/* Clzip - LZMA lossless data compressor
Copyright (C) 2010, 2011, 2012, 2013 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
enum { max_num_trials = 1 << 12,
price_shift_bits = 6,
price_step_bits = 2,
price_step = 1 << price_step_bits };
typedef uint8_t Dis_slots[1<<10];
extern Dis_slots dis_slots;
static inline void Dis_slots_init( void )
{
int i, size, slot;
for( slot = 0; slot < 4; ++slot ) dis_slots[slot] = slot;
for( i = 4, size = 2, slot = 4; slot < 20; slot += 2 )
{
memset( &dis_slots[i], slot, size );
memset( &dis_slots[i+size], slot + 1, size );
size <<= 1;
i += size;
}
}
static inline uint8_t get_slot( const uint32_t dis )
{
if( dis < (1 << 10) ) return dis_slots[dis];
if( dis < (1 << 19) ) return dis_slots[dis>> 9] + 18;
if( dis < (1 << 28) ) return dis_slots[dis>>18] + 36;
return dis_slots[dis>>27] + 54;
}
typedef short Prob_prices[bit_model_total >> price_step_bits];
extern Prob_prices prob_prices;
static inline void Prob_prices_init( void )
{
int i, j;
for( i = price_step / 2; i < bit_model_total; i += price_step )
{
unsigned val = i;
int bits = 0; /* base 2 logarithm of val */
for( j = 0; j < price_shift_bits; ++j )
{
val = val * val;
bits <<= 1;
while( val >= 1 << 16 ) { val >>= 1; ++bits; }
}
bits += 15; /* remaining bits in val */
prob_prices[i >> price_step_bits] =
( bit_model_total_bits << price_shift_bits ) - bits;
}
}
static inline int get_price( const int probability )
{ return prob_prices[probability >> price_step_bits]; }
static inline int price0( const Bit_model probability )
{ return get_price( probability ); }
static inline int price1( const Bit_model probability )
{ return get_price( bit_model_total - probability ); }
static inline int price_bit( const Bit_model bm, const int bit )
{ if( bit ) return price1( bm ); else return price0( bm ); }
static inline int price_symbol( const Bit_model bm[], int symbol,
const int num_bits )
{
int price = 0;
symbol |= ( 1 << num_bits );
while( symbol > 1 )
{
const int bit = symbol & 1;
symbol >>= 1;
price += price_bit( bm[symbol], bit );
}
return price;
}
static inline int price_symbol_reversed( const Bit_model bm[], int symbol,
const int num_bits )
{
int price = 0;
int model = 1;
int i;
for( i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
price += price_bit( bm[model], bit );
model = ( model << 1 ) | bit;
symbol >>= 1;
}
return price;
}
static inline int price_matched( const Bit_model bm[], unsigned symbol,
unsigned match_byte )
{
int price = 0;
unsigned mask = 0x100;
symbol |= 0x100;
do {
unsigned bit, match_bit;
match_byte <<= 1;
match_bit = match_byte & mask;
symbol <<= 1;
bit = symbol & 0x100;
price += price_bit( bm[match_bit+(symbol>>9)+mask], bit );
mask &= ~(match_byte ^ symbol); /* if( match_bit != bit ) mask = 0; */
}
while( symbol < 0x10000 );
return price;
}
struct Pair /* distance-length pair */
{
int dis;
int len;
};
enum { /* bytes to keep in buffer before dictionary */
before_size = max_num_trials + 1,
/* bytes to keep in buffer after pos */
after_size = ( 2 * max_match_len ) + 1,
num_prev_positions3 = 1 << 16,
num_prev_positions2 = 1 << 10 };
struct Matchfinder
{
unsigned long long partial_data_pos;
uint8_t * buffer; /* input buffer */
int32_t * prev_positions; /* last seen position of key */
int32_t * prev_pos_tree; /* previous positions of key */
int match_len_limit;
int buffer_size;
int dictionary_size; /* bytes to keep in buffer before pos */
int pos; /* current pos in buffer */
int cyclic_pos; /* cycles through [0, dictionary_size] */
int pos_limit; /* when reached, a new block must be read */
int stream_pos; /* first byte not yet read from file */
int cycles;
unsigned key4_mask;
int num_prev_positions; /* size of prev_positions */
int infd; /* input file descriptor */
bool at_stream_end; /* stream_pos shows real end of file */
};
bool Mf_read_block( struct Matchfinder * const mf );
void Mf_normalize_pos( struct Matchfinder * const mf );
bool Mf_init( struct Matchfinder * const mf,
const int dict_size, const int match_len_limit, const int ifd );
static inline void Mf_free( struct Matchfinder * const mf )
{
free( mf->prev_positions );
free( mf->buffer );
}
static inline uint8_t Mf_peek( const struct Matchfinder * const mf, const int i )
{ return mf->buffer[mf->pos+i]; }
static inline int Mf_available_bytes( const struct Matchfinder * const mf )
{ return mf->stream_pos - mf->pos; }
static inline unsigned long long
Mf_data_position( const struct Matchfinder * const mf )
{ return mf->partial_data_pos + mf->pos; }
static inline bool Mf_finished( const struct Matchfinder * const mf )
{ return mf->at_stream_end && mf->pos >= mf->stream_pos; }
static inline const uint8_t *
Mf_ptr_to_current_pos( const struct Matchfinder * const mf )
{ return mf->buffer + mf->pos; }
static inline bool Mf_dec_pos( struct Matchfinder * const mf,
const int ahead )
{
if( ahead < 0 || mf->pos < ahead ) return false;
mf->pos -= ahead;
mf->cyclic_pos -= ahead;
if( mf->cyclic_pos < 0 ) mf->cyclic_pos += mf->dictionary_size + 1;
return true;
}
static inline int Mf_true_match_len( const struct Matchfinder * const mf,
const int index, const int distance,
int len_limit )
{
const uint8_t * const data = mf->buffer + mf->pos + index;
int i = 0;
if( index + len_limit > Mf_available_bytes( mf ) )
len_limit = Mf_available_bytes( mf ) - index;
while( i < len_limit && data[i-distance] == data[i] ) ++i;
return i;
}
static inline void Mf_move_pos( struct Matchfinder * const mf )
{
if( ++mf->cyclic_pos > mf->dictionary_size ) mf->cyclic_pos = 0;
if( ++mf->pos >= mf->pos_limit ) Mf_normalize_pos( mf );
}
void Mf_reset( struct Matchfinder * const mf );
int Mf_get_match_pairs( struct Matchfinder * const mf, struct Pair * pairs );
enum { re_buffer_size = 65536 };
struct Range_encoder
{
uint64_t low;
unsigned long long partial_member_pos;
uint8_t * buffer; /* output buffer */
int pos; /* current pos in buffer */
uint32_t range;
int ff_count;
int outfd; /* output file descriptor */
uint8_t cache;
};
void Re_flush_data( struct Range_encoder * const renc );
static inline void Re_put_byte( struct Range_encoder * const renc,
const uint8_t b )
{
renc->buffer[renc->pos] = b;
if( ++renc->pos >= re_buffer_size ) Re_flush_data( renc );
}
static inline void Re_shift_low( struct Range_encoder * const renc )
{
const bool carry = ( renc->low > 0xFFFFFFFFU );
if( carry || renc->low < 0xFF000000U )
{
Re_put_byte( renc, renc->cache + carry );
for( ; renc->ff_count > 0; --renc->ff_count )
Re_put_byte( renc, 0xFF + carry );
renc->cache = renc->low >> 24;
}
else ++renc->ff_count;
renc->low = ( renc->low & 0x00FFFFFFU ) << 8;
}
static inline bool Re_init( struct Range_encoder * const renc, const int ofd )
{
renc->low = 0;
renc->partial_member_pos = 0;
renc->buffer = (uint8_t *)malloc( re_buffer_size );
if( !renc->buffer ) return false;
renc->pos = 0;
renc->range = 0xFFFFFFFFU;
renc->ff_count = 0;
renc->outfd = ofd;
renc->cache = 0;
return true;
}
static inline void Re_free( struct Range_encoder * const renc )
{ free( renc->buffer ); }
static inline unsigned long long
Re_member_position( const struct Range_encoder * const renc )
{ return renc->partial_member_pos + renc->pos + renc->ff_count; }
static inline void Re_flush( struct Range_encoder * const renc )
{ int i; for( i = 0; i < 5; ++i ) Re_shift_low( renc ); }
static inline void Re_encode( struct Range_encoder * const renc,
const int symbol, const int num_bits )
{
int i;
for( i = num_bits - 1; i >= 0; --i )
{
renc->range >>= 1;
if( (symbol >> i) & 1 ) renc->low += renc->range;
if( renc->range <= 0x00FFFFFFU )
{ renc->range <<= 8; Re_shift_low( renc ); }
}
}
static inline void Re_encode_bit( struct Range_encoder * const renc,
Bit_model * const probability, const int bit )
{
const uint32_t bound = ( renc->range >> bit_model_total_bits ) * *probability;
if( !bit )
{
renc->range = bound;
*probability += (bit_model_total - *probability) >> bit_model_move_bits;
}
else
{
renc->low += bound;
renc->range -= bound;
*probability -= *probability >> bit_model_move_bits;
}
if( renc->range <= 0x00FFFFFFU )
{ renc->range <<= 8; Re_shift_low( renc ); }
}
static inline void Re_encode_tree( struct Range_encoder * const renc,
Bit_model bm[], const int symbol, const int num_bits )
{
int mask = ( 1 << ( num_bits - 1 ) );
int model = 1;
int i;
for( i = num_bits; i > 0; --i, mask >>= 1 )
{
const int bit = ( symbol & mask );
Re_encode_bit( renc, &bm[model], bit );
model <<= 1;
if( bit ) model |= 1;
}
}
static inline void Re_encode_tree_reversed( struct Range_encoder * const renc,
Bit_model bm[], int symbol, const int num_bits )
{
int model = 1;
int i;
for( i = num_bits; i > 0; --i )
{
const int bit = symbol & 1;
Re_encode_bit( renc, &bm[model], bit );
model = ( model << 1 ) | bit;
symbol >>= 1;
}
}
static inline void Re_encode_matched( struct Range_encoder * const renc,
Bit_model bm[], unsigned symbol,
unsigned match_byte )
{
unsigned mask = 0x100;
symbol |= 0x100;
do {
unsigned bit, match_bit;
match_byte <<= 1;
match_bit = match_byte & mask;
symbol <<= 1;
bit = symbol & 0x100;
Re_encode_bit( renc, &bm[match_bit+(symbol>>9)+mask], bit );
mask &= ~(match_byte ^ symbol); /* if( match_bit != bit ) mask = 0; */
}
while( symbol < 0x10000 );
}
struct Len_encoder
{
struct Len_model lm;
int prices[pos_states][max_len_symbols];
int len_symbols;
int counters[pos_states];
};
static inline void Lee_update_prices( struct Len_encoder * const len_encoder,
const int pos_state )
{
int * const pps = len_encoder->prices[pos_state];
int tmp = price0( len_encoder->lm.choice1 );
int len = 0;
for( ; len < len_low_symbols && len < len_encoder->len_symbols; ++len )
pps[len] = tmp +
price_symbol( len_encoder->lm.bm_low[pos_state], len, len_low_bits );
tmp = price1( len_encoder->lm.choice1 );
for( ; len < len_low_symbols + len_mid_symbols && len < len_encoder->len_symbols; ++len )
pps[len] = tmp + price0( len_encoder->lm.choice2 ) +
price_symbol( len_encoder->lm.bm_mid[pos_state], len - len_low_symbols, len_mid_bits );
for( ; len < len_encoder->len_symbols; ++len )
/* using 4 slots per value makes "Lee_price" faster */
len_encoder->prices[3][len] = len_encoder->prices[2][len] =
len_encoder->prices[1][len] = len_encoder->prices[0][len] =
tmp + price1( len_encoder->lm.choice2 ) +
price_symbol( len_encoder->lm.bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits );
len_encoder->counters[pos_state] = len_encoder->len_symbols;
}
static inline void Lee_init( struct Len_encoder * const len_encoder,
const int match_len_limit )
{
int i;
Lm_init( &len_encoder->lm );
len_encoder->len_symbols = match_len_limit + 1 - min_match_len;
for( i = 0; i < pos_states; ++i ) Lee_update_prices( len_encoder, i );
}
void Lee_encode( struct Len_encoder * const len_encoder,
struct Range_encoder * const renc,
int symbol, const int pos_state );
static inline int Lee_price( const struct Len_encoder * const len_encoder,
const int symbol, const int pos_state )
{ return len_encoder->prices[pos_state][symbol - min_match_len]; }
enum { infinite_price = 0x0FFFFFFF,
max_marker_size = 16,
num_rep_distances = 4, /* must be 4 */
single_step_trial = -2,
dual_step_trial = -1 };
struct Trial
{
State state;
int price; /* dual use var; cumulative price, match length */
int dis; /* rep index or match distance */
int prev_index; /* index of prev trial in trials[] */
int dis2;
int prev_index2; /* -2 trial is single step */
/* -1 literal + rep0 */
/* >= 0 rep or match + literal + rep0 */
int reps[num_rep_distances];
};
static inline void Tr_update( struct Trial * const trial, const int pr,
const int d, const int p_i )
{
if( pr < trial->price )
{
trial->price = pr;
trial->dis = d; trial->prev_index = p_i;
trial->prev_index2 = single_step_trial;
}
}
static inline void Tr_update2( struct Trial * const trial, const int pr,
const int d, const int p_i )
{
if( pr < trial->price )
{
trial->price = pr;
trial->dis = d; trial->prev_index = p_i;
trial->prev_index2 = dual_step_trial;
}
}
static inline void Tr_update3( struct Trial * const trial, const int pr,
const int d, const int p_i,
const int d2, const int p_i2 )
{
if( pr < trial->price )
{
trial->price = pr;
trial->dis = d; trial->prev_index = p_i;
trial->dis2 = d2; trial->prev_index2 = p_i2;
}
}
struct LZ_encoder
{
int pending_num_pairs;
uint32_t crc;
Bit_model bm_literal[1<renc ); }
static inline unsigned LZe_crc( const struct LZ_encoder * const encoder )
{ return encoder->crc ^ 0xFFFFFFFFU; }
/* move-to-front dis in/into reps */
static inline void LZe_mtf_reps( const int dis, int reps[num_rep_distances] )
{
int i;
if( dis >= num_rep_distances )
{
for( i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = dis - num_rep_distances;
}
else if( dis > 0 )
{
const int distance = reps[dis];
for( i = dis; i > 0; --i ) reps[i] = reps[i-1];
reps[0] = distance;
}
}
static inline int LZe_price_rep_len1( const struct LZ_encoder * const encoder,
const State state, const int pos_state )
{
return price0( encoder->bm_rep0[state] ) +
price0( encoder->bm_len[state][pos_state] );
}
static inline int LZe_price_rep( const struct LZ_encoder * const encoder,
const int rep,
const State state, const int pos_state )
{
int price;
if( rep == 0 ) return price0( encoder->bm_rep0[state] ) +
price1( encoder->bm_len[state][pos_state] );
price = price1( encoder->bm_rep0[state] );
if( rep == 1 )
price += price0( encoder->bm_rep1[state] );
else
{
price += price1( encoder->bm_rep1[state] );
price += price_bit( encoder->bm_rep2[state], rep - 2 );
}
return price;
}
static inline int LZe_price_rep0_len( const struct LZ_encoder * const encoder,
const int len,
const State state, const int pos_state )
{
return LZe_price_rep( encoder, 0, state, pos_state ) +
Lee_price( &encoder->rep_len_encoder, len, pos_state );
}
static inline int LZe_price_dis( const struct LZ_encoder * const encoder,
const int dis, const int len_state )
{
if( dis < modeled_distances )
return encoder->dis_prices[len_state][dis];
else
return encoder->dis_slot_prices[len_state][get_slot( dis )] +
encoder->align_prices[dis & (dis_align_size - 1)];
}
static inline int LZe_price_pair( const struct LZ_encoder * const encoder,
const int dis, const int len,
const int pos_state )
{
return Lee_price( &encoder->match_len_encoder, len, pos_state ) +
LZe_price_dis( encoder, dis, get_len_state( len ) );
}
static inline int LZe_price_literal( const struct LZ_encoder * const encoder,
uint8_t prev_byte, uint8_t symbol )
{ return price_symbol( encoder->bm_literal[get_lit_state(prev_byte)], symbol, 8 ); }
static inline int LZe_price_matched( const struct LZ_encoder * const encoder,
uint8_t prev_byte, uint8_t symbol,
uint8_t match_byte )
{ return price_matched( encoder->bm_literal[get_lit_state(prev_byte)],
symbol, match_byte ); }
static inline void LZe_encode_literal( struct LZ_encoder * const encoder,
uint8_t prev_byte, uint8_t symbol )
{ Re_encode_tree( &encoder->renc,
encoder->bm_literal[get_lit_state(prev_byte)], symbol, 8 ); }
static inline void LZe_encode_matched( struct LZ_encoder * const encoder,
uint8_t prev_byte, uint8_t symbol,
uint8_t match_byte )
{ Re_encode_matched( &encoder->renc,
encoder->bm_literal[get_lit_state(prev_byte)],
symbol, match_byte ); }
static inline void LZe_encode_pair( struct LZ_encoder * const encoder,
const uint32_t dis, const int len,
const int pos_state )
{
const int dis_slot = get_slot( dis );
Lee_encode( &encoder->match_len_encoder, &encoder->renc, len, pos_state );
Re_encode_tree( &encoder->renc, encoder->bm_dis_slot[get_len_state(len)],
dis_slot, dis_slot_bits );
if( dis_slot >= start_dis_model )
{
const int direct_bits = ( dis_slot >> 1 ) - 1;
const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits;
const uint32_t direct_dis = dis - base;
if( dis_slot < end_dis_model )
Re_encode_tree_reversed( &encoder->renc,
encoder->bm_dis + base - dis_slot - 1,
direct_dis, direct_bits );
else
{
Re_encode( &encoder->renc, direct_dis >> dis_align_bits,
direct_bits - dis_align_bits );
Re_encode_tree_reversed( &encoder->renc, encoder->bm_align,
direct_dis, dis_align_bits );
--encoder->align_price_count;
}
}
}
static inline int LZe_read_match_distances( struct LZ_encoder * const encoder )
{
const int num_pairs =
Mf_get_match_pairs( encoder->matchfinder, encoder->pairs );
if( num_pairs > 0 )
{
int len = encoder->pairs[num_pairs-1].len;
if( len == encoder->matchfinder->match_len_limit && len < max_match_len )
{
len += Mf_true_match_len( encoder->matchfinder, len,
encoder->pairs[num_pairs-1].dis + 1,
max_match_len - len );
encoder->pairs[num_pairs-1].len = len;
}
}
return num_pairs;
}
static inline void LZe_move_pos( struct LZ_encoder * const encoder, int n )
{
if( --n >= 0 ) Mf_move_pos( encoder->matchfinder );
while( --n >= 0 )
{
Mf_get_match_pairs( encoder->matchfinder, 0 );
Mf_move_pos( encoder->matchfinder );
}
}
static inline void LZe_backward( struct LZ_encoder * const encoder, int cur )
{
int * const dis = &encoder->trials[cur].dis;
while( cur > 0 )
{
const int prev_index = encoder->trials[cur].prev_index;
struct Trial * const prev_trial = &encoder->trials[prev_index];
if( encoder->trials[cur].prev_index2 != single_step_trial )
{
prev_trial->dis = -1;
prev_trial->prev_index = prev_index - 1;
prev_trial->prev_index2 = single_step_trial;
if( encoder->trials[cur].prev_index2 >= 0 )
{
struct Trial * const prev_trial2 = &encoder->trials[prev_index-1];
prev_trial2->dis = encoder->trials[cur].dis2;
prev_trial2->prev_index = encoder->trials[cur].prev_index2;
prev_trial2->prev_index2 = single_step_trial;
}
}
prev_trial->price = cur - prev_index; /* len */
cur = *dis; *dis = prev_trial->dis; prev_trial->dis = cur;
cur = prev_index;
}
}
bool LZe_encode_member( struct LZ_encoder * const encoder,
const unsigned long long member_size );