Lie_price_symbol( &encoder->literal_encoder, prev_byte, cur_byte );
else
next_price += Lie_price_matched( &encoder->literal_encoder, prev_byte, cur_byte, match_byte );
Mf_move_pos( encoder->matchfinder );
next_trial = &encoder->trials[cur+1];
Tr_update( next_trial, -1, cur, next_price );
match_price = cur_trial->price + price1( encoder->bm_match[cur_trial->state][pos_state] );
rep_match_price = match_price + price1( encoder->bm_rep[cur_trial->state] );
if( match_byte == cur_byte && next_trial->dis != 0 )
Tr_update( next_trial, 0, cur, rep_match_price +
LZe_price_rep_len1( encoder, cur_trial->state, pos_state ) );
len_limit = min( min( max_num_trials - 1 - cur,
Mf_available_bytes( encoder->matchfinder ) ),
Mf_match_len_limit( encoder->matchfinder ) );
if( len_limit < min_match_len ) continue;
for( rep = 0; rep < num_rep_distances; ++rep )
{
const int dis = cur_trial->reps[rep] + 1;
int len = 0;
const uint8_t * const data = Mf_ptr_to_current_pos( encoder->matchfinder ) - 1;
while( len < len_limit && data[len] == data[len-dis] ) ++len;
if( len >= min_match_len )
{
const int price = rep_match_price +
LZe_price_rep( encoder, rep, cur_trial->state, pos_state );
while( num_trials < cur + len )
encoder->trials[++num_trials].price = infinite_price;
for( ; len >= min_match_len; --len )
Tr_update( &encoder->trials[cur+len], rep, cur, price +
Lee_price( &encoder->rep_match_len_encoder, len, pos_state ) );
}
}
if( newlen <= len_limit &&
( newlen > min_match_len ||
( newlen == min_match_len &&
encoder->match_distances[min_match_len] < modeled_distances ) ) )
{
const int normal_match_price = match_price +
price0( encoder->bm_rep[cur_trial->state] );
int len;
int dis = encoder->match_distances[min_match_len];
int dis_state = get_dis_state( min_match_len );
int dis_price = infinite_price;
while( num_trials < cur + newlen )
encoder->trials[++num_trials].price = infinite_price;
if( dis < modeled_distances )
Tr_update( &encoder->trials[cur+min_match_len], dis + num_rep_distances,
cur, normal_match_price + encoder->dis_prices[dis_state][dis] +
Lee_price( &encoder->len_encoder, min_match_len, pos_state ) );
for( len = min_match_len + 1; len <= newlen; ++len )
{
if( dis != encoder->match_distances[len] ||
dis_state < max_dis_states - 1 )
{
dis = encoder->match_distances[len];
dis_state = get_dis_state( len );
dis_price = LZe_price_dis( encoder, dis, dis_state );
}
Tr_update( &encoder->trials[cur+len], dis + num_rep_distances, cur,
normal_match_price + dis_price +
Lee_price( &encoder->len_encoder, len, pos_state ) );
}
}
}
}
/* End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len) */
void LZe_full_flush( struct LZ_encoder * const encoder, const State state )
{
int i;
const int pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask;
File_trailer trailer;
Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][pos_state], 1 );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep[state], 0 );
LZe_encode_pair( encoder, 0xFFFFFFFFU, min_match_len, pos_state );
Re_flush( &encoder->range_encoder );
Ft_set_data_crc( trailer, LZe_crc( encoder ) );
Ft_set_data_size( trailer, Mf_data_position( encoder->matchfinder ) );
Ft_set_member_size( trailer, LZe_member_position( encoder ) + Ft_size );
for( i = 0; i < Ft_size; ++i )
Re_put_byte( &encoder->range_encoder, trailer[i] );
Re_flush_data( &encoder->range_encoder );
}
void LZe_init( struct LZ_encoder * const encoder, struct Matchfinder * const mf,
const File_header header, const int outfd )
{
int i, j;
encoder->longest_match_found = 0;
encoder->crc_ = 0xFFFFFFFFU;
for( i = 0; i < states; ++i )
{
for( j = 0; j < pos_states; ++j )
{
Bm_init( &encoder->bm_match[i][j] );
Bm_init( &encoder->bm_len[i][j] );
}
Bm_init( &encoder->bm_rep[i] );
Bm_init( &encoder->bm_rep0[i] );
Bm_init( &encoder->bm_rep1[i] );
Bm_init( &encoder->bm_rep2[i] );
}
for( i = 0; i < max_dis_states; ++i )
for( j = 0; j < 1<bm_dis_slot[i][j] );
for( i = 0; i < modeled_distances-end_dis_model+1; ++i )
Bm_init( &encoder->bm_dis[i] );
for( i = 0; i < dis_align_size; ++i )
Bm_init( &encoder->bm_align[i] );
encoder->matchfinder = mf;
Re_init( &encoder->range_encoder, outfd );
Lee_init( &encoder->len_encoder, Mf_match_len_limit( encoder->matchfinder ) ),
Lee_init( &encoder->rep_match_len_encoder, Mf_match_len_limit( encoder->matchfinder ) ),
Lie_init( &encoder->literal_encoder );
encoder->num_dis_slots = 2 * real_bits( Mf_dictionary_size( encoder->matchfinder ) - 1 );
LZe_fill_align_prices( encoder );
for( i = 0; i < Fh_size; ++i )
Re_put_byte( &encoder->range_encoder, header[i] );
}
bool LZe_encode_member( struct LZ_encoder * const encoder,
const long long member_size )
{
const long long member_size_limit =
member_size - Ft_size - max_marker_size;
const int fill_count =
( Mf_match_len_limit( encoder->matchfinder ) > 12 ) ? 512 : 2048;
int fill_counter = 0;
int ahead;
int i;
int rep_distances[num_rep_distances];
State state = 0;
for( i = 0; i < num_rep_distances; ++i ) rep_distances[i] = 0;
if( Mf_data_position( encoder->matchfinder ) != 0 ||
LZe_member_position( encoder ) != Fh_size )
return false; /* can be called only once */
if( !Mf_finished( encoder->matchfinder ) ) /* encode first byte */
{
const uint8_t prev_byte = 0;
const uint8_t cur_byte = Mf_peek( encoder->matchfinder, 0 );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][0], 0 );
Lie_encode( &encoder->literal_encoder, &encoder->range_encoder, prev_byte, cur_byte );
CRC32_update_byte( &encoder->crc_, cur_byte );
LZe_move_pos( encoder, 1, false );
}
while( true )
{
if( Mf_finished( encoder->matchfinder ) )
{ LZe_full_flush( encoder, state ); return true; }
if( fill_counter <= 0 )
{ LZe_fill_distance_prices( encoder ); fill_counter = fill_count; }
ahead = LZe_sequence_optimizer( encoder, rep_distances, state );
if( ahead <= 0 ) return false;
fill_counter -= ahead;
for( i = 0; ; )
{
const int pos_state = ( Mf_data_position( encoder->matchfinder ) - ahead ) & pos_state_mask;
const int dis = encoder->trials[i].dis;
const int len = encoder->trials[i].price;
bool bit = ( dis < 0 && len == 1 );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][pos_state], !bit );
if( bit ) /* literal byte */
{
const uint8_t prev_byte = Mf_peek( encoder->matchfinder, -ahead-1 );
const uint8_t cur_byte = Mf_peek( encoder->matchfinder, -ahead );
CRC32_update_byte( &encoder->crc_, cur_byte );
if( St_is_char( state ) )
Lie_encode( &encoder->literal_encoder, &encoder->range_encoder, prev_byte, cur_byte );
else
{
const uint8_t match_byte = Mf_peek( encoder->matchfinder, -ahead-rep_distances[0]-1 );
Lie_encode_matched( &encoder->literal_encoder, &encoder->range_encoder, prev_byte, cur_byte, match_byte );
}
St_set_char( &state );
}
else /* match or repeated match */
{
CRC32_update_buf( &encoder->crc_, Mf_ptr_to_current_pos( encoder->matchfinder ) - ahead, len );
LZe_mtf_reps( dis, rep_distances );
bit = ( dis < num_rep_distances );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep[state], bit );
if( bit )
{
bit = ( dis == 0 );
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep0[state], !bit );
if( bit )
Re_encode_bit( &encoder->range_encoder, &encoder->bm_len[state][pos_state], len > 1 );
else
{
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep1[state], dis > 1 );
if( dis > 1 )
Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep2[state], dis > 2 );
}
if( len == 1 ) St_set_short_rep( &state );
else
{
Lee_encode( &encoder->rep_match_len_encoder, &encoder->range_encoder, len, pos_state );
St_set_rep( &state );
}
}
else
{
LZe_encode_pair( encoder, dis - num_rep_distances, len, pos_state );
St_set_match( &state );
}
}
ahead -= len; i += len;
if( LZe_member_position( encoder ) >= member_size_limit )
{
if( !Mf_dec_pos( encoder->matchfinder, ahead ) ) return false;
LZe_full_flush( encoder, state );
return true;
}
if( ahead <= 0 ) break;
}
}
}