/* Clzip - Data compressor based on the LZMA algorithm Copyright (C) 2010, 2011 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ enum { max_num_trials = 1 << 12, price_shift = 6 }; typedef unsigned char Dis_slots[1<<12]; extern Dis_slots dis_slots; static inline void Dis_slots_init() { int i, size, slot; for( slot = 0; slot < 4; ++slot ) dis_slots[slot] = slot; for( i = 4, size = 2, slot = 4; slot < 24; slot += 2 ) { memset( &dis_slots[i], slot, size ); memset( &dis_slots[i+size], slot + 1, size ); size <<= 1; i += size; } } static inline int get_slot( const uint32_t dis ) { if( dis < (1 << 12) ) return dis_slots[dis]; if( dis < (1 << 23) ) return dis_slots[dis>>11] + 22; return dis_slots[dis>>22] + 44; } typedef int Prob_prices[bit_model_total >> 2]; extern Prob_prices prob_prices; static inline void Prob_prices_init() { const int num_bits = ( bit_model_total_bits - 2 ); int i, j = 1, end = 2; prob_prices[0] = bit_model_total_bits << price_shift; for( i = num_bits - 1; i >= 0; --i, end <<= 1 ) { for( ; j < end; ++j ) prob_prices[j] = ( i << price_shift ) + ( ((end - j) << price_shift) >> (num_bits - i - 1) ); } } static inline int get_price( const int probability ) { return prob_prices[probability >> 2]; } static inline int price0( const Bit_model probability ) { return get_price( probability ); } static inline int price1( const Bit_model probability ) { return get_price( bit_model_total-probability ); } static inline int price_bit( const Bit_model bm, const int bit ) { if( bit ) return price1( bm ); else return price0( bm ); } static inline int price_symbol( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; symbol |= ( 1 << num_bits ); while( symbol > 1 ) { const int bit = symbol & 1; symbol >>= 1; price += price_bit( bm[symbol], bit ); } return price; } static inline int price_symbol_reversed( const Bit_model bm[], int symbol, const int num_bits ) { int price = 0; int model = 1; int i; for( i = num_bits; i > 0; --i ) { const int bit = symbol & 1; symbol >>= 1; price += price_bit( bm[model], bit ); model = ( model << 1 ) | bit; } return price; } static inline int price_matched( const Bit_model bm[], const int symbol, const int match_byte ) { int price = 0; int model = 1; int i; for( i = 7; i >= 0; --i ) { const int match_bit = ( match_byte >> i ) & 1; int bit = ( symbol >> i ) & 1; price += price_bit( bm[(match_bit<<8)+model+0x100], bit ); model = ( model << 1 ) | bit; if( match_bit != bit ) { while( --i >= 0 ) { bit = ( symbol >> i ) & 1; price += price_bit( bm[model], bit ); model = ( model << 1 ) | bit; } break; } } return price; } enum { /* bytes to keep in buffer before dictionary */ before_size = max_num_trials + 1, /* bytes to keep in buffer after pos */ after_size = max_match_len, num_prev_positions4 = 1 << 20, num_prev_positions3 = 1 << 18, num_prev_positions2 = 1 << 16, num_prev_positions = num_prev_positions4 + num_prev_positions3 + num_prev_positions2 }; struct Matchfinder { long long partial_data_pos; uint8_t * buffer; /* input buffer */ int32_t * prev_positions; /* last seen position of key */ int32_t * prev_pos_tree; int dictionary_size_; /* bytes to keep in buffer before pos */ int buffer_size; int pos; /* current pos in buffer */ int cyclic_pos; /* current pos in dictionary */ int stream_pos; /* first byte not yet read from file */ int pos_limit; /* when reached, a new block must be read */ int match_len_limit_; int cycles; int infd; /* input file descriptor */ bool at_stream_end; /* stream_pos shows real end of file */ }; bool Mf_read_block( struct Matchfinder * const mf ); void Mf_init( struct Matchfinder * const mf, const int dict_size, const int len_limit, const int ifd ); static inline void Mf_free( struct Matchfinder * const mf ) { free( mf->prev_pos_tree ); mf->prev_pos_tree = 0; free( mf->prev_positions ); mf->prev_positions = 0; free( mf->buffer ); mf->buffer = 0; } static inline uint8_t Mf_peek( struct Matchfinder * const mf, const int i ) { return mf->buffer[mf->pos+i]; } static inline int Mf_available_bytes( struct Matchfinder * const mf ) { return mf->stream_pos - mf->pos; } static inline long long Mf_data_position( struct Matchfinder * const mf ) { return mf->partial_data_pos + mf->pos; } static inline int Mf_dictionary_size( struct Matchfinder * const mf ) { return mf->dictionary_size_; } static inline bool Mf_finished( struct Matchfinder * const mf ) { return mf->at_stream_end && mf->pos >= mf->stream_pos; } static inline int Mf_match_len_limit( struct Matchfinder * const mf ) { return mf->match_len_limit_; } static inline const uint8_t * Mf_ptr_to_current_pos( struct Matchfinder * const mf ) { return mf->buffer + mf->pos; } static inline bool Mf_dec_pos( struct Matchfinder * const mf, const int ahead ) { if( ahead < 0 || mf->pos < ahead ) return false; mf->pos -= ahead; mf->cyclic_pos -= ahead; if( mf->cyclic_pos < 0 ) mf->cyclic_pos += mf->dictionary_size_; return true; } static inline int Mf_true_match_len( struct Matchfinder * const mf, const int index, const int distance, int len_limit ) { const uint8_t * const data = mf->buffer + mf->pos + index - distance; int i = 0; if( index + len_limit > Mf_available_bytes( mf ) ) len_limit = Mf_available_bytes( mf ) - index; while( i < len_limit && data[i] == data[i+distance] ) ++i; return i; } void Mf_reset( struct Matchfinder * const mf ); void Mf_move_pos( struct Matchfinder * const mf ); int Mf_longest_match_len( struct Matchfinder * const mf, int * const distances ); enum { re_buffer_size = 65536 }; struct Range_encoder { uint64_t low; long long partial_member_pos; uint8_t * buffer; /* output buffer */ int pos; /* current pos in buffer */ uint32_t range; int ff_count; int outfd; /* output file descriptor */ uint8_t cache; }; void Re_flush_data( struct Range_encoder * const range_encoder ); static inline void Re_put_byte( struct Range_encoder * const range_encoder, const uint8_t b ) { range_encoder->buffer[range_encoder->pos] = b; if( ++range_encoder->pos >= re_buffer_size ) Re_flush_data( range_encoder ); } static inline void Re_shift_low( struct Range_encoder * const range_encoder ) { const uint32_t carry = range_encoder->low >> 32; if( range_encoder->low < 0xFF000000U || carry == 1 ) { Re_put_byte( range_encoder, range_encoder->cache + carry ); for( ; range_encoder->ff_count > 0; --range_encoder->ff_count ) Re_put_byte( range_encoder, 0xFF + carry ); range_encoder->cache = range_encoder->low >> 24; } else ++range_encoder->ff_count; range_encoder->low = ( range_encoder->low & 0x00FFFFFFU ) << 8; } static inline void Re_init( struct Range_encoder * const range_encoder, const int ofd ) { range_encoder->low = 0; range_encoder->partial_member_pos = 0; range_encoder->buffer = (uint8_t *)malloc( re_buffer_size ); if( !range_encoder->buffer ) { show_error( "Not enough memory. Try a smaller dictionary size.", 0, false ); cleanup_and_fail( 1 ); } range_encoder->pos = 0; range_encoder->range = 0xFFFFFFFFU; range_encoder->ff_count = 0; range_encoder->outfd = ofd; range_encoder->cache = 0; } static inline void Re_free( struct Range_encoder * const range_encoder ) { free( range_encoder->buffer ); range_encoder->buffer = 0; } static inline long long Re_member_position( struct Range_encoder * const range_encoder ) { return range_encoder->partial_member_pos + range_encoder->pos + range_encoder->ff_count; } static inline void Re_flush( struct Range_encoder * const range_encoder ) { int i; for( i = 0; i < 5; ++i ) Re_shift_low( range_encoder ); } static inline void Re_encode( struct Range_encoder * const range_encoder, const int symbol, const int num_bits ) { int i; for( i = num_bits - 1; i >= 0; --i ) { range_encoder->range >>= 1; if( (symbol >> i) & 1 ) range_encoder->low += range_encoder->range; if( range_encoder->range <= 0x00FFFFFFU ) { range_encoder->range <<= 8; Re_shift_low( range_encoder ); } } } static inline void Re_encode_bit( struct Range_encoder * const range_encoder, Bit_model * const probability, const int bit ) { const uint32_t bound = ( range_encoder->range >> bit_model_total_bits ) * *probability; if( !bit ) { range_encoder->range = bound; *probability += (bit_model_total - *probability) >> bit_model_move_bits; } else { range_encoder->low += bound; range_encoder->range -= bound; *probability -= *probability >> bit_model_move_bits; } if( range_encoder->range <= 0x00FFFFFFU ) { range_encoder->range <<= 8; Re_shift_low( range_encoder ); } } static inline void Re_encode_tree( struct Range_encoder * const range_encoder, Bit_model bm[], const int symbol, const int num_bits ) { int mask = ( 1 << ( num_bits - 1 ) ); int model = 1; int i; for( i = num_bits; i > 0; --i, mask >>= 1 ) { const int bit = ( symbol & mask ); Re_encode_bit( range_encoder, &bm[model], bit ); model <<= 1; if( bit ) model |= 1; } } static inline void Re_encode_tree_reversed( struct Range_encoder * const range_encoder, Bit_model bm[], int symbol, const int num_bits ) { int model = 1; int i; for( i = num_bits; i > 0; --i ) { const int bit = symbol & 1; Re_encode_bit( range_encoder, &bm[model], bit ); model = ( model << 1 ) | bit; symbol >>= 1; } } static inline void Re_encode_matched( struct Range_encoder * const range_encoder, Bit_model bm[], int symbol, int match_byte ) { int model = 1; int i; for( i = 7; i >= 0; --i ) { const int match_bit = ( match_byte >> i ) & 1; int bit = ( symbol >> i ) & 1; Re_encode_bit( range_encoder, &bm[(match_bit<<8)+model+0x100], bit ); model = ( model << 1 ) | bit; if( match_bit != bit ) { while( --i >= 0 ) { bit = ( symbol >> i ) & 1; Re_encode_bit( range_encoder, &bm[model], bit ); model = ( model << 1 ) | bit; } break; } } } struct Len_encoder { Bit_model choice1; Bit_model choice2; Bit_model bm_low[pos_states][len_low_symbols]; Bit_model bm_mid[pos_states][len_mid_symbols]; Bit_model bm_high[len_high_symbols]; int prices[pos_states][max_len_symbols]; int len_symbols; int counters[pos_states]; }; static inline void Lee_update_prices( struct Len_encoder * const len_encoder, const int pos_state ) { int * const pps = len_encoder->prices[pos_state]; int tmp = price0( len_encoder->choice1 ); int len = 0; for( ; len < len_low_symbols && len < len_encoder->len_symbols; ++len ) pps[len] = tmp + price_symbol( len_encoder->bm_low[pos_state], len, len_low_bits ); tmp = price1( len_encoder->choice1 ); for( ; len < len_low_symbols + len_mid_symbols && len < len_encoder->len_symbols; ++len ) pps[len] = tmp + price0( len_encoder->choice2 ) + price_symbol( len_encoder->bm_mid[pos_state], len - len_low_symbols, len_mid_bits ); for( ; len < len_encoder->len_symbols; ++len ) /* using 4 slots per value makes "Lee_price" faster */ len_encoder->prices[3][len] = len_encoder->prices[2][len] = len_encoder->prices[1][len] = len_encoder->prices[0][len] = tmp + price1( len_encoder->choice2 ) + price_symbol( len_encoder->bm_high, len - len_low_symbols - len_mid_symbols, len_high_bits ); len_encoder->counters[pos_state] = len_encoder->len_symbols; } static inline void Lee_init( struct Len_encoder * const len_encoder, const int len_limit ) { int i, j; Bm_init( &len_encoder->choice1 ); Bm_init( &len_encoder->choice2 ); for( i = 0; i < pos_states; ++i ) for( j = 0; j < len_low_symbols; ++j ) Bm_init( &len_encoder->bm_low[i][j] ); for( i = 0; i < pos_states; ++i ) for( j = 0; j < len_mid_symbols; ++j ) Bm_init( &len_encoder->bm_mid[i][j] ); for( i = 0; i < len_high_symbols; ++i ) Bm_init( &len_encoder->bm_high[i] ); len_encoder->len_symbols = len_limit + 1 - min_match_len; for( i = 0; i < pos_states; ++i ) Lee_update_prices( len_encoder, i ); } void Lee_encode( struct Len_encoder * const len_encoder, struct Range_encoder * const range_encoder, int symbol, const int pos_state ); static inline int Lee_price( struct Len_encoder * const len_encoder, const int symbol, const int pos_state ) { return len_encoder->prices[pos_state][symbol - min_match_len]; } struct Literal_encoder { Bit_model bm_literal[1<> ( 8 - literal_context_bits ) ); } static inline void Lie_init( struct Literal_encoder * const literal_encoder ) { int i, j; for( i = 0; i < 1<bm_literal[i][j] ); } static inline void Lie_encode( struct Literal_encoder * const literal_encoder, struct Range_encoder * const range_encoder, uint8_t prev_byte, uint8_t symbol ) { Re_encode_tree( range_encoder, literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, 8 ); } static inline void Lie_encode_matched( struct Literal_encoder * const literal_encoder, struct Range_encoder * const range_encoder, uint8_t prev_byte, uint8_t symbol, uint8_t match_byte ) { Re_encode_matched( range_encoder, literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, match_byte ); } static inline int Lie_price_symbol( struct Literal_encoder * const literal_encoder, uint8_t prev_byte, uint8_t symbol ) { return price_symbol( literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, 8 ); } static inline int Lie_price_matched( struct Literal_encoder * const literal_encoder, uint8_t prev_byte, uint8_t symbol, uint8_t match_byte ) { return price_matched( literal_encoder->bm_literal[Lie_state(prev_byte)], symbol, match_byte ); } enum { infinite_price = 0x0FFFFFFF, max_marker_size = 16, num_rep_distances = 4 }; /* must be 4 */ struct Trial { State state; int dis; int prev_index; /* index of prev trial in trials[] */ int price; /* dual use var; cumulative price, match length */ int reps[num_rep_distances]; }; static inline void Tr_update( struct Trial * const trial, const int d, const int p_i, const int pr ) { if( pr < trial->price ) { trial->dis = d; trial->prev_index = p_i; trial->price = pr; } } struct LZ_encoder { int longest_match_found; uint32_t crc_; Bit_model bm_match[states][pos_states]; Bit_model bm_rep[states]; Bit_model bm_rep0[states]; Bit_model bm_rep1[states]; Bit_model bm_rep2[states]; Bit_model bm_len[states][pos_states]; Bit_model bm_dis_slot[max_dis_states][1<crc_ ^ 0xFFFFFFFFU; } /* move-to-front dis in/into reps */ static inline void LZe_mtf_reps( const int dis, int reps[num_rep_distances] ) { int i; if( dis >= num_rep_distances ) { for( i = num_rep_distances - 1; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = dis - num_rep_distances; } else if( dis > 0 ) { const int distance = reps[dis]; for( i = dis; i > 0; --i ) reps[i] = reps[i-1]; reps[0] = distance; } } static inline int LZe_price_rep_len1( struct LZ_encoder * const encoder, const State state, const int pos_state ) { return price0( encoder->bm_rep0[state] ) + price0( encoder->bm_len[state][pos_state] ); } static inline int LZe_price_rep( struct LZ_encoder * const encoder, const int rep, const State state, const int pos_state ) { int price; if( rep == 0 ) return price0( encoder->bm_rep0[state] ) + price1( encoder->bm_len[state][pos_state] ); price = price1( encoder->bm_rep0[state] ); if( rep == 1 ) price += price0( encoder->bm_rep1[state] ); else { price += price1( encoder->bm_rep1[state] ); price += price_bit( encoder->bm_rep2[state], rep - 2 ); } return price; } static inline int LZe_price_dis( struct LZ_encoder * const encoder, const int dis, const int dis_state ) { if( dis < modeled_distances ) return encoder->dis_prices[dis_state][dis]; else return encoder->dis_slot_prices[dis_state][get_slot( dis )] + encoder->align_prices[dis & (dis_align_size - 1)]; } static inline int LZe_price_pair( struct LZ_encoder * const encoder, const int dis, const int len, const int pos_state ) { if( len <= min_match_len && dis >= modeled_distances ) return infinite_price; return Lee_price( &encoder->len_encoder, len, pos_state ) + LZe_price_dis( encoder, dis, get_dis_state( len ) ); } static inline void LZe_encode_pair( struct LZ_encoder * const encoder, const uint32_t dis, const int len, const int pos_state ) { const int dis_slot = get_slot( dis ); Lee_encode( &encoder->len_encoder, &encoder->range_encoder, len, pos_state ); Re_encode_tree( &encoder->range_encoder, encoder->bm_dis_slot[get_dis_state(len)], dis_slot, dis_slot_bits ); if( dis_slot >= start_dis_model ) { const int direct_bits = ( dis_slot >> 1 ) - 1; const uint32_t base = ( 2 | ( dis_slot & 1 ) ) << direct_bits; const uint32_t direct_dis = dis - base; if( dis_slot < end_dis_model ) Re_encode_tree_reversed( &encoder->range_encoder, encoder->bm_dis + base - dis_slot, direct_dis, direct_bits ); else { Re_encode( &encoder->range_encoder, direct_dis >> dis_align_bits, direct_bits - dis_align_bits ); Re_encode_tree_reversed( &encoder->range_encoder, encoder->bm_align, direct_dis, dis_align_bits ); if( --encoder->align_price_count <= 0 ) LZe_fill_align_prices( encoder ); } } } static inline int LZe_read_match_distances( struct LZ_encoder * const encoder ) { int len = Mf_longest_match_len( encoder->matchfinder, encoder->match_distances ); if( len == Mf_match_len_limit( encoder->matchfinder ) ) len += Mf_true_match_len( encoder->matchfinder, len, encoder->match_distances[len] + 1, max_match_len - len ); return len; } static inline void LZe_move_pos( struct LZ_encoder * const encoder, int n, bool skip ) { while( --n >= 0 ) { if( skip ) skip = false; else Mf_longest_match_len( encoder->matchfinder, 0 ); Mf_move_pos( encoder->matchfinder ); } } static inline void LZe_backward( struct LZ_encoder * const encoder, int cur ) { int * const dis = &encoder->trials[cur].dis; while( cur > 0 ) { const int prev_index = encoder->trials[cur].prev_index; struct Trial * const prev_trial = &encoder->trials[prev_index]; prev_trial->price = cur - prev_index; /* len */ cur = *dis; *dis = prev_trial->dis; prev_trial->dis = cur; cur = prev_index; } } int LZe_sequence_optimizer( struct LZ_encoder * const encoder, const int reps[num_rep_distances], const State state ); void LZe_full_flush( struct LZ_encoder * const encoder, const State state ); void LZe_init( struct LZ_encoder * const encoder, struct Matchfinder * const mf, const File_header header, const int outfd ); static inline void LZe_free( struct LZ_encoder * const encoder ) { Re_free( &encoder->range_encoder ); } bool LZe_encode_member( struct LZ_encoder * const encoder, const long long member_size ); static inline long long LZe_member_position( struct LZ_encoder * const encoder ) { return Re_member_position( &encoder->range_encoder ); }