/* Clzip - LZMA lossless data compressor Copyright (C) 2010, 2011, 2012, 2013, 2014 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include "lzip.h" #include "encoder.h" Dis_slots dis_slots; Prob_prices prob_prices; bool Mf_read_block( struct Matchfinder * const mf ) { if( !mf->at_stream_end && mf->stream_pos < mf->buffer_size ) { const int size = mf->buffer_size - mf->stream_pos; const int rd = readblock( mf->infd, mf->buffer + mf->stream_pos, size ); mf->stream_pos += rd; if( rd != size && errno ) { show_error( "Read error", errno, false ); cleanup_and_fail( 1 ); } if( rd < size ) { mf->at_stream_end = true; mf->pos_limit = mf->buffer_size; } } return mf->pos < mf->stream_pos; } void Mf_normalize_pos( struct Matchfinder * const mf ) { if( mf->pos > mf->stream_pos ) internal_error( "pos > stream_pos in Mf_normalize_pos" ); if( !mf->at_stream_end ) { int i; const int offset = mf->pos - mf->dictionary_size - before_size; const int size = mf->stream_pos - offset; memmove( mf->buffer, mf->buffer + offset, size ); mf->partial_data_pos += offset; mf->pos -= offset; mf->stream_pos -= offset; for( i = 0; i < mf->num_prev_positions; ++i ) mf->prev_positions[i] -= min( mf->prev_positions[i], offset ); for( i = 0; i < 2 * ( mf->dictionary_size + 1 ); ++i ) mf->prev_pos_tree[i] -= min( mf->prev_pos_tree[i], offset ); Mf_read_block( mf ); } } bool Mf_init( struct Matchfinder * const mf, const int dict_size, const int match_len_limit, const int ifd ) { const int buffer_size_limit = ( 2 * dict_size ) + before_size + after_size; unsigned size; int i; mf->partial_data_pos = 0; mf->match_len_limit = match_len_limit; mf->pos = 0; mf->cyclic_pos = 0; mf->stream_pos = 0; mf->cycles = ( match_len_limit < max_match_len ) ? 16 + ( match_len_limit / 2 ) : 256; mf->infd = ifd; mf->at_stream_end = false; mf->buffer_size = max( 65536, dict_size ); mf->buffer = (uint8_t *)malloc( mf->buffer_size ); if( !mf->buffer ) return false; if( Mf_read_block( mf ) && !mf->at_stream_end && mf->buffer_size < buffer_size_limit ) { uint8_t * tmp; mf->buffer_size = buffer_size_limit; tmp = (uint8_t *)realloc( mf->buffer, mf->buffer_size ); if( !tmp ) { free( mf->buffer ); return false; } mf->buffer = tmp; Mf_read_block( mf ); } if( mf->at_stream_end && mf->stream_pos < dict_size ) mf->dictionary_size = max( min_dictionary_size, mf->stream_pos ); else mf->dictionary_size = dict_size; mf->pos_limit = mf->buffer_size; if( !mf->at_stream_end ) mf->pos_limit -= after_size; size = 1 << max( 16, real_bits( mf->dictionary_size - 1 ) - 2 ); if( mf->dictionary_size > 1 << 26 ) /* 64 MiB */ size >>= 1; mf->key4_mask = size - 1; size += num_prev_positions2; size += num_prev_positions3; mf->num_prev_positions = size; size += ( 2 * ( mf->dictionary_size + 1 ) ); if( size * sizeof (int32_t) <= size ) mf->prev_positions = 0; else mf->prev_positions = (int32_t *)malloc( size * sizeof (int32_t) ); if( !mf->prev_positions ) { free( mf->buffer ); return false; } mf->prev_pos_tree = mf->prev_positions + mf->num_prev_positions; for( i = 0; i < mf->num_prev_positions; ++i ) mf->prev_positions[i] = 0; return true; } void Mf_reset( struct Matchfinder * const mf ) { int i; if( mf->stream_pos > mf->pos ) memmove( mf->buffer, mf->buffer + mf->pos, mf->stream_pos - mf->pos ); mf->partial_data_pos = 0; mf->stream_pos -= mf->pos; mf->pos = 0; mf->cyclic_pos = 0; for( i = 0; i < mf->num_prev_positions; ++i ) mf->prev_positions[i] = 0; Mf_read_block( mf ); } int Mf_get_match_pairs( struct Matchfinder * const mf, struct Pair * pairs ) { int32_t * ptr0 = mf->prev_pos_tree + ( mf->cyclic_pos << 1 ); int32_t * ptr1 = ptr0 + 1; int32_t * newptr; int len = 0, len0 = 0, len1 = 0; int maxlen = 0; int num_pairs = 0; const int pos1 = mf->pos + 1; const int min_pos = ( mf->pos > mf->dictionary_size ) ? mf->pos - mf->dictionary_size : 0; const uint8_t * const data = mf->buffer + mf->pos; int count, delta, key2, key3, key4, newpos; unsigned tmp; int len_limit = mf->match_len_limit; if( len_limit > Mf_available_bytes( mf ) ) { len_limit = Mf_available_bytes( mf ); if( len_limit < 4 ) return 0; } tmp = crc32[data[0]] ^ data[1]; key2 = tmp & ( num_prev_positions2 - 1 ); tmp ^= (unsigned)data[2] << 8; key3 = num_prev_positions2 + ( tmp & ( num_prev_positions3 - 1 ) ); key4 = num_prev_positions2 + num_prev_positions3 + ( ( tmp ^ ( crc32[data[3]] << 5 ) ) & mf->key4_mask ); if( pairs ) { int np2 = mf->prev_positions[key2]; int np3 = mf->prev_positions[key3]; if( np2 > min_pos && mf->buffer[np2-1] == data[0] ) { pairs[0].dis = mf->pos - np2; pairs[0].len = maxlen = 2; num_pairs = 1; } if( np2 != np3 && np3 > min_pos && mf->buffer[np3-1] == data[0] ) { maxlen = 3; np2 = np3; pairs[num_pairs].dis = mf->pos - np2; ++num_pairs; } if( num_pairs > 0 ) { delta = pos1 - np2; while( maxlen < len_limit && data[maxlen-delta] == data[maxlen] ) ++maxlen; pairs[num_pairs-1].len = maxlen; if( maxlen >= len_limit ) pairs = 0; /* done. now just skip */ } if( maxlen < 3 ) maxlen = 3; } mf->prev_positions[key2] = pos1; mf->prev_positions[key3] = pos1; newpos = mf->prev_positions[key4]; mf->prev_positions[key4] = pos1; for( count = mf->cycles; ; ) { if( newpos <= min_pos || --count < 0 ) { *ptr0 = *ptr1 = 0; break; } delta = pos1 - newpos; newptr = mf->prev_pos_tree + ( ( mf->cyclic_pos - delta + ( (mf->cyclic_pos >= delta) ? 0 : mf->dictionary_size + 1 ) ) << 1 ); if( data[len-delta] == data[len] ) { while( ++len < len_limit && data[len-delta] == data[len] ) {} if( pairs && maxlen < len ) { pairs[num_pairs].dis = delta - 1; pairs[num_pairs].len = maxlen = len; ++num_pairs; } if( len >= len_limit ) { *ptr0 = newptr[0]; *ptr1 = newptr[1]; break; } } if( data[len-delta] < data[len] ) { *ptr0 = newpos; ptr0 = newptr + 1; newpos = *ptr0; len0 = len; if( len1 < len ) len = len1; } else { *ptr1 = newpos; ptr1 = newptr; newpos = *ptr1; len1 = len; if( len0 < len ) len = len0; } } return num_pairs; } void Re_flush_data( struct Range_encoder * const renc ) { if( renc->pos > 0 ) { if( renc->outfd >= 0 && writeblock( renc->outfd, renc->buffer, renc->pos ) != renc->pos ) { show_error( "Write error", errno, false ); cleanup_and_fail( 1 ); } renc->partial_member_pos += renc->pos; renc->pos = 0; if( verbosity >= 2 ) show_progress( 0, 0, 0, 0 ); } } void Lee_encode( struct Len_encoder * const le, struct Range_encoder * const renc, int symbol, const int pos_state ) { symbol -= min_match_len; if( symbol < len_low_symbols ) { Re_encode_bit( renc, &le->lm.choice1, 0 ); Re_encode_tree( renc, le->lm.bm_low[pos_state], symbol, len_low_bits ); } else { Re_encode_bit( renc, &le->lm.choice1, 1 ); if( symbol < len_low_symbols + len_mid_symbols ) { Re_encode_bit( renc, &le->lm.choice2, 0 ); Re_encode_tree( renc, le->lm.bm_mid[pos_state], symbol - len_low_symbols, len_mid_bits ); } else { Re_encode_bit( renc, &le->lm.choice2, 1 ); Re_encode_tree( renc, le->lm.bm_high, symbol - len_low_symbols - len_mid_symbols, len_high_bits ); } } if( --le->counters[pos_state] <= 0 ) Lee_update_prices( le, pos_state ); } /* End Of Stream mark => (dis == 0xFFFFFFFFU, len == min_match_len) */ static void LZe_full_flush( struct LZ_encoder * const e, const State state ) { int i; const int pos_state = Mf_data_position( e->matchfinder ) & pos_state_mask; File_trailer trailer; Re_encode_bit( &e->renc, &e->bm_match[state][pos_state], 1 ); Re_encode_bit( &e->renc, &e->bm_rep[state], 0 ); LZe_encode_pair( e, 0xFFFFFFFFU, min_match_len, pos_state ); Re_flush( &e->renc ); Ft_set_data_crc( trailer, LZe_crc( e ) ); Ft_set_data_size( trailer, Mf_data_position( e->matchfinder ) ); Ft_set_member_size( trailer, Re_member_position( &e->renc ) + Ft_size ); for( i = 0; i < Ft_size; ++i ) Re_put_byte( &e->renc, trailer[i] ); Re_flush_data( &e->renc ); } static void LZe_fill_align_prices( struct LZ_encoder * const e ) { int i; for( i = 0; i < dis_align_size; ++i ) e->align_prices[i] = price_symbol_reversed( e->bm_align, i, dis_align_bits ); e->align_price_count = dis_align_size; } static void LZe_fill_distance_prices( struct LZ_encoder * const e ) { int dis, len_state; for( dis = start_dis_model; dis < modeled_distances; ++dis ) { const int dis_slot = dis_slots[dis]; const int direct_bits = ( dis_slot >> 1 ) - 1; const int base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const int price = price_symbol_reversed( e->bm_dis + base - dis_slot - 1, dis - base, direct_bits ); for( len_state = 0; len_state < len_states; ++len_state ) e->dis_prices[len_state][dis] = price; } for( len_state = 0; len_state < len_states; ++len_state ) { int * const dsp = e->dis_slot_prices[len_state]; int * const dp = e->dis_prices[len_state]; const Bit_model * const bmds = e->bm_dis_slot[len_state]; int slot = 0; for( ; slot < end_dis_model; ++slot ) dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ); for( ; slot < e->num_dis_slots; ++slot ) dsp[slot] = price_symbol( bmds, slot, dis_slot_bits ) + (((( slot >> 1 ) - 1 ) - dis_align_bits ) << price_shift_bits ); for( dis = 0; dis < start_dis_model; ++dis ) dp[dis] = dsp[dis]; for( ; dis < modeled_distances; ++dis ) dp[dis] += dsp[dis_slots[dis]]; } } bool LZe_init( struct LZ_encoder * const e, struct Matchfinder * const mf, const File_header header, const int outfd ) { int i; e->pending_num_pairs = 0; e->crc = 0xFFFFFFFFU; Bm_array_init( e->bm_literal[0], (1 << literal_context_bits) * 0x300 ); Bm_array_init( e->bm_match[0], states * pos_states ); Bm_array_init( e->bm_rep, states ); Bm_array_init( e->bm_rep0, states ); Bm_array_init( e->bm_rep1, states ); Bm_array_init( e->bm_rep2, states ); Bm_array_init( e->bm_len[0], states * pos_states ); Bm_array_init( e->bm_dis_slot[0], len_states * (1 << dis_slot_bits) ); Bm_array_init( e->bm_dis, modeled_distances - end_dis_model ); Bm_array_init( e->bm_align, dis_align_size ); e->matchfinder = mf; if( !Re_init( &e->renc, outfd ) ) return false; Lee_init( &e->match_len_encoder, mf->match_len_limit ); Lee_init( &e->rep_len_encoder, mf->match_len_limit ); e->align_price_count = 0; e->num_dis_slots = 2 * real_bits( mf->dictionary_size - 1 ); for( i = 0; i < Fh_size; ++i ) Re_put_byte( &e->renc, header[i] ); return true; } /* Return value == number of bytes advanced (ahead). trials[0]..trials[ahead-1] contain the steps to encode. ( trials[0].dis == -1 ) means literal. */ static int LZe_sequence_optimizer( struct LZ_encoder * const e, const int reps[num_rep_distances], const State state ) { int main_len, num_pairs, i, rep, cur = 0, num_trials, len; int replens[num_rep_distances]; int rep_index = 0; if( e->pending_num_pairs > 0 ) /* from previous call */ { num_pairs = e->pending_num_pairs; e->pending_num_pairs = 0; } else num_pairs = LZe_read_match_distances( e ); main_len = ( num_pairs > 0 ) ? e->pairs[num_pairs-1].len : 0; for( i = 0; i < num_rep_distances; ++i ) { replens[i] = Mf_true_match_len( e->matchfinder, 0, reps[i] + 1, max_match_len ); if( replens[i] > replens[rep_index] ) rep_index = i; } if( replens[rep_index] >= e->matchfinder->match_len_limit ) { e->trials[0].dis = rep_index; e->trials[0].price = replens[rep_index]; LZe_move_pos( e, replens[rep_index] ); return replens[rep_index]; } if( main_len >= e->matchfinder->match_len_limit ) { e->trials[0].dis = e->pairs[num_pairs-1].dis + num_rep_distances; e->trials[0].price = main_len; LZe_move_pos( e, main_len ); return main_len; } { const int pos_state = Mf_data_position( e->matchfinder ) & pos_state_mask; const int match_price = price1( e->bm_match[state][pos_state] ); const int rep_match_price = match_price + price1( e->bm_rep[state] ); const uint8_t prev_byte = Mf_peek( e->matchfinder, 1 ); const uint8_t cur_byte = Mf_peek( e->matchfinder, 0 ); const uint8_t match_byte = Mf_peek( e->matchfinder, reps[0] + 1 ); e->trials[0].state = state; e->trials[1].dis = -1; /* literal */ e->trials[1].price = price0( e->bm_match[state][pos_state] ); if( St_is_char( state ) ) e->trials[1].price += LZe_price_literal( e, prev_byte, cur_byte ); else e->trials[1].price += LZe_price_matched( e, prev_byte, cur_byte, match_byte ); if( match_byte == cur_byte ) Tr_update( &e->trials[1], rep_match_price + LZe_price_shortrep( e, state, pos_state ), 0, 0 ); num_trials = max( main_len, replens[rep_index] ); if( num_trials < min_match_len ) { e->trials[0].dis = e->trials[1].dis; e->trials[0].price = 1; Mf_move_pos( e->matchfinder ); return 1; } for( i = 0; i < num_rep_distances; ++i ) e->trials[0].reps[i] = reps[i]; e->trials[1].prev_index = 0; e->trials[1].prev_index2 = single_step_trial; for( len = min_match_len; len <= num_trials; ++len ) e->trials[len].price = infinite_price; for( rep = 0; rep < num_rep_distances; ++rep ) { int price; if( replens[rep] < min_match_len ) continue; price = rep_match_price + LZe_price_rep( e, rep, state, pos_state ); for( len = min_match_len; len <= replens[rep]; ++len ) Tr_update( &e->trials[len], price + Lee_price( &e->rep_len_encoder, len, pos_state ), rep, 0 ); } if( main_len > replens[0] ) { const int normal_match_price = match_price + price0( e->bm_rep[state] ); i = 0, len = max( replens[0] + 1, min_match_len ); while( len > e->pairs[i].len ) ++i; while( true ) { const int dis = e->pairs[i].dis; Tr_update( &e->trials[len], normal_match_price + LZe_price_pair( e, dis, len, pos_state ), dis + num_rep_distances, 0 ); if( ++len > e->pairs[i].len && ++i >= num_pairs ) break; } } } Mf_move_pos( e->matchfinder ); while( true ) /* price optimization loop */ { struct Trial *cur_trial, *next_trial; int newlen, pos_state, available_bytes, len_limit; int start_len = min_match_len; int next_price, match_price, rep_match_price; State cur_state; uint8_t prev_byte, cur_byte, match_byte; if( ++cur >= num_trials ) /* no more initialized trials */ { LZe_backward( e, cur ); return cur; } num_pairs = LZe_read_match_distances( e ); newlen = ( num_pairs > 0 ) ? e->pairs[num_pairs-1].len : 0; if( newlen >= e->matchfinder->match_len_limit ) { e->pending_num_pairs = num_pairs; LZe_backward( e, cur ); return cur; } /* give final values to current trial */ cur_trial = &e->trials[cur]; { int dis = cur_trial->dis; int prev_index = cur_trial->prev_index; const int prev_index2 = cur_trial->prev_index2; if( prev_index2 == single_step_trial ) { cur_state = e->trials[prev_index].state; if( prev_index + 1 == cur ) /* len == 1 */ { if( dis == 0 ) cur_state = St_set_short_rep( cur_state ); else cur_state = St_set_char( cur_state ); /* literal */ } else if( dis < num_rep_distances ) cur_state = St_set_rep( cur_state ); else cur_state = St_set_match( cur_state ); } else if( prev_index2 == dual_step_trial ) /* dis == 0 */ { --prev_index; cur_state = e->trials[prev_index].state; cur_state = St_set_char( cur_state ); cur_state = St_set_rep( cur_state ); } else /* if( prev_index2 >= 0 ) */ { prev_index = prev_index2; cur_state = e->trials[prev_index].state; if( dis < num_rep_distances ) cur_state = St_set_rep( cur_state ); else cur_state = St_set_match( cur_state ); cur_state = St_set_char( cur_state ); cur_state = St_set_rep( cur_state ); } cur_trial->state = cur_state; for( i = 0; i < num_rep_distances; ++i ) cur_trial->reps[i] = e->trials[prev_index].reps[i]; mtf_reps( dis, cur_trial->reps ); } pos_state = Mf_data_position( e->matchfinder ) & pos_state_mask; prev_byte = Mf_peek( e->matchfinder, 1 ); cur_byte = Mf_peek( e->matchfinder, 0 ); match_byte = Mf_peek( e->matchfinder, cur_trial->reps[0] + 1 ); Mf_move_pos( e->matchfinder ); next_price = cur_trial->price + price0( e->bm_match[cur_state][pos_state] ); if( St_is_char( cur_state ) ) next_price += LZe_price_literal( e, prev_byte, cur_byte ); else next_price += LZe_price_matched( e, prev_byte, cur_byte, match_byte ); /* try last updates to next trial */ next_trial = &e->trials[cur+1]; Tr_update( next_trial, next_price, -1, cur ); /* literal */ match_price = cur_trial->price + price1( e->bm_match[cur_state][pos_state] ); rep_match_price = match_price + price1( e->bm_rep[cur_state] ); if( match_byte == cur_byte && next_trial->dis != 0 && next_trial->prev_index2 == single_step_trial ) { const int price = rep_match_price + LZe_price_shortrep( e, cur_state, pos_state ); if( price <= next_trial->price ) { next_trial->price = price; next_trial->dis = 0; next_trial->prev_index = cur; } } available_bytes = min( Mf_available_bytes( e->matchfinder ) + 1, max_num_trials - 1 - cur ); if( available_bytes < min_match_len ) continue; len_limit = min( e->matchfinder->match_len_limit, available_bytes ); /* try literal + rep0 */ if( match_byte != cur_byte && next_trial->prev_index != cur ) { const uint8_t * const data = Mf_ptr_to_current_pos( e->matchfinder ) - 1; const int dis = cur_trial->reps[0] + 1; const int limit = min( e->matchfinder->match_len_limit + 1, available_bytes ); len = 1; while( len < limit && data[len-dis] == data[len] ) ++len; if( --len >= min_match_len ) { const int pos_state2 = ( pos_state + 1 ) & pos_state_mask; const State state2 = St_set_char( cur_state ); const int price = next_price + price1( e->bm_match[state2][pos_state2] ) + price1( e->bm_rep[state2] ) + LZe_price_rep0_len( e, len, state2, pos_state2 ); while( num_trials < cur + 1 + len ) e->trials[++num_trials].price = infinite_price; Tr_update2( &e->trials[cur+1+len], price, cur + 1 ); } } /* try rep distances */ for( rep = 0; rep < num_rep_distances; ++rep ) { const uint8_t * const data = Mf_ptr_to_current_pos( e->matchfinder ) - 1; int price; const int dis = cur_trial->reps[rep] + 1; if( data[0-dis] != data[0] || data[1-dis] != data[1] ) continue; for( len = min_match_len; len < len_limit; ++len ) if( data[len-dis] != data[len] ) break; while( num_trials < cur + len ) e->trials[++num_trials].price = infinite_price; price = rep_match_price + LZe_price_rep( e, rep, cur_state, pos_state ); for( i = min_match_len; i <= len; ++i ) Tr_update( &e->trials[cur+i], price + Lee_price( &e->rep_len_encoder, i, pos_state ), rep, cur ); if( rep == 0 ) start_len = len + 1; /* discard shorter matches */ /* try rep + literal + rep0 */ { int len2 = len + 1, pos_state2; const int limit = min( e->matchfinder->match_len_limit + len2, available_bytes ); State state2; while( len2 < limit && data[len2-dis] == data[len2] ) ++len2; len2 -= len + 1; if( len2 < min_match_len ) continue; pos_state2 = ( pos_state + len ) & pos_state_mask; state2 = St_set_rep( cur_state ); price += Lee_price( &e->rep_len_encoder, len, pos_state ) + price0( e->bm_match[state2][pos_state2] ) + LZe_price_matched( e, data[len-1], data[len], data[len-dis] ); pos_state2 = ( pos_state2 + 1 ) & pos_state_mask; state2 = St_set_char( state2 ); price += price1( e->bm_match[state2][pos_state2] ) + price1( e->bm_rep[state2] ) + LZe_price_rep0_len( e, len2, state2, pos_state2 ); while( num_trials < cur + len + 1 + len2 ) e->trials[++num_trials].price = infinite_price; Tr_update3( &e->trials[cur+len+1+len2], price, rep, cur + len + 1, cur ); } } /* try matches */ if( newlen >= start_len && newlen <= len_limit ) { int dis; const int normal_match_price = match_price + price0( e->bm_rep[cur_state] ); while( num_trials < cur + newlen ) e->trials[++num_trials].price = infinite_price; i = 0; while( start_len > e->pairs[i].len ) ++i; dis = e->pairs[i].dis; for( len = start_len; ; ++len ) { int price = normal_match_price + LZe_price_pair( e, dis, len, pos_state ); Tr_update( &e->trials[cur+len], price, dis + num_rep_distances, cur ); /* try match + literal + rep0 */ if( len == e->pairs[i].len ) { const uint8_t * const data = Mf_ptr_to_current_pos( e->matchfinder ) - 1; const int dis2 = dis + 1; int len2 = len + 1; const int limit = min( e->matchfinder->match_len_limit + len2, available_bytes ); while( len2 < limit && data[len2-dis2] == data[len2] ) ++len2; len2 -= len + 1; if( len2 >= min_match_len ) { int pos_state2 = ( pos_state + len ) & pos_state_mask; State state2 = St_set_match( cur_state ); price += price0( e->bm_match[state2][pos_state2] ) + LZe_price_matched( e, data[len-1], data[len], data[len-dis2] ); pos_state2 = ( pos_state2 + 1 ) & pos_state_mask; state2 = St_set_char( state2 ); price += price1( e->bm_match[state2][pos_state2] ) + price1( e->bm_rep[state2] ) + LZe_price_rep0_len( e, len2, state2, pos_state2 ); while( num_trials < cur + len + 1 + len2 ) e->trials[++num_trials].price = infinite_price; Tr_update3( &e->trials[cur+len+1+len2], price, dis + num_rep_distances, cur + len + 1, cur ); } if( ++i >= num_pairs ) break; dis = e->pairs[i].dis; } } } } } bool LZe_encode_member( struct LZ_encoder * const e, const unsigned long long member_size ) { const unsigned long long member_size_limit = member_size - Ft_size - max_marker_size; const int fill_count = ( e->matchfinder->match_len_limit > 12 ) ? 128 : 512; int fill_counter = 0; int ahead, i; int reps[num_rep_distances]; State state = 0; for( i = 0; i < num_rep_distances; ++i ) reps[i] = 0; if( Mf_data_position( e->matchfinder ) != 0 || Re_member_position( &e->renc ) != Fh_size ) return false; /* can be called only once */ if( !Mf_finished( e->matchfinder ) ) /* encode first byte */ { const uint8_t prev_byte = 0; const uint8_t cur_byte = Mf_peek( e->matchfinder, 0 ); CRC32_update_byte( &e->crc, cur_byte ); Re_encode_bit( &e->renc, &e->bm_match[state][0], 0 ); LZe_encode_literal( e, prev_byte, cur_byte ); Mf_get_match_pairs( e->matchfinder, 0 ); Mf_move_pos( e->matchfinder ); } while( !Mf_finished( e->matchfinder ) ) { if( e->pending_num_pairs == 0 ) { if( fill_counter <= 0 ) { LZe_fill_distance_prices( e ); fill_counter = fill_count; } if( e->align_price_count <= 0 ) LZe_fill_align_prices( e ); } ahead = LZe_sequence_optimizer( e, reps, state ); if( ahead <= 0 ) return false; /* can't happen */ for( i = 0; ahead > 0; ) { const int pos_state = ( Mf_data_position( e->matchfinder ) - ahead ) & pos_state_mask; const int dis = e->trials[i].dis; const int len = e->trials[i].price; bool bit = ( dis < 0 ); Re_encode_bit( &e->renc, &e->bm_match[state][pos_state], !bit ); if( bit ) /* literal byte */ { const uint8_t prev_byte = Mf_peek( e->matchfinder, ahead + 1 ); const uint8_t cur_byte = Mf_peek( e->matchfinder, ahead ); CRC32_update_byte( &e->crc, cur_byte ); if( St_is_char( state ) ) LZe_encode_literal( e, prev_byte, cur_byte ); else { const uint8_t match_byte = Mf_peek( e->matchfinder, ahead + reps[0] + 1 ); LZe_encode_matched( e, prev_byte, cur_byte, match_byte ); } state = St_set_char( state ); } else /* match or repeated match */ { CRC32_update_buf( &e->crc, Mf_ptr_to_current_pos( e->matchfinder ) - ahead, len ); mtf_reps( dis, reps ); bit = ( dis < num_rep_distances ); Re_encode_bit( &e->renc, &e->bm_rep[state], bit ); if( bit ) /* repeated match */ { bit = ( dis == 0 ); Re_encode_bit( &e->renc, &e->bm_rep0[state], !bit ); if( bit ) Re_encode_bit( &e->renc, &e->bm_len[state][pos_state], len > 1 ); else { Re_encode_bit( &e->renc, &e->bm_rep1[state], dis > 1 ); if( dis > 1 ) Re_encode_bit( &e->renc, &e->bm_rep2[state], dis > 2 ); } if( len == 1 ) state = St_set_short_rep( state ); else { Lee_encode( &e->rep_len_encoder, &e->renc, len, pos_state ); state = St_set_rep( state ); } } else /* match */ { LZe_encode_pair( e, dis - num_rep_distances, len, pos_state ); --fill_counter; state = St_set_match( state ); } } ahead -= len; i += len; if( Re_member_position( &e->renc ) >= member_size_limit ) { if( !Mf_dec_pos( e->matchfinder, ahead ) ) return false; LZe_full_flush( e, state ); return true; } } } LZe_full_flush( e, state ); return true; }