/* Clzip - Data compressor based on the LZMA algorithm Copyright (C) 2010, 2011 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include "clzip.h" #include "encoder.h" Dis_slots dis_slots; Prob_prices prob_prices; bool Mf_read_block( struct Matchfinder * const mf ) { if( !mf->at_stream_end && mf->stream_pos < mf->buffer_size ) { const int size = mf->buffer_size - mf->stream_pos; const int rd = readblock( mf->infd, mf->buffer + mf->stream_pos, size ); mf->stream_pos += rd; if( rd != size && errno ) { show_error( "Read error", errno, false ); cleanup_and_fail( 1 ); } mf->at_stream_end = ( rd < size ); } return mf->pos < mf->stream_pos; } void Mf_init( struct Matchfinder * const mf, const int dict_size, const int len_limit, const int ifd ) { const int buffer_size_limit = ( 2 * dict_size ) + before_size + after_size; int i; mf->partial_data_pos = 0; mf->prev_positions = (int32_t *)malloc( num_prev_positions * sizeof (int32_t) ); if( !mf->prev_positions ) { show_error( "Not enough memory. Try a smaller dictionary size.", 0, false ); cleanup_and_fail( 1 ); } mf->pos = 0; mf->cyclic_pos = 0; mf->stream_pos = 0; mf->match_len_limit_ = len_limit; mf->cycles = ( len_limit < max_match_len ) ? 16 + ( len_limit / 2 ) : 256; mf->infd = ifd; mf->at_stream_end = false; mf->buffer_size = max( 65536, dict_size ); mf->buffer = (uint8_t *)malloc( mf->buffer_size ); if( !mf->buffer ) { show_error( "Not enough memory. Try a smaller dictionary size.", 0, false ); cleanup_and_fail( 1 ); } if( Mf_read_block( mf ) && !mf->at_stream_end && mf->buffer_size < buffer_size_limit ) { mf->buffer_size = buffer_size_limit; mf->buffer = (uint8_t *)realloc( mf->buffer, mf->buffer_size ); if( !mf->buffer ) { show_error( "Not enough memory. Try a smaller dictionary size.", 0, false ); cleanup_and_fail( 1 ); } Mf_read_block( mf ); } if( mf->at_stream_end && mf->stream_pos < dict_size ) mf->dictionary_size_ = max( min_dictionary_size, mf->stream_pos ); else mf->dictionary_size_ = dict_size; mf->pos_limit = mf->buffer_size; if( !mf->at_stream_end ) mf->pos_limit -= after_size; mf->prev_pos_tree = (int32_t *)malloc( 2 * mf->dictionary_size_ * sizeof (int32_t) ); if( !mf->prev_pos_tree ) { show_error( "Not enough memory. Try a smaller dictionary size.", 0, false ); cleanup_and_fail( 1 ); } for( i = 0; i < num_prev_positions; ++i ) mf->prev_positions[i] = -1; } void Mf_reset( struct Matchfinder * const mf ) { int i; const int size = mf->stream_pos - mf->pos; if( size > 0 ) memmove( mf->buffer, mf->buffer + mf->pos, size ); mf->partial_data_pos = 0; mf->stream_pos -= mf->pos; mf->pos = 0; mf->cyclic_pos = 0; for( i = 0; i < num_prev_positions; ++i ) mf->prev_positions[i] = -1; Mf_read_block( mf ); } void Mf_move_pos( struct Matchfinder * const mf ) { if( ++mf->cyclic_pos >= mf->dictionary_size_ ) mf->cyclic_pos = 0; if( ++mf->pos >= mf->pos_limit ) { if( mf->pos > mf->stream_pos ) internal_error( "pos > stream_pos in Mf_move_pos" ); if( !mf->at_stream_end ) { int i; const int offset = mf->pos - mf->dictionary_size_ - before_size; const int size = mf->stream_pos - offset; memmove( mf->buffer, mf->buffer + offset, size ); mf->partial_data_pos += offset; mf->pos -= offset; mf->stream_pos -= offset; for( i = 0; i < num_prev_positions; ++i ) if( mf->prev_positions[i] >= 0 ) mf->prev_positions[i] -= offset; for( i = 0; i < 2 * mf->dictionary_size_; ++i ) if( mf->prev_pos_tree[i] >= 0 ) mf->prev_pos_tree[i] -= offset; Mf_read_block( mf ); } } } int Mf_longest_match_len( struct Matchfinder * const mf, int * const distances ) { int32_t * ptr0 = mf->prev_pos_tree + ( mf->cyclic_pos << 1 ); int32_t * ptr1 = ptr0 + 1; int32_t * newptr; const uint8_t * newdata; int len = 0, len0 = 0, len1 = 0; int maxlen = min_match_len - 1; const int min_pos = (mf->pos >= mf->dictionary_size_) ? (mf->pos - mf->dictionary_size_ + 1) : 0; const uint8_t * const data = mf->buffer + mf->pos; int count, delta, key2, key3, key4, newpos, tmp; int len_limit = mf->match_len_limit_; if( len_limit > Mf_available_bytes( mf ) ) { len_limit = Mf_available_bytes( mf ); if( len_limit < 4 ) return 0; } key2 = num_prev_positions4 + num_prev_positions3 + ( ( (int)data[0] << 8 ) | data[1] ); tmp = crc32[data[0]] ^ data[1] ^ ( (uint32_t)data[2] << 8 ); key3 = num_prev_positions4 + (int)( tmp & ( num_prev_positions3 - 1 ) ); key4 = (int)( ( tmp ^ ( crc32[data[3]] << 5 ) ) & ( num_prev_positions4 - 1 ) ); if( distances ) { int np = mf->prev_positions[key2]; if( np >= min_pos ) { distances[2] = mf->pos - np - 1; maxlen = 2; } else distances[2] = 0x7FFFFFFF; np = mf->prev_positions[key3]; if( np >= min_pos && mf->buffer[np] == data[0] ) { distances[3] = mf->pos - np - 1; maxlen = 3; } else distances[3] = 0x7FFFFFFF; distances[4] = 0x7FFFFFFF; } mf->prev_positions[key2] = mf->pos; mf->prev_positions[key3] = mf->pos; newpos = mf->prev_positions[key4]; mf->prev_positions[key4] = mf->pos; for( count = mf->cycles; ; ) { if( newpos < min_pos || --count < 0 ) { *ptr0 = *ptr1 = -1; break; } newdata = mf->buffer + newpos; while( len < len_limit && newdata[len] == data[len] ) ++len; delta = mf->pos - newpos; if( distances ) while( maxlen < len ) distances[++maxlen] = delta - 1; newptr = mf->prev_pos_tree + ( ( mf->cyclic_pos - delta + ( ( mf->cyclic_pos >= delta ) ? 0 : mf->dictionary_size_ ) ) << 1 ); if( len < len_limit ) { if( newdata[len] < data[len] ) { *ptr0 = newpos; ptr0 = newptr + 1; newpos = *ptr0; len0 = len; if( len1 < len ) len = len1; } else { *ptr1 = newpos; ptr1 = newptr; newpos = *ptr1; len1 = len; if( len0 < len ) len = len0; } } else { *ptr0 = newptr[0]; *ptr1 = newptr[1]; break; } } if( distances ) { if( distances[3] > distances[4] ) distances[3] = distances[4]; if( distances[2] > distances[3] ) distances[2] = distances[3]; } return maxlen; } void Re_flush_data( struct Range_encoder * const range_encoder ) { if( range_encoder->pos > 0 ) { if( range_encoder->outfd >= 0 && writeblock( range_encoder->outfd, range_encoder->buffer, range_encoder->pos ) != range_encoder->pos ) { show_error( "Write error", errno, false ); cleanup_and_fail( 1 ); } range_encoder->partial_member_pos += range_encoder->pos; range_encoder->pos = 0; } } void Lee_encode( struct Len_encoder * const len_encoder, struct Range_encoder * const range_encoder, int symbol, const int pos_state ) { symbol -= min_match_len; if( symbol < len_low_symbols ) { Re_encode_bit( range_encoder, &len_encoder->choice1, 0 ); Re_encode_tree( range_encoder, len_encoder->bm_low[pos_state], symbol, len_low_bits ); } else { Re_encode_bit( range_encoder, &len_encoder->choice1, 1 ); if( symbol < len_low_symbols + len_mid_symbols ) { Re_encode_bit( range_encoder, &len_encoder->choice2, 0 ); Re_encode_tree( range_encoder, len_encoder->bm_mid[pos_state], symbol - len_low_symbols, len_mid_bits ); } else { Re_encode_bit( range_encoder, &len_encoder->choice2, 1 ); Re_encode_tree( range_encoder, len_encoder->bm_high, symbol - len_low_symbols - len_mid_symbols, len_high_bits ); } } if( --len_encoder->counters[pos_state] <= 0 ) Lee_update_prices( len_encoder, pos_state ); } void LZe_fill_align_prices( struct LZ_encoder * const encoder ) { int i; for( i = 0; i < dis_align_size; ++i ) encoder->align_prices[i] = price_symbol_reversed( encoder->bm_align, i, dis_align_bits ); encoder->align_price_count = dis_align_size; } void LZe_fill_distance_prices( struct LZ_encoder * const encoder ) { int dis, dis_state; for( dis = start_dis_model; dis < modeled_distances; ++dis ) { const int dis_slot = dis_slots[dis]; const int direct_bits = ( dis_slot >> 1 ) - 1; const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const int price = price_symbol_reversed( encoder->bm_dis + base - dis_slot, dis - base, direct_bits ); for( dis_state = 0; dis_state < max_dis_states; ++dis_state ) encoder->dis_prices[dis_state][dis] = price; } for( dis_state = 0; dis_state < max_dis_states; ++dis_state ) { int * const dsp = encoder->dis_slot_prices[dis_state]; int * const dp = encoder->dis_prices[dis_state]; const Bit_model * const bmds = encoder->bm_dis_slot[dis_state]; int slot = 0; for( ; slot < end_dis_model && slot < encoder->num_dis_slots; ++slot ) dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ); for( ; slot < encoder->num_dis_slots; ++slot ) dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ) + (((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift ); for( dis = 0; dis < start_dis_model; ++dis ) dp[dis] = dsp[dis]; for( ; dis < modeled_distances; ++dis ) dp[dis] += dsp[dis_slots[dis]]; } } /* Return value == number of bytes advanced (ahead). trials[0]..trials[retval-1] contain the steps to encode. ( trials[0].dis == -1 && trials[0].price == 1 ) means literal. */ int LZe_sequence_optimizer( struct LZ_encoder * const encoder, const int reps[num_rep_distances], const State state ) { int main_len, i, rep, cur = 0, num_trials; int replens[num_rep_distances]; int rep_index = 0; if( encoder->longest_match_found > 0 ) /* from previous call */ { main_len = encoder->longest_match_found; encoder->longest_match_found = 0; } else main_len = LZe_read_match_distances( encoder ); for( i = 0; i < num_rep_distances; ++i ) { replens[i] = Mf_true_match_len( encoder->matchfinder, 0, reps[i] + 1, max_match_len ); if( replens[i] > replens[rep_index] ) rep_index = i; } if( replens[rep_index] >= Mf_match_len_limit( encoder->matchfinder ) ) { encoder->trials[0].dis = rep_index; encoder->trials[0].price = replens[rep_index]; LZe_move_pos( encoder, replens[rep_index], true ); return replens[rep_index]; } if( main_len >= Mf_match_len_limit( encoder->matchfinder ) ) { encoder->trials[0].dis = encoder->match_distances[Mf_match_len_limit( encoder->matchfinder )] + num_rep_distances; encoder->trials[0].price = main_len; LZe_move_pos( encoder, main_len, true ); return main_len; } { const int pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask; const int match_price = price1( encoder->bm_match[state][pos_state] ); const int rep_match_price = match_price + price1( encoder->bm_rep[state] ); const uint8_t prev_byte = Mf_peek( encoder->matchfinder, -1 ); const uint8_t cur_byte = Mf_peek( encoder->matchfinder, 0 ); const uint8_t match_byte = Mf_peek( encoder->matchfinder, -reps[0]-1 ); encoder->trials[0].state = state; for( i = 0; i < num_rep_distances; ++i ) encoder->trials[0].reps[i] = reps[i]; encoder->trials[1].dis = -1; encoder->trials[1].prev_index = 0; encoder->trials[1].price = price0( encoder->bm_match[state][pos_state] ); if( St_is_char( state ) ) encoder->trials[1].price += Lie_price_symbol( &encoder->literal_encoder, prev_byte, cur_byte ); else encoder->trials[1].price += Lie_price_matched( &encoder->literal_encoder, prev_byte, cur_byte, match_byte ); if( match_byte == cur_byte ) Tr_update( &encoder->trials[1], 0, 0, rep_match_price + LZe_price_rep_len1( encoder, state, pos_state ) ); if( main_len < min_match_len ) { encoder->trials[0].dis = encoder->trials[1].dis; encoder->trials[0].price = 1; Mf_move_pos( encoder->matchfinder ); return 1; } if( main_len <= replens[rep_index] ) { int len; main_len = replens[rep_index]; for( len = min_match_len; len <= main_len; ++len ) encoder->trials[len].price = infinite_price; } else { int len; const int normal_match_price = match_price + price0( encoder->bm_rep[state] ); for( len = min_match_len; len <= main_len; ++len ) { encoder->trials[len].dis = encoder->match_distances[len] + num_rep_distances; encoder->trials[len].prev_index = 0; encoder->trials[len].price = normal_match_price + LZe_price_pair( encoder, encoder->match_distances[len], len, pos_state ); } } for( rep = 0; rep < num_rep_distances; ++rep ) { const int price = rep_match_price + LZe_price_rep( encoder, rep, state, pos_state ); int len; for( len = min_match_len; len <= replens[rep]; ++len ) Tr_update( &encoder->trials[len], rep, 0, price + Lee_price( &encoder->rep_match_len_encoder, len, pos_state ) ); } } num_trials = main_len; Mf_move_pos( encoder->matchfinder ); while( true ) { struct Trial *cur_trial, *next_trial; int newlen, pos_state, prev_index, len_limit; int next_price, match_price, rep_match_price; uint8_t prev_byte, cur_byte, match_byte; if( ++cur >= num_trials ) /* no more initialized trials */ { LZe_backward( encoder, cur ); return cur; } newlen = LZe_read_match_distances( encoder ); if( newlen >= Mf_match_len_limit( encoder->matchfinder ) ) { encoder->longest_match_found = newlen; LZe_backward( encoder, cur ); return cur; } cur_trial = &encoder->trials[cur]; prev_index = cur_trial->prev_index; cur_trial->state = encoder->trials[prev_index].state; for( i = 0; i < num_rep_distances; ++i ) cur_trial->reps[i] = encoder->trials[prev_index].reps[i]; if( prev_index == cur - 1 ) { if( cur_trial->dis == 0 ) St_set_short_rep( &cur_trial->state ); else St_set_char( &cur_trial->state ); } else { if( cur_trial->dis < num_rep_distances ) St_set_rep( &cur_trial->state ); else St_set_match( &cur_trial->state ); LZe_mtf_reps( cur_trial->dis, cur_trial->reps ); } pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask; prev_byte = Mf_peek( encoder->matchfinder, -1 ); cur_byte = Mf_peek( encoder->matchfinder, 0 ); match_byte = Mf_peek( encoder->matchfinder, -cur_trial->reps[0]-1 ); next_price = cur_trial->price + price0( encoder->bm_match[cur_trial->state][pos_state] ); if( St_is_char( cur_trial->state ) ) next_price += Lie_price_symbol( &encoder->literal_encoder, prev_byte, cur_byte ); else next_price += Lie_price_matched( &encoder->literal_encoder, prev_byte, cur_byte, match_byte ); Mf_move_pos( encoder->matchfinder ); next_trial = &encoder->trials[cur+1]; Tr_update( next_trial, -1, cur, next_price ); match_price = cur_trial->price + price1( encoder->bm_match[cur_trial->state][pos_state] ); rep_match_price = match_price + price1( encoder->bm_rep[cur_trial->state] ); if( match_byte == cur_byte && next_trial->dis != 0 ) Tr_update( next_trial, 0, cur, rep_match_price + LZe_price_rep_len1( encoder, cur_trial->state, pos_state ) ); len_limit = min( min( max_num_trials - 1 - cur, Mf_available_bytes( encoder->matchfinder ) ), Mf_match_len_limit( encoder->matchfinder ) ); if( len_limit < min_match_len ) continue; for( rep = 0; rep < num_rep_distances; ++rep ) { const int dis = cur_trial->reps[rep] + 1; int len = 0; const uint8_t * const data = Mf_ptr_to_current_pos( encoder->matchfinder ) - 1; while( len < len_limit && data[len] == data[len-dis] ) ++len; if( len >= min_match_len ) { const int price = rep_match_price + LZe_price_rep( encoder, rep, cur_trial->state, pos_state ); while( num_trials < cur + len ) encoder->trials[++num_trials].price = infinite_price; for( ; len >= min_match_len; --len ) Tr_update( &encoder->trials[cur+len], rep, cur, price + Lee_price( &encoder->rep_match_len_encoder, len, pos_state ) ); } } if( newlen <= len_limit && ( newlen > min_match_len || ( newlen == min_match_len && encoder->match_distances[min_match_len] < modeled_distances ) ) ) { const int normal_match_price = match_price + price0( encoder->bm_rep[cur_trial->state] ); int len; int dis = encoder->match_distances[min_match_len]; int dis_state = get_dis_state( min_match_len ); int dis_price = infinite_price; while( num_trials < cur + newlen ) encoder->trials[++num_trials].price = infinite_price; if( dis < modeled_distances ) Tr_update( &encoder->trials[cur+min_match_len], dis + num_rep_distances, cur, normal_match_price + encoder->dis_prices[dis_state][dis] + Lee_price( &encoder->len_encoder, min_match_len, pos_state ) ); for( len = min_match_len + 1; len <= newlen; ++len ) { if( dis != encoder->match_distances[len] || dis_state < max_dis_states - 1 ) { dis = encoder->match_distances[len]; dis_state = get_dis_state( len ); dis_price = LZe_price_dis( encoder, dis, dis_state ); } Tr_update( &encoder->trials[cur+len], dis + num_rep_distances, cur, normal_match_price + dis_price + Lee_price( &encoder->len_encoder, len, pos_state ) ); } } } } /* End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len) */ void LZe_full_flush( struct LZ_encoder * const encoder, const State state ) { int i; const int pos_state = Mf_data_position( encoder->matchfinder ) & pos_state_mask; File_trailer trailer; Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][pos_state], 1 ); Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep[state], 0 ); LZe_encode_pair( encoder, 0xFFFFFFFFU, min_match_len, pos_state ); Re_flush( &encoder->range_encoder ); Ft_set_data_crc( trailer, LZe_crc( encoder ) ); Ft_set_data_size( trailer, Mf_data_position( encoder->matchfinder ) ); Ft_set_member_size( trailer, LZe_member_position( encoder ) + Ft_size ); for( i = 0; i < Ft_size; ++i ) Re_put_byte( &encoder->range_encoder, trailer[i] ); Re_flush_data( &encoder->range_encoder ); } void LZe_init( struct LZ_encoder * const encoder, struct Matchfinder * const mf, const File_header header, const int outfd ) { int i, j; encoder->longest_match_found = 0; encoder->crc_ = 0xFFFFFFFFU; for( i = 0; i < states; ++i ) { for( j = 0; j < pos_states; ++j ) { Bm_init( &encoder->bm_match[i][j] ); Bm_init( &encoder->bm_len[i][j] ); } Bm_init( &encoder->bm_rep[i] ); Bm_init( &encoder->bm_rep0[i] ); Bm_init( &encoder->bm_rep1[i] ); Bm_init( &encoder->bm_rep2[i] ); } for( i = 0; i < max_dis_states; ++i ) for( j = 0; j < 1<bm_dis_slot[i][j] ); for( i = 0; i < modeled_distances-end_dis_model+1; ++i ) Bm_init( &encoder->bm_dis[i] ); for( i = 0; i < dis_align_size; ++i ) Bm_init( &encoder->bm_align[i] ); encoder->matchfinder = mf; Re_init( &encoder->range_encoder, outfd ); Lee_init( &encoder->len_encoder, Mf_match_len_limit( encoder->matchfinder ) ), Lee_init( &encoder->rep_match_len_encoder, Mf_match_len_limit( encoder->matchfinder ) ), Lie_init( &encoder->literal_encoder ); encoder->num_dis_slots = 2 * real_bits( Mf_dictionary_size( encoder->matchfinder ) - 1 ); LZe_fill_align_prices( encoder ); for( i = 0; i < Fh_size; ++i ) Re_put_byte( &encoder->range_encoder, header[i] ); } bool LZe_encode_member( struct LZ_encoder * const encoder, const long long member_size ) { const long long member_size_limit = member_size - Ft_size - max_marker_size; const int fill_count = ( Mf_match_len_limit( encoder->matchfinder ) > 12 ) ? 512 : 2048; int fill_counter = 0; int ahead; int i; int rep_distances[num_rep_distances]; State state = 0; for( i = 0; i < num_rep_distances; ++i ) rep_distances[i] = 0; if( Mf_data_position( encoder->matchfinder ) != 0 || LZe_member_position( encoder ) != Fh_size ) return false; /* can be called only once */ if( !Mf_finished( encoder->matchfinder ) ) /* encode first byte */ { const uint8_t prev_byte = 0; const uint8_t cur_byte = Mf_peek( encoder->matchfinder, 0 ); Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][0], 0 ); Lie_encode( &encoder->literal_encoder, &encoder->range_encoder, prev_byte, cur_byte ); CRC32_update_byte( &encoder->crc_, cur_byte ); LZe_move_pos( encoder, 1, false ); } while( true ) { if( Mf_finished( encoder->matchfinder ) ) { LZe_full_flush( encoder, state ); return true; } if( fill_counter <= 0 ) { LZe_fill_distance_prices( encoder ); fill_counter = fill_count; } ahead = LZe_sequence_optimizer( encoder, rep_distances, state ); if( ahead <= 0 ) return false; fill_counter -= ahead; for( i = 0; ; ) { const int pos_state = ( Mf_data_position( encoder->matchfinder ) - ahead ) & pos_state_mask; const int dis = encoder->trials[i].dis; const int len = encoder->trials[i].price; bool bit = ( dis < 0 && len == 1 ); Re_encode_bit( &encoder->range_encoder, &encoder->bm_match[state][pos_state], !bit ); if( bit ) /* literal byte */ { const uint8_t prev_byte = Mf_peek( encoder->matchfinder, -ahead-1 ); const uint8_t cur_byte = Mf_peek( encoder->matchfinder, -ahead ); CRC32_update_byte( &encoder->crc_, cur_byte ); if( St_is_char( state ) ) Lie_encode( &encoder->literal_encoder, &encoder->range_encoder, prev_byte, cur_byte ); else { const uint8_t match_byte = Mf_peek( encoder->matchfinder, -ahead-rep_distances[0]-1 ); Lie_encode_matched( &encoder->literal_encoder, &encoder->range_encoder, prev_byte, cur_byte, match_byte ); } St_set_char( &state ); } else /* match or repeated match */ { CRC32_update_buf( &encoder->crc_, Mf_ptr_to_current_pos( encoder->matchfinder ) - ahead, len ); LZe_mtf_reps( dis, rep_distances ); bit = ( dis < num_rep_distances ); Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep[state], bit ); if( bit ) { bit = ( dis == 0 ); Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep0[state], !bit ); if( bit ) Re_encode_bit( &encoder->range_encoder, &encoder->bm_len[state][pos_state], len > 1 ); else { Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep1[state], dis > 1 ); if( dis > 1 ) Re_encode_bit( &encoder->range_encoder, &encoder->bm_rep2[state], dis > 2 ); } if( len == 1 ) St_set_short_rep( &state ); else { Lee_encode( &encoder->rep_match_len_encoder, &encoder->range_encoder, len, pos_state ); St_set_rep( &state ); } } else { LZe_encode_pair( encoder, dis - num_rep_distances, len, pos_state ); St_set_match( &state ); } } ahead -= len; i += len; if( LZe_member_position( encoder ) >= member_size_limit ) { if( !Mf_dec_pos( encoder->matchfinder, ahead ) ) return false; LZe_full_flush( encoder, state ); return true; } if( ahead <= 0 ) break; } } }