/* Clzip - LZMA lossless data compressor Copyright (C) 2010, 2011, 2012, 2013 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ enum { max_num_trials = 1 << 12, price_shift_bits = 6, price_step_bits = 2, price_step = 1 << price_step_bits }; typedef uint8_t Dis_slots[1<<10]; extern Dis_slots dis_slots; static inline void Dis_slots_init( void ) { int i, size, slot; for( slot = 0; slot < 4; ++slot ) dis_slots[slot] = slot; for( i = 4, size = 2, slot = 4; slot < 20; slot += 2 ) { memset( &dis_slots[i], slot, size ); memset( &dis_slots[i+size], slot + 1, size ); size <<= 1; i += size; } } static inline uint8_t get_slot( const uint32_t dis ) { if( dis < (1 << 10) ) return dis_slots[dis]; if( dis < (1 << 19) ) return dis_slots[dis>> 9] + 18; if( dis < (1 << 28) ) return dis_slots[dis>>18] + 36; return dis_slots[dis>>27] + 54; } typedef short Prob_prices[bit_model_total >> price_step_bits]; extern Prob_prices prob_prices; static inline void Prob_prices_init( void ) { int i, j; for( i = price_step / 2; i < bit_model_total; i += price_step ) { unsigned val = i; int bits = 0; /* base 2 logarithm of val */ for( j = 0; j < price_shift_bits; ++j ) { val = val * val; bits <<= 1; while( val >= 1 << 16 ) { val >>= 1; ++bits; } } bits += 15; /* remaining bits in val */ prob_prices[i >> price_step_bits] = ( bit_model_total_bits << price_shift_bits ) - bits; } } static inline int get_price( const int probability ) { return prob_prices[probability >> price_step_bits]; } static inline int price0( const Bit_model probability ) { return get_price( probability ); } static inline int price1( const Bit_model probability ) { return get_price( bit_model_total - probability ); } static inline int price_bit( const Bit_model bm, const int bit ) { if( bit ) return price1( bm ); else return price0( bm ); } static inline int price_symbol( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; symbol |= ( 1 << num_bits ); while( symbol > 1 ) { const int bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); } return price; } static inline int price_symbol_reversed( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; int model = 1; int i; for( i = num_bits; i > 0; --i ) { const int bit = symbol & 1; price += price_bit( bm[model], bit ); model = ( model << 1 ) | bit; symbol >>= 1; } return price; } static inline int price_matched( const Bit_model bm[], unsigned symbol, unsigned match_byte ) { int price = 0; unsigned mask = 0x100; symbol |= 0x100; do { unsigned bit, match_bit; match_byte <<= 1; match_bit = match_byte & mask; symbol <<= 1; bit = symbol & 0x100; price += price_bit( bm[match_bit+(symbol>>9)+mask], bit ); mask &= ~(match_byte ^ symbol); /* if( match_bit != bit ) mask = 0; */ } while( symbol < 0x10000 ); return price; } struct Pair /* distance-length pair */ { int dis; int len; }; enum { /* bytes to keep in buffer before dictionary */ before_size = max_num_trials + 1, /* bytes to keep in buffer after pos */ after_size = ( 2 * max_match_len ) + 1, num_prev_positions3 = 1 << 16, num_prev_positions2 = 1 << 10 }; struct Matchfinder { unsigned long long partial_data_pos; uint8_t * buffer; /* input buffer */ int32_t * prev_positions; /* last seen position of key */ int32_t * prev_pos_tree; /* previous positions of key */ int match_len_limit; int buffer_size; int dictionary_size; /* bytes to keep in buffer before pos */ int pos; /* current pos in buffer */ int cyclic_pos; /* cycles through [0, dictionary_size] */ int pos_limit; /* when reached, a new block must be read */ int stream_pos; /* first byte not yet read from file */ int cycles; unsigned key4_mask; int num_prev_positions; /* size of prev_positions */ int infd; /* input file descriptor */ bool at_stream_end; /* stream_pos shows real end of file */ }; bool Mf_read_block( struct Matchfinder * const mf ); void Mf_normalize_pos( struct Matchfinder * const mf ); bool Mf_init( struct Matchfinder * const mf, const int dict_size, const int match_len_limit, const int ifd ); static inline void Mf_free( struct Matchfinder * const mf ) { free( mf->prev_positions ); free( mf->buffer ); } static inline uint8_t Mf_peek( const struct Matchfinder * const mf, const int i ) { return mf->buffer[mf->pos+i]; } static inline int Mf_available_bytes( const struct Matchfinder * const mf ) { return mf->stream_pos - mf->pos; } static inline unsigned long long Mf_data_position( const struct Matchfinder * const mf ) { return mf->partial_data_pos + mf->pos; } static inline bool Mf_finished( const struct Matchfinder * const mf ) { return mf->at_stream_end && mf->pos >= mf->stream_pos; } static inline const uint8_t * Mf_ptr_to_current_pos( const struct Matchfinder * const mf ) { return mf->buffer + mf->pos; } static inline bool Mf_dec_pos( struct Matchfinder * const mf, const int ahead ) { if( ahead < 0 || mf->pos < ahead ) return false; mf->pos -= ahead; mf->cyclic_pos -= ahead; if( mf->cyclic_pos < 0 ) mf->cyclic_pos += mf->dictionary_size + 1; return true; } static inline int Mf_true_match_len( const struct Matchfinder * const mf, const int index, const int distance, int len_limit ) { const uint8_t * const data = mf->buffer + mf->pos + index; int i = 0; if( index + len_limit > Mf_available_bytes( mf ) ) len_limit = Mf_available_bytes( mf ) - index; while( i < len_limit && data[i-distance] == data[i] ) ++i; return i; } static inline void Mf_move_pos( struct Matchfinder * const mf ) { if( ++mf->cyclic_pos > mf->dictionary_size ) mf->cyclic_pos = 0; if( ++mf->pos >= mf->pos_limit ) Mf_normalize_pos( mf ); } void Mf_reset( struct Matchfinder * const mf ); int Mf_get_match_pairs( struct Matchfinder * const mf, struct Pair * pairs ); enum { re_buffer_size = 65536 }; struct Range_encoder { uint64_t low; unsigned long long partial_member_pos; uint8_t * buffer; /* output buffer */ int pos; /* current pos in buffer */ uint32_t range; int ff_count; int outfd; /* output file descriptor */ uint8_t cache; }; void Re_flush_data( struct Range_encoder * const renc ); static inline void Re_put_byte( struct Range_encoder * const renc, const uint8_t b ) { renc->buffer[renc->pos] = b; if( ++renc->pos >= re_buffer_size ) Re_flush_data( renc ); } static inline void Re_shift_low( struct Range_encoder * const renc ) { const bool carry = ( renc->low > 0xFFFFFFFFU ); if( carry || renc->low < 0xFF000000U ) { Re_put_byte( renc, renc->cache + carry ); for( ; renc->ff_count > 0; --renc->ff_count ) Re_put_byte( renc, 0xFF + carry ); renc->cache = renc->low >> 24; } else ++renc->ff_count; renc->low = ( renc->low & 0x00FFFFFFU ) << 8; } static inline bool Re_init( struct Range_encoder * const renc, const int ofd ) { renc->low = 0; renc->partial_member_pos = 0; renc->buffer = (uint8_t *)malloc( re_buffer_size ); if( !renc->buffer ) return false; renc->pos = 0; renc->range = 0xFFFFFFFFU; renc->ff_count = 0; renc->outfd = ofd; renc->cache = 0; return true; } static inline void Re_free( struct Range_encoder * const renc ) { free( renc->buffer ); } static inline unsigned long long Re_member_position( const struct Range_encoder * const renc ) { return renc->partial_member_pos + renc->pos + renc->ff_count; } static inline void Re_flush( struct Range_encoder * const renc ) { int i; for( i = 0; i < 5; ++i ) Re_shift_low( renc ); } static inline void Re_encode( struct Range_encoder * const renc, const int symbol, const int num_bits ) { int i; for( i = num_bits - 1; i >= 0; --i ) { renc->range >>= 1; if( (symbol >> i) & 1 ) renc->low += renc->range; if( renc->range <= 0x00FFFFFFU ) { renc->range <<= 8; Re_shift_low( renc ); } } } static inline void Re_encode_bit( struct Range_encoder * const renc, Bit_model * const probability, const int bit ) { const uint32_t bound = ( renc->range >> bit_model_total_bits ) * *probability; if( !bit ) { renc->range = bound; *probability += (bit_model_total - *probability) >> bit_model_move_bits; } else { renc->low += bound; renc->range -= bound; *probability -= *probability >> bit_model_move_bits; } if( renc->range <= 0x00FFFFFFU ) { renc->range <<= 8; Re_shift_low( renc ); } } static inline void Re_encode_tree( struct Range_encoder * const renc, Bit_model bm[], const int symbol, const int num_bits ) { int mask = ( 1 << ( num_bits - 1 ) ); int model = 1; int i; for( i = num_bits; i > 0; --i, mask >>= 1 ) { const int bit = ( symbol & mask ); Re_encode_bit( renc, &bm[model], bit ); model <<= 1; if( bit ) model |= 1; } } static inline void Re_encode_tree_reversed( struct Range_encoder * const renc, Bit_model bm[], int symbol, const int num_bits ) { int model = 1; int i; for( i = num_bits; i > 0; --i ) { const int bit = symbol & 1; Re_encode_bit( renc, &bm[model], bit ); model = ( model << 1 ) | bit; symbol >>= 1; } } static inline void Re_encode_matched( struct Range_encoder * const renc, Bit_model bm[], unsigned symbol, unsigned match_byte ) { unsigned mask = 0x100; symbol |= 0x100; do { unsigned bit, match_bit; match_byte <<= 1; match_bit = match_byte & mask; symbol <<= 1; bit = symbol & 0x100; Re_encode_bit( renc, &bm[match_bit+(symbol>>9)+mask], bit ); mask &= ~(match_byte ^ symbol); /* if( match_bit != bit ) mask = 0; */ } while( symbol < 0x10000 ); } struct Len_encoder { struct Len_model lm; int prices[pos_states][max_len_symbols]; int len_symbols; int counters[pos_states]; }; static inline void Lee_update_prices( struct Len_encoder * const len_encoder, const int pos_state ) { int * const pps = len_encoder->prices[pos_state]; int tmp = price0( len_encoder->lm.choice1 ); int len = 0; for( ; len < len_low_symbols && len < len_encoder->len_symbols; ++len ) pps[len] = tmp + price_symbol( len_encoder->lm.bm_low[pos_state], len, len_low_bits ); tmp = price1( len_encoder->lm.choice1 ); for( ; len < len_low_symbols + len_mid_symbols && len < len_encoder->len_symbols; ++len ) pps[len] = tmp + price0( len_encoder->lm.choice2 ) + price_symbol( len_encoder->lm.bm_mid[pos_state], len - len_low_symbols, len_mid_bits ); for( ; len < len_encoder->len_symbols; ++len ) /* using 4 slots per value makes "Lee_price" faster */ len_encoder->prices[3][len] = len_encoder->prices[2][len] = len_encoder->prices[1][len] = len_encoder->prices[0][len] = tmp + price1( len_encoder->lm.choice2 ) + price_symbol( len_encoder->lm.bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits ); len_encoder->counters[pos_state] = len_encoder->len_symbols; } static inline void Lee_init( struct Len_encoder * const len_encoder, const int match_len_limit ) { int i; Lm_init( &len_encoder->lm ); len_encoder->len_symbols = match_len_limit + 1 - min_match_len; for( i = 0; i < pos_states; ++i ) Lee_update_prices( len_encoder, i ); } void Lee_encode( struct Len_encoder * const len_encoder, struct Range_encoder * const renc, int symbol, const int pos_state ); static inline int Lee_price( const struct Len_encoder * const len_encoder, const int symbol, const int pos_state ) { return len_encoder->prices[pos_state][symbol - min_match_len]; } enum { infinite_price = 0x0FFFFFFF, max_marker_size = 16, num_rep_distances = 4, /* must be 4 */ single_step_trial = -2, dual_step_trial = -1 }; struct Trial { State state; int price; /* dual use var; cumulative price, match length */ int dis; /* rep index or match distance */ int prev_index; /* index of prev trial in trials[] */ int dis2; int prev_index2; /* -2 trial is single step */ /* -1 literal + rep0 */ /* >= 0 rep or match + literal + rep0 */ int reps[num_rep_distances]; }; static inline void Tr_update( struct Trial * const trial, const int pr, const int d, const int p_i ) { if( pr < trial->price ) { trial->price = pr; trial->dis = d; trial->prev_index = p_i; trial->prev_index2 = single_step_trial; } } static inline void Tr_update2( struct Trial * const trial, const int pr, const int d, const int p_i ) { if( pr < trial->price ) { trial->price = pr; trial->dis = d; trial->prev_index = p_i; trial->prev_index2 = dual_step_trial; } } static inline void Tr_update3( struct Trial * const trial, const int pr, const int d, const int p_i, const int d2, const int p_i2 ) { if( pr < trial->price ) { trial->price = pr; trial->dis = d; trial->prev_index = p_i; trial->dis2 = d2; trial->prev_index2 = p_i2; } } struct LZ_encoder { int pending_num_pairs; uint32_t crc; Bit_model bm_literal[1<renc ); } static inline unsigned LZe_crc( const struct LZ_encoder * const encoder ) { return encoder->crc ^ 0xFFFFFFFFU; } /* move-to-front dis in/into reps */ static inline void LZe_mtf_reps( const int dis, int reps[num_rep_distances] ) { int i; if( dis >= num_rep_distances ) { for( i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = dis - num_rep_distances; } else if( dis > 0 ) { const int distance = reps[dis]; for( i = dis; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = distance; } } static inline int LZe_price_rep_len1( const struct LZ_encoder * const encoder, const State state, const int pos_state ) { return price0( encoder->bm_rep0[state] ) + price0( encoder->bm_len[state][pos_state] ); } static inline int LZe_price_rep( const struct LZ_encoder * const encoder, const int rep, const State state, const int pos_state ) { int price; if( rep == 0 ) return price0( encoder->bm_rep0[state] ) + price1( encoder->bm_len[state][pos_state] ); price = price1( encoder->bm_rep0[state] ); if( rep == 1 ) price += price0( encoder->bm_rep1[state] ); else { price += price1( encoder->bm_rep1[state] ); price += price_bit( encoder->bm_rep2[state], rep - 2 ); } return price; } static inline int LZe_price_rep0_len( const struct LZ_encoder * const encoder, const int len, const State state, const int pos_state ) { return LZe_price_rep( encoder, 0, state, pos_state ) + Lee_price( &encoder->rep_len_encoder, len, pos_state ); } static inline int LZe_price_dis( const struct LZ_encoder * const encoder, const int dis, const int dis_state ) { if( dis < modeled_distances ) return encoder->dis_prices[dis_state][dis]; else return encoder->dis_slot_prices[dis_state][get_slot( dis )] + encoder->align_prices[dis & (dis_align_size - 1)]; } static inline int LZe_price_pair( const struct LZ_encoder * const encoder, const int dis, const int len, const int pos_state ) { return Lee_price( &encoder->match_len_encoder, len, pos_state ) + LZe_price_dis( encoder, dis, get_dis_state( len ) ); } static inline int LZe_price_literal( const struct LZ_encoder * const encoder, uint8_t prev_byte, uint8_t symbol ) { return price_symbol( encoder->bm_literal[get_lit_state(prev_byte)], symbol, 8 ); } static inline int LZe_price_matched( const struct LZ_encoder * const encoder, uint8_t prev_byte, uint8_t symbol, uint8_t match_byte ) { return price_matched( encoder->bm_literal[get_lit_state(prev_byte)], symbol, match_byte ); } static inline void LZe_encode_literal( struct LZ_encoder * const encoder, uint8_t prev_byte, uint8_t symbol ) { Re_encode_tree( &encoder->renc, encoder->bm_literal[get_lit_state(prev_byte)], symbol, 8 ); } static inline void LZe_encode_matched( struct LZ_encoder * const encoder, uint8_t prev_byte, uint8_t symbol, uint8_t match_byte ) { Re_encode_matched( &encoder->renc, encoder->bm_literal[get_lit_state(prev_byte)], symbol, match_byte ); } static inline void LZe_encode_pair( struct LZ_encoder * const encoder, const uint32_t dis, const int len, const int pos_state ) { const int dis_slot = get_slot( dis ); Lee_encode( &encoder->match_len_encoder, &encoder->renc, len, pos_state ); Re_encode_tree( &encoder->renc, encoder->bm_dis_slot[get_dis_state(len)], dis_slot, dis_slot_bits ); if( dis_slot >= start_dis_model ) { const int direct_bits = ( dis_slot >> 1 ) - 1; const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const uint32_t direct_dis = dis - base; if( dis_slot < end_dis_model ) Re_encode_tree_reversed( &encoder->renc, encoder->bm_dis + base - dis_slot - 1, direct_dis, direct_bits ); else { Re_encode( &encoder->renc, direct_dis >> dis_align_bits, direct_bits - dis_align_bits ); Re_encode_tree_reversed( &encoder->renc, encoder->bm_align, direct_dis, dis_align_bits ); --encoder->align_price_count; } } } static inline int LZe_read_match_distances( struct LZ_encoder * const encoder ) { const int num_pairs = Mf_get_match_pairs( encoder->matchfinder, encoder->pairs ); if( num_pairs > 0 ) { int len = encoder->pairs[num_pairs-1].len; if( len == encoder->matchfinder->match_len_limit && len < max_match_len ) { len += Mf_true_match_len( encoder->matchfinder, len, encoder->pairs[num_pairs-1].dis + 1, max_match_len - len ); encoder->pairs[num_pairs-1].len = len; } } return num_pairs; } static inline void LZe_move_pos( struct LZ_encoder * const encoder, int n ) { if( --n >= 0 ) Mf_move_pos( encoder->matchfinder ); while( --n >= 0 ) { Mf_get_match_pairs( encoder->matchfinder, 0 ); Mf_move_pos( encoder->matchfinder ); } } static inline void LZe_backward( struct LZ_encoder * const encoder, int cur ) { int * const dis = &encoder->trials[cur].dis; while( cur > 0 ) { const int prev_index = encoder->trials[cur].prev_index; struct Trial * const prev_trial = &encoder->trials[prev_index]; if( encoder->trials[cur].prev_index2 != single_step_trial ) { prev_trial->dis = -1; prev_trial->prev_index = prev_index - 1; prev_trial->prev_index2 = single_step_trial; if( encoder->trials[cur].prev_index2 >= 0 ) { struct Trial * const prev_trial2 = &encoder->trials[prev_index-1]; prev_trial2->dis = encoder->trials[cur].dis2; prev_trial2->prev_index = encoder->trials[cur].prev_index2; prev_trial2->prev_index2 = single_step_trial; } } prev_trial->price = cur - prev_index; /* len */ cur = *dis; *dis = prev_trial->dis; prev_trial->dis = cur; cur = prev_index; } } bool LZe_encode_member( struct LZ_encoder * const encoder, const unsigned long long member_size );