/* Clzip - Data compressor based on the LZMA algorithm
Copyright (C) 2010, 2011 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
enum { max_num_trials = 1 << 12,
price_shift = 6 };
typedef unsigned char Dis_slots[1<<12];
extern Dis_slots dis_slots;
static inline void Dis_slots_init()
{
int i, size, slot;
for( slot = 0; slot < 4; ++slot ) dis_slots[slot] = slot;
for( i = 4, size = 2, slot = 4; slot < 24; slot += 2 )
{
memset( &dis_slots[i], slot, size );
memset( &dis_slots[i+size], slot + 1, size );
size <<= 1;
i += size;
}
}
static inline int get_slot( const uint32_t dis )
{
if( dis < (1 << 12) ) return dis_slots[dis];
if( dis < (1 << 23) ) return dis_slots[dis>>11] + 22;
return dis_slots[dis>>22] + 44;
}
typedef int Prob_prices[bit_model_total >> 2];
extern Prob_prices prob_prices;
static inline void Prob_prices_init()
{
const int num_bits = ( bit_model_total_bits - 2 );
int i, j = 1, end = 2;
prob_prices[0] = bit_model_total_bits << price_shift;
for( i = num_bits - 1; i >= 0; --i, end <<= 1 )
{
for( ; j < end; ++j )
prob_prices[j] = ( i << price_shift ) +
( ((end - j) << price_shift) >> (num_bits - i - 1) );
}
}
static inline int get_price( const int probability )
{ return prob_prices[probability >> 2]; }
static inline int price0( const Bit_model probability )
{ return get_price( probability ); }
static inline int price1( const Bit_model probability )
{ return get_price( bit_model_total-probability ); }
static inline int price_bit( const Bit_model bm, const int bit )
{ if( bit ) return price1( bm ); else return price0( bm ); }
static inline int price_symbol( const Bit_model bm[], int symbol,
const int num_bits )
{
int price = 0;
symbol |= ( 1 << num_bits );
while( symbol > 1 )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[symbol], bit );
}
return price;
}
static inline int price_symbol_reversed( const Bit_model bm[], int symbol,
const int num_bits )
{
int price = 0;
int model = 1;
int i;
for( i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
}
return price;
}
static inline int price_matched( const Bit_model bm[], const int symbol,
const int match_byte )
{
int price = 0;
int model = 1;
int i;
for( i = 7; i >= 0; --i )
{
const int match_bit = ( match_byte >> i ) & 1;
int bit = ( symbol >> i ) & 1;
price += price_bit( bm[(match_bit<<8)+model+0x100], bit );
model = ( model << 1 ) | bit;
if( match_bit != bit )
{
while( --i >= 0 )
{
bit = ( symbol >> i ) & 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
}
break;
}
}
return price;
}
enum { /* bytes to keep in buffer before dictionary */
before_size = max_num_trials + 1,
/* bytes to keep in buffer after pos */
after_size = max_match_len,
num_prev_positions4 = 1 << 20,
num_prev_positions3 = 1 << 18,
num_prev_positions2 = 1 << 16,
num_prev_positions = num_prev_positions4 + num_prev_positions3 +
num_prev_positions2 };
struct Matchfinder
{
long long partial_data_pos;
uint8_t * buffer; /* input buffer */
int32_t * prev_positions; /* last seen position of key */
int32_t * prev_pos_tree;
int dictionary_size_; /* bytes to keep in buffer before pos */
int buffer_size;
int pos; /* current pos in buffer */
int cyclic_pos; /* current pos in dictionary */
int stream_pos; /* first byte not yet read from file */
int pos_limit; /* when reached, a new block must be read */
int match_len_limit_;
int cycles;
int infd; /* input file descriptor */
bool at_stream_end; /* stream_pos shows real end of file */
};
bool Mf_read_block( struct Matchfinder * const mf );
void Mf_init( struct Matchfinder * const mf,
const int dict_size, const int len_limit, const int ifd );
static inline void Mf_free( struct Matchfinder * const mf )
{
free( mf->prev_pos_tree ); mf->prev_pos_tree = 0;
free( mf->prev_positions ); mf->prev_positions = 0;
free( mf->buffer ); mf->buffer = 0;
}
static inline uint8_t Mf_peek( struct Matchfinder * const mf, const int i )
{ return mf->buffer[mf->pos+i]; }
static inline int Mf_available_bytes( struct Matchfinder * const mf )
{ return mf->stream_pos - mf->pos; }
static inline long long Mf_data_position( struct Matchfinder * const mf )
{ return mf->partial_data_pos + mf->pos; }
static inline int Mf_dictionary_size( struct Matchfinder * const mf )
{ return mf->dictionary_size_; }
static inline bool Mf_finished( struct Matchfinder * const mf )
{ return mf->at_stream_end && mf->pos >= mf->stream_pos; }
static inline int Mf_match_len_limit( struct Matchfinder * const mf )
{ return mf->match_len_limit_; }
static inline const uint8_t * Mf_ptr_to_current_pos( struct Matchfinder * const mf )
{ return mf->buffer + mf->pos; }
static inline bool Mf_dec_pos( struct Matchfinder * const mf,
const int ahead )
{
if( ahead < 0 || mf->pos < ahead ) return false;
mf->pos -= ahead;
mf->cyclic_pos -= ahead;
if( mf->cyclic_pos < 0 ) mf->cyclic_pos += mf->dictionary_size_;
return true;
}
static inline int Mf_true_match_len( struct Matchfinder * const mf,
const int index, const int distance,
int len_limit )
{
const uint8_t * const data = mf->buffer + mf->pos + index - distance;
int i = 0;
if( index + len_limit > Mf_available_bytes( mf ) )
len_limit = Mf_available_bytes( mf ) - index;
while( i < len_limit && data[i] == data[i+distance] ) ++i;
return i;
}
void Mf_reset( struct Matchfinder * const mf );
void Mf_move_pos( struct Matchfinder * const mf );
int Mf_longest_match_len( struct Matchfinder * const mf, int * const distances );
enum { re_buffer_size = 65536 };
struct Range_encoder
{
uint64_t low;
long long partial_member_pos;
uint8_t * buffer; /* output buffer */
int pos; /* current pos in buffer */
uint32_t range;
int ff_count;
int outfd; /* output file descriptor */
uint8_t cache;
};
void Re_flush_data( struct Range_encoder * const range_encoder );
static inline void Re_put_byte( struct Range_encoder * const range_encoder,
const uint8_t b )
{
range_encoder->buffer[range_encoder->pos] = b;
if( ++range_encoder->pos >= re_buffer_size ) Re_flush_data( range_encoder );
}
static inline void Re_shift_low( struct Range_encoder * const range_encoder )
{
const uint32_t carry = range_encoder->low >> 32;
if( range_encoder->low < 0xFF000000U || carry == 1 )
{
Re_put_byte( range_encoder, range_encoder->cache + carry );
for( ; range_encoder->ff_count > 0; --range_encoder->ff_count )
Re_put_byte( range_encoder, 0xFF + carry );
range_encoder->cache = range_encoder->low >> 24;
}
else ++range_encoder->ff_count;
range_encoder->low = ( range_encoder->low & 0x00FFFFFFU ) << 8;
}
static inline void Re_init( struct Range_encoder * const range_encoder,
const int ofd )
{
range_encoder->low = 0;
range_encoder->partial_member_pos = 0;
range_encoder->buffer = (uint8_t *)malloc( re_buffer_size );
if( !range_encoder->buffer )
{
show_error( "Not enough memory. Try a smaller dictionary size.", 0, false );
cleanup_and_fail( 1 );
}
range_encoder->pos = 0;
range_encoder->range = 0xFFFFFFFFU;
range_encoder->ff_count = 0;
range_encoder->outfd = ofd;
range_encoder->cache = 0;
}
static inline void Re_free( struct Range_encoder * const range_encoder )
{ free( range_encoder->buffer ); range_encoder->buffer = 0; }
static inline long long Re_member_position( struct Range_encoder * const range_encoder )
{ return range_encoder->partial_member_pos + range_encoder->pos + range_encoder->ff_count; }
static inline void Re_flush( struct Range_encoder * const range_encoder )
{ int i; for( i = 0; i < 5; ++i ) Re_shift_low( range_encoder ); }
static inline void Re_encode( struct Range_encoder * const range_encoder,
const int symbol, const int num_bits )
{
int i;
for( i = num_bits - 1; i >= 0; --i )
{
range_encoder->range >>= 1;
if( (symbol >> i) & 1 ) range_encoder->low += range_encoder->range;
if( range_encoder->range <= 0x00FFFFFFU )
{ range_encoder->range <<= 8; Re_shift_low( range_encoder ); }
}
}
static inline void Re_encode_bit( struct Range_encoder * const range_encoder,
Bit_model * const probability, const int bit )
{
const uint32_t bound = ( range_encoder->range >> bit_model_total_bits ) * *probability;
if( !bit )
{
range_encoder->range = bound;
*probability += (bit_model_total - *probability) >> bit_model_move_bits;
}
else
{
range_encoder->low += bound;
range_encoder->range -= bound;
*probability -= *probability >> bit_model_move_bits;
}
if( range_encoder->range <= 0x00FFFFFFU )
{ range_encoder->range <<= 8; Re_shift_low( range_encoder ); }
}
static inline void Re_encode_tree( struct Range_encoder * const range_encoder,
Bit_model bm[], const int symbol, const int num_bits )
{
int mask = ( 1 << ( num_bits - 1 ) );
int model = 1;
int i;
for( i = num_bits; i > 0; --i, mask >>= 1 )
{
const int bit = ( symbol & mask );
Re_encode_bit( range_encoder, &bm[model], bit );
model <<= 1;
if( bit ) model |= 1;
}
}
static inline void Re_encode_tree_reversed( struct Range_encoder * const range_encoder,
Bit_model bm[], int symbol, const int num_bits )
{
int model = 1;
int i;
for( i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
Re_encode_bit( range_encoder, &bm[model], bit );
model = ( model << 1 ) | bit;
symbol >>= 1;
}
}
static inline void Re_encode_matched( struct Range_encoder * const range_encoder,
Bit_model bm[], int symbol, int match_byte )
{
int model = 1;
int i;
for( i = 7; i >= 0; --i )
{
const int match_bit = ( match_byte >> i ) & 1;
int bit = ( symbol >> i ) & 1;
Re_encode_bit( range_encoder, &bm[(match_bit<<8)+model+0x100], bit );
model = ( model << 1 ) | bit;
if( match_bit != bit )
{
while( --i >= 0 )
{
bit = ( symbol >> i ) & 1;
Re_encode_bit( range_encoder, &bm[model], bit );
model = ( model << 1 ) | bit;
}
break;
}
}
}
struct Len_encoder
{
Bit_model choice1;
Bit_model choice2;
Bit_model bm_low[pos_states][len_low_symbols];
Bit_model bm_mid[pos_states][len_mid_symbols];
Bit_model bm_high[len_high_symbols];
int prices[pos_states][max_len_symbols];
int len_symbols;
int counters[pos_states];
};
static inline void Lee_update_prices( struct Len_encoder * const len_encoder,
const int pos_state )
{
int * const pps = len_encoder->prices[pos_state];
int tmp = price0( len_encoder->choice1 );
int len = 0;
for( ; len < len_low_symbols && len < len_encoder->len_symbols; ++len )
pps[len] = tmp +
price_symbol( len_encoder->bm_low[pos_state], len, len_low_bits );
tmp = price1( len_encoder->choice1 );
for( ; len < len_low_symbols + len_mid_symbols && len < len_encoder->len_symbols; ++len )
pps[len] = tmp + price0( len_encoder->choice2 ) +
price_symbol( len_encoder->bm_mid[pos_state], len - len_low_symbols, len_mid_bits );
for( ; len < len_encoder->len_symbols; ++len )
/* using 4 slots per value makes "Lee_price" faster */
len_encoder->prices[3][len] = len_encoder->prices[2][len] =
len_encoder->prices[1][len] = len_encoder->prices[0][len] =
tmp + price1( len_encoder->choice2 ) +
price_symbol( len_encoder->bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits );
len_encoder->counters[pos_state] = len_encoder->len_symbols;
}
static inline void Lee_init( struct Len_encoder * const len_encoder,
const int len_limit )
{
int i, j;
Bm_init( &len_encoder->choice1 );
Bm_init( &len_encoder->choice2 );
for( i = 0; i < pos_states; ++i )
for( j = 0; j < len_low_symbols; ++j )
Bm_init( &len_encoder->bm_low[i][j] );
for( i = 0; i < pos_states; ++i )
for( j = 0; j < len_mid_symbols; ++j )
Bm_init( &len_encoder->bm_mid[i][j] );
for( i = 0; i < len_high_symbols; ++i )
Bm_init( &len_encoder->bm_high[i] );
len_encoder->len_symbols = len_limit + 1 - min_match_len;
for( i = 0; i < pos_states; ++i ) Lee_update_prices( len_encoder, i );
}
void Lee_encode( struct Len_encoder * const len_encoder,
struct Range_encoder * const range_encoder, int symbol,
const int pos_state );
static inline int Lee_price( struct Len_encoder * const len_encoder,
const int symbol, const int pos_state )
{ return len_encoder->prices[pos_state][symbol - min_match_len]; }
struct Literal_encoder
{
Bit_model bm_literal[1<> ( 8 - literal_context_bits ) ); }
static inline void Lie_init( struct Literal_encoder * const literal_encoder )
{
int i, j;
for( i = 0; i < 1<bm_literal[i][j] );
}
static inline void Lie_encode( struct Literal_encoder * const literal_encoder,
struct Range_encoder * const range_encoder,
uint8_t prev_byte, uint8_t symbol )
{ Re_encode_tree( range_encoder, literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, 8 ); }
static inline void Lie_encode_matched( struct Literal_encoder * const literal_encoder,
struct Range_encoder * const range_encoder,
uint8_t prev_byte, uint8_t symbol, uint8_t match_byte )
{ Re_encode_matched( range_encoder, literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, match_byte ); }
static inline int Lie_price_symbol( struct Literal_encoder * const literal_encoder,
uint8_t prev_byte, uint8_t symbol )
{ return price_symbol( literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, 8 ); }
static inline int Lie_price_matched( struct Literal_encoder * const literal_encoder,
uint8_t prev_byte, uint8_t symbol, uint8_t match_byte )
{ return price_matched( literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, match_byte ); }
enum { infinite_price = 0x0FFFFFFF,
max_marker_size = 16,
num_rep_distances = 4 }; /* must be 4 */
struct Trial
{
State state;
int dis;
int prev_index; /* index of prev trial in trials[] */
int price; /* dual use var; cumulative price, match length */
int reps[num_rep_distances];
};
static inline void Tr_update( struct Trial * const trial,
const int d, const int p_i, const int pr )
{
if( pr < trial->price )
{ trial->dis = d; trial->prev_index = p_i; trial->price = pr; }
}
struct LZ_encoder
{
int longest_match_found;
uint32_t crc_;
Bit_model bm_match[states][pos_states];
Bit_model bm_rep[states];
Bit_model bm_rep0[states];
Bit_model bm_rep1[states];
Bit_model bm_rep2[states];
Bit_model bm_len[states][pos_states];
Bit_model bm_dis_slot[max_dis_states][1<crc_ ^ 0xFFFFFFFFU; }
/* move-to-front dis in/into reps */
static inline void LZe_mtf_reps( const int dis, int reps[num_rep_distances] )
{
int i;
if( dis >= num_rep_distances )
{
for( i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = dis - num_rep_distances;
}
else if( dis > 0 )
{
const int distance = reps[dis];
for( i = dis; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = distance;
}
}
static inline int LZe_price_rep_len1( struct LZ_encoder * const encoder,
const State state, const int pos_state )
{
return price0( encoder->bm_rep0[state] ) + price0( encoder->bm_len[state][pos_state] );
}
static inline int LZe_price_rep( struct LZ_encoder * const encoder, const int rep,
const State state, const int pos_state )
{
int price;
if( rep == 0 ) return price0( encoder->bm_rep0[state] ) +
price1( encoder->bm_len[state][pos_state] );
price = price1( encoder->bm_rep0[state] );
if( rep == 1 )
price += price0( encoder->bm_rep1[state] );
else
{
price += price1( encoder->bm_rep1[state] );
price += price_bit( encoder->bm_rep2[state], rep - 2 );
}
return price;
}
static inline int LZe_price_dis( struct LZ_encoder * const encoder,
const int dis, const int dis_state )
{
if( dis < modeled_distances )
return encoder->dis_prices[dis_state][dis];
else
return encoder->dis_slot_prices[dis_state][get_slot( dis )] +
encoder->align_prices[dis & (dis_align_size - 1)];
}
static inline int LZe_price_pair( struct LZ_encoder * const encoder,
const int dis, const int len,
const int pos_state )
{
if( len <= min_match_len && dis >= modeled_distances )
return infinite_price;
return Lee_price( &encoder->len_encoder, len, pos_state ) +
LZe_price_dis( encoder, dis, get_dis_state( len ) );
}
static inline void LZe_encode_pair( struct LZ_encoder * const encoder,
const uint32_t dis, const int len,
const int pos_state )
{
const int dis_slot = get_slot( dis );
Lee_encode( &encoder->len_encoder, &encoder->range_encoder, len, pos_state );
Re_encode_tree( &encoder->range_encoder,
encoder->bm_dis_slot[get_dis_state(len)],
dis_slot, dis_slot_bits );
if( dis_slot >= start_dis_model )
{
const int direct_bits = ( dis_slot >> 1 ) - 1;
const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const uint32_t direct_dis = dis - base;
if( dis_slot < end_dis_model )
Re_encode_tree_reversed( &encoder->range_encoder, encoder->bm_dis + base - dis_slot,
direct_dis, direct_bits );
else
{
Re_encode( &encoder->range_encoder, direct_dis >> dis_align_bits, direct_bits - dis_align_bits );
Re_encode_tree_reversed( &encoder->range_encoder, encoder->bm_align, direct_dis, dis_align_bits );
if( --encoder->align_price_count <= 0 ) LZe_fill_align_prices( encoder );
}
}
}
static inline int LZe_read_match_distances( struct LZ_encoder * const encoder )
{
int len = Mf_longest_match_len( encoder->matchfinder, encoder->match_distances );
if( len == Mf_match_len_limit( encoder->matchfinder ) )
len += Mf_true_match_len( encoder->matchfinder, len, encoder->match_distances[len] + 1, max_match_len - len );
return len;
}
static inline void LZe_move_pos( struct LZ_encoder * const encoder,
int n, bool skip )
{
while( --n >= 0 )
{
if( skip ) skip = false;
else Mf_longest_match_len( encoder->matchfinder, 0 );
Mf_move_pos( encoder->matchfinder );
}
}
static inline void LZe_backward( struct LZ_encoder * const encoder, int cur )
{
int * const dis = &encoder->trials[cur].dis;
while( cur > 0 )
{
const int prev_index = encoder->trials[cur].prev_index;
struct Trial * const prev_trial = &encoder->trials[prev_index];
prev_trial->price = cur - prev_index; /* len */
cur = *dis; *dis = prev_trial->dis; prev_trial->dis = cur;
cur = prev_index;
}
}
int LZe_sequence_optimizer( struct LZ_encoder * const encoder,
const int reps[num_rep_distances], const State state );
void LZe_full_flush( struct LZ_encoder * const encoder, const State state );
void LZe_init( struct LZ_encoder * const encoder, struct Matchfinder * const mf,
const File_header header, const int outfd );
static inline void LZe_free( struct LZ_encoder * const encoder )
{
Re_free( &encoder->range_encoder );
}
bool LZe_encode_member( struct LZ_encoder * const encoder, const long long member_size );
static inline long long LZe_member_position( struct LZ_encoder * const encoder )
{ return Re_member_position( &encoder->range_encoder ); }